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Abstract10

In this paper a generalized discrete elastica including both bending and shear elastic interactions is devel-
oped and its possible link with nonlocal beam continua is revealed. This lattice system can be viewed as the
generalization of the Hencky bar-chain model, which can be retrieved in the case of infinite shear stiffness.
The shear contribution in the discrete elastica is introduced by following the approach of Engesser (normal
and shear forces are aligned with and perpendicular to the link axis, respectively) and that of Haringx (shear
force is parallel to end section of links), both supported by physical arguments. The nonlinear analysis of
the shearable-bendable discrete elastica under axial load is accomplished. Buckling and post-buckling of
the lattice systems are analysed in a geometrically exact framework. The buckling loads of both the discrete
Engesser and Haringx elastica are analytically calculated, and the post-buckling behavior is numerically
studied for large displacement. Nonlocal Timoshenko-type beam models, including both bending and shear
stiffness, are then built from the continualization of the discrete systems. Analytical solutions for the fun-
damental buckling loads of the nonlocal Engesser and Haringx elastica models are given, and their first
post-buckling paths are numerically computed and compared to those of the discrete Engesser and Haringx
elastica. It is shown that the nonlocal Timoshenko-type beam models efficiently capture the scale effects
associated with the shearable-bendable discrete elastica.

Keywords: Lattice; Discrete elastica; Shear effect; Nonlocal beam mechanics; Timoshenko beam11

elements; Scale effect; Buckling; Bifurcation; Post-buckling; Finite Difference Methods12

1. Introduction13

In this paper the possible link between discrete beam systems and their continuum analogies for struc-14

tural mechanics applications is investigated. One related question is whether we can build nonlocal beam15

models from discrete systems composed of rigid elements linked by concentrated or distributed interaction.16

A pioneer model for relating discrete beam mechanics with its continuum analogue is the so-called Hencky17
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bar-chain model, which is composed of rigid elements connected by concentrated rotational springs (Hencky18

[1]). Hencky [1] considered this lattice system for estimating the buckling load of the Euler-Bernoulli beam19

(Euler [2]). Hencky [1] presented some solutions for small number of links, namely n = 2, 3 and 4, and20

showed the efficiency of this computation method for approximating the buckling load of the continuous21

Euler-Bernoulli beam. The exact buckling load valid for any number of links was derived by Wang [3, 4] by22

solving a linear, discrete boundary value problem. In fact, as pointed out by Silverman [5], the difference23

equations of Hencky bar-chain model are the central finite difference formulation of the continuous Euler-24

Bernoulli beam equations. This strong connection between lattice mechanics and finite difference method25

was also discussed by Maugin [6] and Challamel et al [7]. It is worth mentioning that alternative lattice26

models with distributed microstructure can be related to the finite element method, as recently studied by27

Kocsis and Challamel [8]. Going back to Hencky’s model and due to the interest of the mechanics com-28

munity in understanding the discretization properties of nonlinear systems, the post-buckling behavior of29

Hencky bar-chain model was reconsidered in the 80s independently by El Naschie et al [9] and Gáspár and30

Domokos [10]. Gáspár and Domokos [10], Domokos [11], Domokos and Holmes [12] Károlyi and Domokos31

[13], and Kapsza et al [14] revealed how rich and complex equilibrium states the Hencky bar-chain model32

can possess, contrary to the Bernoulli-Euler beam. This complex behavior is because of the discrete system33

is spatially chaotic as pointed out by Domokos and Holmes [12]. In fact, the discrete Hencky bar-chain34

model shows spatial chaotic behavior not only if axially compressed and simply supported, but also un-35

der different (even non-conservative) loadings and boundary conditions (see Kocsis and Károlyi [15, 16]36

and Kocsis [17]). Discrete microstructured systems with both shear and bending effects were considered37

for instance by Ostoja-Starzewski [18], Zhang et al [19] and Duan et al [20] in different physical systems.38

Ostoja-Starzewski presented results for dumbbell particles (vertical rigid bars) of X-braced girder geometry,39

whereas Zhang et al [19] and Duan et al [20] used generalized Hencky-type systems with bending-shear40

interaction for buckling (Zhang et al [19]) and vibrations behavior (Duan et al [20], respectively). Recently,41

Dell’Isola et al [21] has investigated the behavior of a pantographic sheet or pantographic lattice composed42

of extensionable springs with concentrated rotational stiffnesses. This two-dimensional lattice can be viewed43

as a possible two-dimensional generalization of Hencky’s system with an extensibility condition for each cell44

Lattice beam models have a wide range of applications ranging from stability in construction engineering45

[22], through computer graphics and image analysis [23] to nanostructures [24] and biomechanics [25]. As46

an example for biomechanical application, a 3D discrete model was developed by Coleman et al [25] for47

studying sequence-dependent DNA elasticity, while the 2D counterpart of this model, the discrete planar48

Cosserat rod was developed by Kocsis [26].49

The discrete elastica problem has been recently revisited from a nonlocal point of view by Challamel50

et al [27], who showed the efficiency of nonlocal mechanics to capture the scale effects of the discrete51

elastica. The nonlocal beam model considered by Challamel et al [27] was built by continualization of52

the governing difference equations of the discrete elastica, leading to an equivalent stress gradient model53

(as used by Eringen [28] for axial lattice dynamics). They [27] also showed that the nonlocal terms of54

the nonlocal continualized beam model strongly depend on the lattice spacing of Hencky bar-chain model.55

The continualization method used in Challamel et al [27] implemented stress gradient operators, but strain56

gradient operators can also be used for other continuous approximations of the discrete problem (Challamel57

et al [29]). In other words, nonlocal Euler-Bernoulli beam model can be built from Hencky bar-chain model58

by using a continualization method, both in the linear and in the nonlinear range.59

The present paper generalizes these results by including the effect of shear deformation. The influence of60
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the shear effect in the buckling of local continuous columns can be introduced through two different theories,61

the Engesser theory [44] and the Haringx theory [30]. These theories differ in the normal and shear force62

definitions, which can be defined with respect to the non-deformed or the deformed cross-section. In the63

case of the Engesser theory, the normal force is chosen to be parallel to the deformed beam axis, whereas64

in the Haringx approach the normal force is chosen to be normal to the cross-section. The differences65

between these shear theories can be understood as a difference of strain measure definition, as extensively66

detailed by Bažant [31] (see more recently Bažant and Cedolin [32]). The buckling of extensible, shearable67

and bendable columns has been studied by Ziegler [33] for an Engesser based model, later generalized by68

Reissner [34] for both Engesser and Haringx based models, with energetic arguments.69

The buckling of Hencky bar-chain model extended by some shear effects has been studied by Zhang et70

al [19], who also continualized this discrete structural model to obtain a nonlocal Timoshenko beam model.71

However, Zhang et al [19] only considered the linearized buckling problem and obtained an Engesser-type72

formula for the buckling load. In this paper we introduce two generalized Hencky bar-chain models, both73

of which possess bending and shear interactions. One model turns out to be a lattice system corresponding74

to the Engesser elastica, while the other model is a lattice system corresponding to the Haringx elastica.75

Geometrically exact nonlocal Engesser and Haringx elastica are then asymptotically obtained from a con-76

tinualization process applied to the discrete Haringx and Engesser elastica. Nonlocal Engesser and Haringx77

elastica are also obtained by using Eringen’s nonlocal elasticity [28] for small displacements in order to78

verify and comprehend the continualized nonlocal models. It is shown that the continualized nonlocal mod-79

els can be obtained from Eringen’s nonlocal elasticity if nonlocality affects only the bending, but not the80

shear terms of the constitutive law. Analytical solutions for the buckling loads of the introduced discrete81

and nonlocal models are derived and numerical solutions for the first post-buckling paths are given for the82

discrete and nonlocal models for large displacements. Numerically obtained bifurcation diagrams of the83

discrete systems are also plotted.84

2. The generalized Hencky bar-chain model85

The model of the generalized Hencky bar-chain model, a shearable-bendable elastic linkage, is shown86

in Figure 1 (a). There are N links connected by frictionless hinges in the x, y–plane. Initially, each link is87

a rectangular object, its longer side length, also called the length of the link, is a0 parallel to the x-axis. In88

the unloaded state the linkage is straight, its total length is L = N · a0. Upon loading each link can undergo89

rigid–body–like rotation, and can be distorted due to shearing. The rigid–body–like rotation of link i is90

denoted by θi. Both the link axis and the end sections of the link rotate by this angle while the length of91

the link remains a0. Then the link can be distorted such that the link axis is rotated by an additional (shear)92

angle γi, while the end sections of the link keep their angle θi, and the length of the link becomes ai. The93

shear force that develops during distortion will be defined later, since it depends on the applied shear strain94

theory. The neighboring end sections of adjacent links are connected by linear rotational springs of stiffness95

ρ. These are called bending springs. The moment in the ith bending spring is given by the material law:96

Mi = ρ (θi+1 − θi) . (1)

Hinge 0, at the starting end of the linkage, is fixed, while hinge N is supported by a roller which97
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constraints translation along the y axis. Hence, the supports are at the same height, y0 = yN , leading to the98

kinematic boundary condition:99

yN − y0 = 0. (2)

The structure is loaded by a horizontal, compressive (axial) force P at hingeN . There are zero moments100

at the ends of the linkage, defining the force boundary conditions M0 = MN = 0, which, along with the101

discrete constitutive law Eq. (1), yield:102

θ0 = θ1, θN+1 = θN . (3)

Figure 1 (b) shows a schematic free body diagram of the displaced link i. If hinges 0 and N do not103

coincide, then the reaction force in the roller, and the vertical component of the reaction force in the fixed104

hinge are zero.105

We will implement two types of shear strain theories for the links. First we follow Timoshenko’s finite106

shear strain theory [35], assuming that the shear deformation preserves the initial length of the link axis.107

Hence, after the links are distorted, their length remain constant, ai = a0. This approach is discussed in108

Section 3.109

Then we apply Love’s finite shear strain theory [36], assuming that the shear deformation preserves the110

initial area of the links. In this case, the length of the ith link axis becomes ai = a0/ cos γi after the shear111

deformation. This approach is detailed in Section 4.112

3. Discrete and nonlocal Engesser elastica113

The deformed link i, following Timoshenko’s finite shear strain theory, is shown in Figure 2. The length114

of the link is preserved during the shear deformation, ai = a0, while the area of the link decreases.115

If the linkage is a discrete model of a homogeneous, prismatic beam of bending stiffness EI and shear116

stiffness κGA, then the stiffness of the bending springs is ρ = EI/a0 and the stiffness of the shearable links117

is k = κGAa0. The total potential energy of the structure is the sum of internal and external potentials:118

Πtot =
1

2
ρ
N−1∑

i=1

(θi+1 − θi)2 +
1

2
k

N∑

i=1

γ2i + Pa0

N∑

i=1

cos (θi + γi) . (4)

The dimensionless total potential energy is obtained by dividing Eq. (4) by ρ:119

Π =
1

2

N−1∑

i=1

(θi+1 − θi)2 +
α

2N2

N∑

i=1

γ2i +
β

N2

N∑

i=1

cos (θi + γi) (5)

Here the following stiffness and load parameters are introduced:120
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α =
κGAL2

EI
, β =

PL2

EI
. (6)

In an equilibrium configuration the total potential energy is stationary [37]. This condition yields the121

2N equilibrium equations of the structure:122

∂Π

∂θi
= − (θi+1 − 2θi + θi−1)−

β

N2
sin (θi + γi) = 0, (7)

∂Π

∂γi
=

α

N2
γi −

β

N2
sin (θi + γi) = 0, i = 1, . . . , N. (8)

If Eqs. (7) are summed, and the static boundary conditions Eq. (3) are taken into account, then the kinematic123

boundary condition Eq. (2) is satisfied for β 6= 0.124

Note the physical meaning of Eq. (7): It is the equilibrium of moments of link i. Now let us decompose125

the force P . The axial component, P cos(θi + γi), has no apparent effect since the link is inextensible.126

The component perpendicular to the link axis, P sin(θi + γi), shears the link, and cause the shear strain127

γi. This is meant by Eq. (8) in a non-dimensional form. Therefore, the introduced model inherits a discrete128

Engesser-type approach: the normal and shear forces are aligned with and perpendicular to the link axis,129

respectively [32].130

By introducing131

Ψi = θi + γi, (9)

the angle of the link axis, the equilibrium equation system Eqs. (7)–(8) can be written as:132

Ψi+1 − 2Ψi + Ψi−1 −
β

α
(sin Ψi+1 − 2 sin Ψi + sin Ψi−1) +

β

N2
sin Ψi = 0, i = 1, . . . , N (10)

with boundary conditions Ψ0 = Ψ1 and ΨN+1 = ΨN . Note that Eq. (10) is identical to the difference133

equation system of Hencky bar-chain model as α→∞, i.e. as the links become unshearable.134

3.1. Buckling load of the discrete Engesser elastica135

The trivial solution for Eq. (10), for fixed stiffness parameter α, is: Ψi = 0, and β is arbitrary. This
solution defines the trivial equilibrium states of the structure. A Hessian, formed by the partial derivatives
of Eq. (10) with respect to Ψi, around the trivial state is the following:

H = −C
(

1− β

α

)
+

β

N2
I. (11)

Here I is the N–by–N identity matrix, while C is the N–by–N modified continuant matrix defined as136

Ci,i = 2, except for C1,1 = CN,N = 1, Ci,i+1 = Ci,i−1 = −1, and zero otherwise. If at least one137

5
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eigenvalue of H is zero, then the trivial equilibrium state is critical, which implies that the structure may138

buckle [38]. An eigenvalue is zero if det(H) = 0, hence if β/
(
N2(1− β/α)

)
is an eigenvalue of C. The139

eigenvalues of C are140

λi = 4 sin2 iπ

2N
, i = 0, . . . , N − 1 (12)

(see page 232 of [39] for details). There is a trivial solution of i = 0 and β = 0, which implies P = 0 or141

EI →∞. The other solutions give the buckling loads of the structure:142

βcr,i =
4N2 sin2 iπ

2N

1 +
4N2 sin2 iπ

2N

α

, i = 1, . . . , N − 1. (13)

It is important to observe that all of these N − 1 buckling loads are compressive, thus the structure can143

buckle only under compression. The fundamental buckling load of the discrete Engesser elastica is obtained144

from Eq. (13) with i = 1 as:145

βdE =
4N2 sin2 π

2N

1 +
4N2 sin2 π

2N

α

=
βH

1 +
βH

α

. (14)

Here

βH = 4N2 sin2 π

2N
(15)

is the fundamental buckling load of Hencky’s system [4, 12, 40], to which Eq. (14) tends in the unshearable146

limit, i.e. as κGA→∞, α→∞. In view of this, the formula that has been developed for the fundamental147

buckling load of our shearable, bendable discrete model, Eq. (14), follows the Föppl-Papkovich summation148

pattern [41].149

The unbendable case implies EI → ∞. Then the buckling load equals the shear stiffness of the struc-150

tures, which corresponds to the elastic web of links [17, 42], a discrete model of Timoshenko’s unbendable,151

inextensible, but shearable column [35].152

Note that Eq. (15) has already been given by Zhang et al [19], corresponding to a different microme-153

chanical model of the nonlocal Timoshenko beam.154

3.2. Asymptotic limit: the local Engesser elastica155

In the continuum limit Eq. (10) yields the local Engesser elastica:156

d2

dξ2

(
Ψ− β

α
sin Ψ

)
+ β sin Ψ = 0, (16)

6
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with ξ = s/L being the non-dimensional arc-length parameter, d2/ dξ2 denotes the second derivative with157

respect to ξ, and Ψ(ξ) = θ(ξ) + γ(ξ). It can be also written as158

d2Ψ

dξ2

(
1− β

α
cos Ψ

)
+ β

(
1 +

1

α

(
dΨ

dξ

)2
)

sin Ψ = 0, (17)

which is similar to the so-called Timoshenko elastica equation given by Atanackovic [43] (see Eq. (3.3.57)159

on page 131).160

The solution of the linearized version of Eq. (16) is161

Ψ(ξ) = A sin

(√
β

1− β/αξ
)

+B cos

(√
β

1− β/αξ
)
. (18)

Satisfying pinned-pinned boundary conditions, Ψ′(0) = Ψ′(1) = 0, yields infinitely many buckling load162

parameters:163

βlE,r =
r2π2

1 + r2π2

α

, r = 1, 2, . . . . (19)

The fundamental buckling load of the local Engesser elastica is Eq. (19) at r = 1:164

βlE =
π2

1 +
π2

α

, (20)

or, in a dimensional form,165

PlE =
PE

1 +
PE

κGA

(21)

with PE = π2EI/L2 being Euler’s formula. Note that Eq. (21) is the critical force proposed by Engesser166

[32, 44] for the buckling load of a shearable and flexural column with pinned ends. Hence, Eq. (14) is a167

discrete version of the Engesser formula.168

3.3. Geometrically exact continualized nonlocal Engesser elastica169

Let us introduce the rotation field Ψ(ξ) of non-dimensional coordinate ξ = x/L and write its Taylor170

expansion [45]:171

7
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Ψ

(
ξ +

1

N

)
=

∞∑

k=0

dk

dξk
Ψ(ξ)

k!

(
1

N

)k
= e

1
N

d
dξΨ(ξ). (22)

Then the following identity can be written:172

Ψi+1 − 2Ψi + Ψi−1 = Ψ

(
ξ +

1

N

)
− 2Ψ(ξ) + Ψ

(
ξ − 1

N

)

= 4 sinh2

(
1

2N

d

dξ

)
Ψ(ξ) ≈ 1

N2
·

d2

dξ2

1− 1
12N2

d2

dξ2

Ψ(ξ)

(23)

using a Padé approximant of order [2,2]. Similarly,173

sin Ψi+1 − 2 sin Ψi + sin Ψi−1 = 4 sinh2

(
1

2N

d

dξ

)
(sin Ψ(ξ)) ≈ 1

N2
·

d2

dξ2

1− 1
12N2

d2

dξ2

sin Ψ(ξ). (24)

Then the geometrically exact differential equation of the continualized nonlocal Engesser elastica yields:174

d2Ψ

dξ2
+ β sin Ψ− β

(
1

α
+

1

12N2

)
d2

dξ2
(sin Ψ) = 0. (25)

This equation shows that the nonlocal effect is added to the shear effect in the nonlocal elastica. The175

symmetrical roles played by the shear effect and the nonlocal parameter in the shear buckling equations176

have been already outlined in [46].177

Now analytical solution for the geometrically exact continualized nonlocal Engesser elastica is derived.178

We follow the work of Lembo [47], who developed analytical solutions for the nonlocal Euler-Bernoulli179

elastica for large displacements using elliptic integrals. The methodology is the same for the nonlocal180

Engesser elastica investigated in this paper. Let us introduce181

dy∗

dξ
= sin Ψ (26)

and rewrite Eq. (25) as:182

d2Ψ

dξ2
+ β

dy∗

dξ
− β

(
1

α
+

1

12N2

)
d3y∗

dξ3
= 0. (27)

Integrating the above equation once one obtains183

8
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dΨ

dξ
+ βy∗ − β

(
1

α
+

1

12N2

)
d2y∗

dξ2
= C1 (28)

with C1 being an arbitrary constant. Multiplying Eq. (28) with (26) yields184

dΨ

dξ
sin Ψ + βy∗

dy∗

dξ
− β

(
1

α
+

1

12N2

)
d2y∗

dξ2
dy∗

dξ
= C1

dy∗

dξ
, (29)

which can be integrated as185

− cos Ψ +
β

2
(y∗)2 − β

2

(
1

α
+

1

12N2

)(
dy∗

dξ

)2

= C0 + C1y
∗ (30)

with C0 being another arbitrary constant.186

Note that C1 = 0 due to the boundary condition Eq. (2). Hence, the following formula can be obtained:187

β

2
(y∗)2 − β

2

(
1

α
+

1

12N2

)(
dy∗

dξ

)2

= C0 +

√
1−

(
dy∗

dξ

)2

, (31)

which shows that the shear effect and the nonlocal small length term play similar roles.188

Differentiating Eq. (31) yields189

β

(
y∗ − ε2 d2y∗

dξ2

)
+

d2y∗

dξ2√
1−

(
dy∗
dξ

)2 = 0 with ε2 =
1

α
+

1

12N2
(32)

It is possible to reformulate Eq. (32), by using the complementary spatial coordinates190

(
dx∗

dξ

)2

+

(
dy∗

dξ

)2

= 1 → dx∗

dξ

d2x∗

dξ2
+

dy∗

dξ

d2y∗

dξ2
= 0, (33)

as191

d2x∗

dξ2

(
1 + βε2

dx∗

dξ

)
= −βy∗ dy∗

dξ
. (34)

This equation has been obtained by Lembo [47] for the nonlocal shear inextensible column, i.e. for α→∞192

and with `2c/L
2 = 1/(12N2) for the nonlocal correspondence. An integration of Eq. (34) alternatively193

gives:194

9
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(y∗)2 =
2

β

[
c− dx∗

dξ

(
1 +

βε2

2

dx∗

dξ

)]
. (35)

where c is an integration constant. It is finally possible to rewrite the differential equation in terms of x∗:195

(
d2x∗

dξ2

)2

=

2β

[
1−

(
dx∗
dξ

)2]

(
1 + βε2 dx∗

dξ

)2
[
c− dx∗

dξ

(
1 +

βε2

2

dx∗

dξ

)]
. (36)

The solution of this equation can be expressed in term of Weierstrass’s elliptic functions (see Lembo [47]).196

The correspondence with the solution of Lembo [47] is obtained from the shear and nonlocal factor:197

ε2 =
1

α
+ ˆ̀

c
2

with ˆ̀
c
2

=
`2c
L2

=
1

12N2
. (37)

Lembo [47] considered the nonlocal Euler-Bernoulli beam asymptotically obtained from α→∞.198

Using Eq. (26), Eq. (28) and Eq. (31) can be equivalently written as:199

dΨ

dξ
=

√(
1
α + 1

12N2

)
sin2 Ψ + 2

β (C0 + cos Ψ)
(
1
α + 1

12N2

)
cos Ψ− 1

β

(38)

which reduces to the local Euler-Bernoulli elastica as α→∞ and N →∞:200

dΨ

dξ
= −

√
2β(C0 + cos Ψ). (39)

This equation can be solved using elliptic integrals [2], [35].201

In order to derive the buckling load of the continualized nonlocal Engesser elastica, Eq. (25) can be202

linearized as203

(
1− β

(
1

α
+

1

12N2

))
d2Ψ

dξ2
+ βΨ = 0. (40)

This equation is solved by204

Ψ(ξ) = A sin

(√
β

1− β
(
1
α + 1

12N2

)ξ
)

+B cos

(√
β

1− β
(
1
α + 1

12N2

)ξ
)
. (41)
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Satisfying pinned-pinned local boundary conditions, Ψ′(0) = Ψ′(1) = 0, yields infinitely many buckling205

load parameters of the continulized nonlocal Engesser elastica:206

βnlE,r =

r2π2

1+ r2π2

12N2

1 + r2π2

α
(
1+ r2π2

12N2

)
, r = 1, 2, . . . . (42)

The fundamental buckling load of the continualized nonlocal Engesser elastica is Eq. (42) at r = 1:207

βnlE =

π2

1+ π2

12N2

1 + π2

α
(
1+ π2

12N2

)
=

βnle

1 + βnle
α

. (43)

Here βnle = π2/
(
1 + π2/(12N2)

)
is the fundamental buckling load parameter of the nonlocal elastica208

[27]. In terms of dimensional quantities, the fundamental buckling load is:209

PnlE =
Pnle

1 +
Pnle

κGA

(44)

where210

Pnle =
EIπ2

L2
c

, with Lc =
√
L2 + `2cπ

2, `c =
a0

2
√

3
(45)

is the fundamental (dimensional) buckling load of the non-local elastica [27]. It is important to outline that211

the nonlocal characteristic length, `c, of the nonlocal model is proportional to the length of a link, a0, of the212

discrete model. Hence, the lattice size of the system is captured by the nonlocal model.213

Note that Eq. (44) is an Engesser-type formula [32]. One only needs to replace Euler’s buckling load214

(i.e. the buckling load of the local Bernoulli-Euler beam) with the buckling load of the nonlocal elastica215

(which is the nonlocal Bernoulli-Euler beam) in Engesser’s famous formula to get the fundamental buckling216

load of the nonlocal Engesser elastica.217

3.4. Eringen nonlocal Engesser elastica for small displacements218

Wang et al [48] investigated the buckling of nonlocal Engesser-type columns where the nonlocal term219

only affects the bending part of the constitutive law. Reddy [49] investigated the buckling of nonlocal220

Engesser-type columns with both the bending part and the shear part being affected by the nonlocal terms.221

Zhang et al [19] presented a unified formulation of both nonlocal models and showed that a generalized222

Hencky model including some discrete shear stiffness behaves as a nonlocal Timoshenko column where the223

bending part of the constitutive law is affected by the small length terms (supporting the model of Wang et224

al [48] from a micromechanical point of view). Now we give the differential equations of the axially loaded225

11
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nonlocal Engesser elastica for small displacements and its buckling loads, and compare it to the buckling226

loads of the continualized model presented in this paper.227

Let us start from the principle of virtual work for establishing the governing equations of the Eringen228

nonlocal Engesser column under axial compression, for small displacements:229

L∫

0

[
Mδψ′ + V δ(w′ − ψ)− Pw′δw′

]
dx = 0. (46)

Here M(x) and V (x) are the internal bending moment and shear force, respectively. The translation per-230

pendicular to the line of action of the compressive force P is denoted by w(x), and the rotation of the231

cross-section is ψ(x). The shear deformation is γ(x) = w′(x) − ψ(x). The equilibrium equations can be232

written as:233

M ′ + V = 0, V ′ = Pw′′ → M ′′ = −Pw′′, V ′′ = Pw′′′. (47)

The column is incompressible, the nonlocal (stress gradient) material law is:234

M − `21M ′′ = EIψ′,

V − `22V ′′ = κGA(w′ − ψ).
(48)

Note that the nonlocal characteristic lengths, `1 and `2, are different for bending and shearing.235

Substituting Eq. (47) in (48) yields the internal forces in terms of the kinematic variables,236

M = EIψ′ − P`21w′′,
V = κGA(w′ − ψ) + P`22w

′′′,
(49)

which can be substituted back in Eq. (48), yielding237

EIψ′′ − P`21w′′′ + κGA(w′ − ψ) + P`22w
′′′ = 0,

κGA(w′′ − ψ′) + P`22w
(4) − Pw′′ = 0.

(50)

It is equivalent to the results of Zhang et al [19].238

It is possible to express the above coupled differential equations as a sixth-order differential equation for239

ŵ(ξ) = w(x)|x=ξL/L. In a non-dimensional form it is:240

β

α
ˆ̀2
2ŵ

(6) + ŵ(4)

(
1− β

(
1

α
+ ˆ̀2

1

))
+ βŵ′′ = 0. (51)

12
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Here α and β are defined by Eq. (6), while ˆ̀
1 = `1/L, and ˆ̀

2 = `2/L.241

If it is assumed that nonlocality only affects bending, i.e. `2 = 0, as proposed by Wang et al [48], then242

Eq. (51) reduces to a fourth-order differential equation which is solved by243

ŵ(ξ) = A cos



√√√√ β

1− β
(

1
α + ˆ̀2

1

)ξ


+B sin



√√√√ β

1− β
(

1
α + ˆ̀2

1

)ξ


 . (52)

For simply supported columns the associated local boundary conditions are ŵ′′(0) = ŵ′′(1) = 0, and the244

fundamental buckling load is the same as Eq. (43) if ˆ̀
1 = ˆ̀

c = 1/(2
√

3N). It coincides with the results of245

Wang et al [48] and Zhang et al [19]. Note that the fourth-order differential equation (Eq. (51) with `2 = 0)246

coincides with the second-order derivative of the linearized version of the continualized Engesser elastica247

Eq. (25), obtained from the discrete Engesser model for specific length scales.248

Now we can state that the introduced micromechanical model, the discrete Engesser elastica can be249

associated with a stress gradient elasticity model where the nonlocality affects only the material law for250

bending, but not for shearing. The fundamental buckling loads of the discrete model, its continualized251

counterpart (the continualized nonlocal Engesser elastica), and the Eringen nonlocal Engesser elastica are252

all given by Engesser-type formulae.253

The fundamental buckling load of the discrete Engesser elastica is compared to that of the nonlocal254

Engesser elastica in Table 1 for different values of N and α. The buckling load of Hencky bar-chain model255

is also given for completeness. Note that the convergence to the local solution as N increases is faster for256

linkages with lower shear stiffness.257

3.5. Numerical solutions of the discrete and nonlocal Engesser elastica258

In this section first numerical solutions are given for the first post-buckling path of the discrete and259

nonlocal Engesser elastica for some smaller values of N , and then bifurcation diagrams of the discrete260

Engesser elastica of a few links are plotted.261

Figure 3 shows the first post-buckling path of the discrete Engesser elastica and that of the geometrically262

exact continualized nonlocal Engesser elastica for different values of N and α. The numerical solutions are263

obtained by using the simplex algorithm [50] as follows.264

For the discrete Engesser elastica the difference equation system Eq. (10) was solved. For fixed number265

of links N there are N equations to solve, given by Eq. (10), with the boundary conditions Ψ0 = Ψ1266

and ΨN+1 = ΨN . The deviation of these differences from zero are the errors that are minimized by the267

algorithm. The unknowns of the equation system are the angles Ψ1,Ψ2, · · · ,ΨN and the load parameter268

β (the stiffness parameter α is fixed). Hence, equilibrium paths in the Ψ1...N − β space are obtained as269

solutions of the simplex algorithm [50]. The first post-buckling path, starting from the first bifurcation point270

of the trivial equilibrium branch, was followed and the projection of the path to the Ψ1 − β plane is shown271

in Figure 3 in black color.272

For the nonlocal model, introducing the auxiliary variable κ, the nonlinear, second-order differential273

equation (25) is written in two nonlinear, first order differential equations:274
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Ψ′ = κ,

κ′ =
β sin Ψ

(
1 + κ2

(
1
α + 1

12N2

))

β cos Ψ
(
1
α + 1

12N2

)
− 1

.
(53)

Using local boundary conditions, κ(0) = κ(1) = 0, the equation system can be solved with the shooting275

method as follows. Satisfying the close-end boundary condition κ(0) = 0, the far-end boundary condition276

κ(1) can be numerically computed as for an initial value problem (IVP), if some value for Ψ(0) is set.277

For solving the differential equation system (53) as an IVP, a predictor corrector method was used. The278

differential equation system was discretized and the non-dimensional spatial variable ξ was divided in 1000279

equal parts. Starting with κ0 = κ(0) = 0 and Ψ0 = Ψ(0), the values of κi = κ(i/1000) and Ψi =280

Ψ(i/1000) were predicted by the (explicit) Euler method and corrected by the Adams-Moulton method281

[51]. This scheme was embedded in the path-following simplex algorithm [50]. The two unknowns of the282

algorithm are the angle Ψ(0) and the load parameter β (the stiffness parameter α is fixed). The error function283

of the algorithm is the value of κ(1). This scheme hence also yields equilibrium paths as solution. The first284

post-buckling path was followed starting from the first bifurcation point of the trivial equilibrium branch.285

The result is shown in Figure 3 in gray color.286

The numerically computed fundamental buckling loads correspond to the analytical results summarized287

in Table 1. The first post buckling paths of the discrete and nonlocal models correlate well up to Ψ1 < π/4.288

Beyond that some deviation can be observed which decreases as N increases.289

The simplex algorithm is also capable to give global solutions for nonlinear boundary value problems290

without iterations [52]. This is done by scanning the representation space spanned by the unknowns (vari-291

ables and parameter) of the problem for solutions. The drawback of the algorithm is that the required292

computational capacity increases exponentially with the number of unknowns. Therefore, this algorithm is293

applied for the discrete Engesser elastica of only a few links. The equations to solve and the unknowns294

are the same as those for the path-following process: the equations are Eq. (10) and the unknowns are295

Ψ1,Ψ2, . . . ,ΨN and β (the stiffness parameter α is fixed). Besides, the domain of the unknowns is bounded296

as Ψ1 ∈ [0, π], Ψ2...N ∈ [−2π, 2π], and β ∈ [0, 150]. Hence, only solutions found within this domain are297

part of the bifurcation diagram. By taking into account the symmetries of the solutions for Eq. (10), namely298

β → (−β)k and Ψi → −Ψi + kπ with k = 1, 2, 3, . . ., the bifurcation diagram is derived and plotted299

also for negative load parameter values, β ∈ [−150, 150]. In order to smoothen the obtained equilibrium300

paths a Newton-Raphson iteration was applied on the results of the scanning algorithm. The solutions, i.e.301

bifurcation diagrams of the discrete Engesser elastica, are shown in Figure 4, 5 and 6 for link numbers302

N = 2, 3 and 4, respectively. The second-order equilibrium paths bifurcate from the trivial branch. They303

branch off the trivial equilibrium path at the buckling loads obtained analytically, given by Eq. (13) and in304

Table 1. Besides, there are many other equilibrium paths either bifurcating from the second-order branches305

(as pitchfork bifurcations), or appearing as separated branches (through saddle-node bifurcations).306

The appearance of a multitude of higher order branches with the increase of beta is seminiscent of the307

behavior of similar spatially chaotic systems [12, 13, 14, 15, 16, 17].308
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4. Discrete and nonlocal Haringx elastica309

A deformed link of the discrete model (Figure 1 (a)), following Love’s finite shear strain theory [36],310

is shown in Figure 7. The area of the link is preserved during the shear deformation, while its side length311

increases as ai = a0/ cos γi.312

If the linkage is a discrete model of a homogeneous, prismatic beam of bending stiffness EI and shear313

stiffness κGA, then the total potential energy of the structure is:314

Πtot =
1

2
ρ
N−1∑

i=1

(θi+1 − θi)2 +
1

2
k

N∑

i=1

tan2 γi + Pa0

N∑

i=1

cos (θi + γi)

cos γi
(54)

with the same bending and shear stiffness values as in Eq. (4). The dimensionless potential energy is:315

Π =
1

2

N−1∑

i=1

(θi+1 − θi)2 +
α

2N2

N∑

i=1

tan2 γi +
β

N2

N∑

i=1

cos (θi + γi)

cos γi
. (55)

Here the stiffness and load parameters, α and β, are the same as those in Eq. (6).316

The equilibrium equations of the structure are:317

∂Π

∂θi
= −(θi+1 − 2θi + θi−1)−

β

N2

sin (θi + γi)

cos γi
= 0, (56)

∂Π

∂γi
=
α tan γi − β sin θi

N2 cos2 γi
= 0, i = 1, . . . , N. (57)

Summing Eqs. (56) and taking into account the static boundary conditions Eq. (3) yield the kinematic bound-318

ary condition Eq. (2) for non–zero load.319

Similarly to the previous model, Eq. (56) is the equilibrium of moments of the ith link (see Figure 1320

(b)). However, now P sin θi is the shear force on link i, which is aligned with the end sections and not321

perpendicular to the link axis. Therefore, this discrete model follows a Haringx-type approach [30, 32].322

The difference equation system, Eqs. (56)–(57), can be reformulated as a difference equation for the323

rotations θi, uncoupled from the shear deformation γi:324

θi+1 − 2θi + θi−1 +
β

N2

(
1 +

β

α
cos θi

)
sin θi = 0, i = 1, . . . , N. (58)

To obtain the above equation system tan γi = β
α sin θi is expressed from Eq. (57) and substituted in Eq. (56)325

along with using the trigonometric identity sin(θi + γi) = sin θi cos γi + cos θi sin γi.326

Note that Eq. (58) is the same as the difference equation system of Hencky bar-chain model in the327

unshearable limit, i.e. as α→∞328
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4.1. Buckling load of the discrete Haringx elastica329

The trivial equilibrium state of the model for fixed stiffness parameter α is defined by: θi = γi = 0, and
β is arbitrary. Around this state the Hessian given by the partial derivatives of Eq. (58) with respect to θi is:

H = −C +
β

N2

(
1 +

β

α

)
I. (59)

Here I and C are the same as in Section 3.1.330

If the determinant of H is zero, det
(
−C + β/N2 (1 + β/α) I

)
= 0, i.e. if β/N2 (1 + β/α) is equal to

an eigenvalue of the modified continuant matrix C (given by Eq. (12)), then the trivial equilibrium state is
critical. It yields the buckling loads of the structure in the following Haringx-type formula:

βcr,2i−1,2i =
α

2

(
−1±

√
1 + 16

N2

α
sin2 iπ

2N

)
, i = 0, . . . , N − 1. (60)

Eq. (60) at i = 0, with subtraction, yields a buckling load that corresponds to a pure shear buckling mode
under tension. (Note that positive load means compression.) This is the smallest tensile buckling load,
hence it is the fundamental tensile buckling load parameter of the discrete Haringx elastica:

βtens
dH = −α. (61)

Hence, pure shear buckling appears in our bendable, shearable model if the shear strain follows the theory331

proposed by Love. See, for example, the discrete model of a cord [53], the discrete planar Cosserat rod [26],332

or the discrete model of DNA [54], for micromechanical models that can buckle under tension in a shear333

mode, or the works of Kelly [55], Hodges et al [56] and Aristizabal-Ochoa [57].334

For each nonzero i, Eq. (60) corresponds to a mixed buckling mode, with one compressive and one335

tensile buckling load.336

For the unshearable case, κGA→∞, i.e. α→∞, this model is also identical to the Hencky chain, and337

yields the fundamental buckling load βH (see Eq. (15)). Meanwhile, for the unbendable case, EI →∞, the338

structure yields the discrete model of a cord [53], and undergoes pure shear buckling under tension at the339

critical load Eq. (61).340

The fundamental (compressive) buckling load parameter of the discrete Haringx elastica is Eq. (60) at
i = 1 with addition:

β
comp
dH =

α

2

(√
1 + 4

βH

α
− 1

)
. (62)

4.2. Asymptotic limit: the local Haringx elastica341

The local Haringx elastica can be asymptotically obtained from Eq. (58):342

d2θ

dξ2
+ β

(
1 +

β

α
cos θ

)
sin θ = 0 (63)
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with ξ = s/L being the non-dimensional arc-length parameter.343

The governing equations of the local Haringx elastica are given in the literature by Koiter [58], Goto et344

al [59], Atanackovic [43], Huang and Kardomateas [60], Attard [61] and Humer [62], as:345

EI
d2θ̂

ds2
+ P sin θ̂ +

P 2

κGA
sin θ̂ cos θ̂ = 0, (64)

with θ̂(s) = θ(ξ)|ξ=s/L. It can also be obtained from Reissner’s geometrically exact approach [63]. Eq. (64)346

is the dimensional version of Eq. (63), and hence validates that the lattice system introduced in Section 4 is347

a micromechanical model of the Haringx elastica.348

The linearized version of Eq. (63) is solved by349

θ(ξ) = A sin
(√

β (1 + β/α)ξ
)

+B cos
(√

β (1 + β/α)ξ
)
. (65)

With pinned-pinned boundary conditions, θ′(0) = θ′(1) = 0, the above solution yields for the buckling350

load:351

β (1 + β/α) = r2π2, r = 0, 1, 2, . . . . (66)

For r 6= 0 critical loads corresponding to mixed (shear-bending) modes are obtained:352

βlH,r =
α

2

(
−1±

√
1 + 4

r2π2

α

)
, r = 1, 2, . . . . (67)

For r = 0 there is a nontrivial solution, the pure shear buckling load of the local Haringx elastica, which is353

the fundamental tensile buckling load parameter:354

βtens
lH = −α. (68)

Hence, similarly to the discrete model, the (local) continuum can also buckle under tension in a pure shear355

mode (the axis of the buckled rod remains straight). The fundamental (compressive) buckling load parameter356

can be obtained from Eq. (67) at r = 1:357

β
comp
lH =

α

2

(√
1 + 4

π2

α
− 1

)
. (69)

In a dimensional form the fundamental tensile and compressive buckling loads of the local Haringx358

elastica are:359
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P tens
lH = −κGA, (70)

P
comp
lH =

κGA

2

(√
1 + 4

PE
κGA

− 1

)
, (71)

with PE = π2EI/L2 being Euler’s force. Note that Eq. (71) is the Haringx formula, the critical force360

proposed by Haringx [32, 30] originally for buckling of springs.361

4.3. Geometrically exact continualized nonlocal Haringx elastica362

The governing difference equation, Eq. (58), can be continualized based on Eq. (23):363

d2θ

dξ2
+ β

(
1− 1

12N2

d2

dξ2

)
·
[(

1 +
β

α
cos θ

)
sin θ

]
= 0, (72)

which can be reformulated as:364

[
1− β

12N2

(
cos θ +

β

α
cos 2θ

)]
d2θ

dξ2
+

β

12N2

(
sin θ +

2β

α
sin 2θ

)(
dθ

dξ

)2

+ β

(
sin θ +

β

2α
sin 2θ

)
= 0.

(73)

No analytical solution for the geometrically exact continualized nonlocal Haringx elastica has been found.365

Next the buckling load of the continualized nonlocal Haringx elastica is developed.366

The linearization of Eq. (72) leads to:367

(
1− β (1 + β/α)

12N2

)
d2θ

dξ2
+ β (1 + β/α) θ = 0. (74)

The solution of this differential equation is:368

θ(ξ) = A sin

(√
β (1 + β/α)

1− β(1+β/α)
12N2

ξ

)
+B cos

(√
β (1 + β/α)

1− β(1+β/α)
12N2

ξ

)
. (75)

Using pinned-pinned, local boundary conditions, θ′(0) = θ′(1) = 0, the critical load parameters of the369

continualized nonlocal Haringx elastica can be obtained:370
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βnlH,r =
α

2


1±

√√√√1 + 4
r2π2(

1 + r2π2

12N2

)
α


 , r = 0, 1, 2 . . . . (76)

For r = 0 a nontrivial solution exists, that is the fundamental tensile buckling load parameter of the nonlocal371

Haringx elastica:372

βtens
nlH = −α. (77)

This is the same pure shear buckling load that was derived for both the discrete and the local continuum373

Haringx elastica. This buckling load hence is the same irrespectively to the modelling scale.374

Eq. (76) at r = 1 yields the fundamental compressive buckling load parameter of the nonlocal Haringx375

elastica:376

β
comp
nlH =

α

2



√√√√1 + 4

π2(
1 + π2

12N2

)
α
− 1


 =

α

2

(√
1 + 4

βnle

α
− 1

)
, (78)

with βnle being the fundamental buckling load parameter of the nonlocal elastica [27]. Note that there are377

infinitely many tensile and compressive buckling loads of the nonlocal Haringx elastica, while the discrete378

model has only a finite number of buckling loads.379

In a dimensional form the fundamental buckling loads of the Haringx elastica are:380

P tens
nlH = −κGA, (79)

P
comp
nlH =

κGA

2

(√
1 + 4

Pnle

κGA
− 1

)
. (80)

Here Pnle is the fundamental buckling load of the nonlocal elastica, given already by Eq. (45).381

It is worth comparing the results obtained for the local and nonlocal continuum models. The only382

difference is that in Eq. (71) the buckling load of the (local) Bernoulli-Euler beam is used in the Haringx-383

type formula, while in Eq. (80) the buckling load of the nonlocal Bernoulli-Euler beam appears.384

4.4. Eringen nonlocal Haringx elastica for small displacements385

Buckling of nonlocal Haringx elastica has not been presented in the literature to the best of our knowl-386

edge. Let us start from the principle of virtual work for establishing the governing equations of the axially387

compressed Eringen nonlocal Haringx elastica for small displacements (see for example [46]):388
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L∫

0

[
Mδψ′ + V δ(w′ − ψ)− Pw′δw′ + P (w′ − ψ)δ(w′ − ψ)

]
dx = 0. (81)

Here M(x) and V (x) are the internal bending moment and shear force, respectively. The equilibrium389

equations can be written as:390

M ′ + V + P (w′ − ψ) = 0, V ′ = Pψ′ → M ′′ = −Pw′′, V ′′ = Pψ′′. (82)

The column is inextensible, the nonlocal (stress gradient) material law is given by Eq. (48). Casting Eq. (82)391

in (48) yields the internal forces in terms of the kinematic variables,392

M = EIψ′ − P`21w′′,
V = κGA(w′ − ψ) + P`22ψ

′′,
(83)

which can be substituted back in Eq. (48), yielding the coupled system of differential equations,393

EIψ′′ − P`21w′′′ + κGA(w′ − ψ) + P`22ψ
′′ + P (w′ − ψ) = 0,

κGA(w′′ − ψ′) + P`22ψ
′′′ − Pψ′ = 0.

(84)

This differential equation system can be written as a sixth-order, non-dimensional differential equation:394

β2

α
ˆ̀2
1
ˆ̀2
2ŵ

(6) +

(
1− β

(
1 +

β

α

)
`21 −

β2

α
`22

)
ŵ(4) + β

(
1 +

β

α

)
ŵ′′ = 0. (85)

Here ŵ(ξ) = w(x)|x=ξL/L, ˆ̀
1 = `1/L, and ˆ̀

2 = `2/L, and Eq. (6) gives α and β.395

If it is assumed that nonlocality only affects bending, i.e. `2 = 0, then Eq. (85) reduces to a fourth-order396

differential equation solved by:397

ŵ(ξ) = A sin

(√
β (1 + β/α)

1− β (1 + β/α) `21
ξ

)
+B cos

(√
β (1 + β/α)

1− β (1 + β/α) `21
ξ

)
. (86)

For simply supported columns the associated boundary conditions are ŵ′′(0) = ŵ′′(1) = 0, and the398

same critical loads can be derived for the Eringen nonlocal model as for the continualized nonlocal model,399

Eq. (76), with ˆ̀
1 = ˆ̀

c = 1/(2
√

3N).400

We can conclude that the generalized Hencky bar-chain model, which incorporates shear deformation401

following Love’s finite strain theory, i.e. the discrete Haringx elastica, can be associated with a stress gradi-402

ent elasticity model where the nonlocality affects only the material law for bending, but not for shearing. The403
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fundamental (compressive) buckling loads of the discrete model, its continualized counterpart (the continu-404

alized nonlocal Haringx elastica), and the Eringen nonlocal Haringx elastica are all given by Haringx-type405

formulae. All the models can buckle under tension in a pure shear mode, and also in mixed buckling modes.406

That is a feature which does not exist for the Engesser-type discrete and nonlocal models.407

The fundamental buckling loads of the discrete Haringx elastica is compared to that of the nonlocal408

Haringx elastica in Table 2 for different values of N and α. The buckling load of Hencky bar-chain model is409

also included to show the buckling load in the limit when the links become unshearable. The convergence to410

the local solution as N increases is faster for linkages with lower shear stiffness, similarly to the Engesser-411

type models. The buckling loads of the Engesser-type model are lower than those of the Haringx-type model412

for the same shear stiffness parameter (see Table 1 vs. Table 2).413

4.5. Numerical solutions of the discrete and nonlocal Haringx elastica414

In this section some numerical solutions for the discrete and nonlocal Haringx elastica are given.415

Figure 8 shows the first post-buckling path of the discrete Haringx elastica (with black line) and that of416

the geometrically exact continualized nonlocal Haringx elastica (with gray line) for different values of N417

and α.418

For the nonlocal model the nonlinear, second-order differential equation (72) was written in the follow-419

ing two, nonlinear, first order differential equations:420

θ′ = ω, (87)

ω′ = β
sin θ + β

2α sin 2θ + ω2

12N2

(
sin θ + 2β

α sin 2θ
)

β
12N2

(
cos θ + β

α cos 2θ
)
− 1

. (88)

Using local boundary conditions, ω′(0) = ω′(1) = 0, the equation system can be solved with the shooting421

method. A same procedure was followed as in Section 3.5.422

For the results of the discrete Haringx elastica the difference equation system Eq. (58) was solved by423

the simplex algorithm [50, 52], c.f. Section 3.5. For fixed number of links N , there are N equations to424

solve given by Eq. (58) with boundary conditions θ0 = θ1 and θN+1 = θN . The unknowns of the equation425

system are the angles θ1, θ2, · · · , θN and the load parameter β (the stiffness parameter α is fixed). The first426

(compressive) post-buckling path, starting from the first bifurcation point of the trivial equilibrium branch,427

was followed and shown in Figure 8 in black color. This is compared to the first (compressive) post-buckling428

path of the nonlocal Haringx elastica, shown in Figure 8 in gray color. Note that in these figures the angle429

Ψ is used and not θ. For the nonlocal model Ψ1 = Ψ(0) is the angle of the axis tangent at ξ = 0.430

For the discrete model bifurcation diagrams were also constructed by using the simplex algorithm, and431

scanning the following domain of unknowns: θ1 ∈ [0, π], θ2...N ∈ [−2π, 2π], and β ∈ [0, 150]. Incorporat-432

ing the symmetries of the solutions for Eq. (58), i.e. β → (−β)k and Ψi → −Ψi + kπ with k = 1, 2, 3, . . .,433

the bifurcation diagram is derived and plotted also for negative load parameter values, β ∈ [−150, 150]. In434

order to smoothen the obtained equilibrium paths a Newton-Raphson iteration was applied on the results of435

the scanning algorithm. The resulting bifurcation diagrams of the discrete Haringx elastica of link number436

N = 2, 3 and 4 are shown in Figure 9, 10 and 11, respectively. Similarly to the bifurcation diagrams of the437

discrete Engesser elastica (Figures 4, 5 and 6), there are second-order equilibrium paths bifurcating from438
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the trivial branch, corresponding to Eq. (60), and also many other higher order paths either bifurcating from439

second-order branches (as pitchfork bifurcations), or appearing as separated branches (through saddle-node440

bifurcations). However, in this case bifurcations from the trivial equilibrium path occur also under tensile441

loads, and the secondary (post buckling) equilibrium paths in the negative load parameter regime can well442

be seen.443
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5. Conclusions444

In this paper nonlocal Engesser and Haringx elastica models, including both bending and shear inter-445

actions, have been built from lattice physical systems, also called generalized Hencky bar-chain models. It446

has been shown that the nonlocality of these nonlocal beams was related to the lattice spacing of the gen-447

eralized Hencky-type models. This connection between a bendable-shearable discrete elastica and nonlocal448

Timoshenko beam was already investigated by Zhang et al [19] for a linearized Engesser-type model. In449

this paper, we have introduced a different lattice system and generalized the results for geometrically exact450

Engesser and Haringx-type beams. Closed form solutions for the buckling loads of the lattice and nonlo-451

cal systems have been developed, and the geometrically exact nonlinear behaviour of both (Engesser and452

Haringx) bendable-shearable lattice systems have been also studied far beyond the buckling loads. Ana-453

lytical solution for the axially compressed, pinned-pinned, geometrically exact Engesser elastica has been454

given using elliptic integrals. Numerical solutions for large displacements have been computed, bifurcation455

diagrams of the lattice systems have been plotted (showing higher-order equilibrium paths of the discrete456

models), and the first post-buckling paths of the discrete and nonlocal models have been compared. It was457

revealed that the Haringx-type models (the lattice, the nonlocal and the local, too) can buckle under tension458

in a pure shear mode and also in mixed flexural-shear modes. This phenomenon has an interesting aspect in459

a biomechanical field, namely in DNA modelling, since the molecule may undergo a shear instability under460

tension as was studied by Kocsis and Swigon [54].461

In case of rigid shear interaction (infinite shear stiffness), the introduced discrete elastica systems are462

identical to the Hencky bar-chain model (see Hencky [1] for the linearized buckling problem, or El Naschie463

et al [9] or Gáspár and Domokos [10] for the post-buckling behavior). This so-called discrete elastica has464

been recently revisited by Challamel et al [27] with a nonlocal Euler-Bernoulli beam model, for the primary465

post-bifurcation branches. It has been shown that such kind of nonlocality belongs to the family of stress466

gradient Eringen’s model [28], associated with a softening effect of the small length scale parameter. As467

shown in the paper, a similar nonlocality also controls the behavior of nonlocal Engesser and Haringx-468

type Timoshenko beams. The introduced model could be generalized to include extensibility, and a parallel469

study between a generalized Hencky chain with axial deformations and the extensible-elastica theory (see470

Magnusson et al [64]) could also be made.471
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Tables602

N = 2 N = 3 N = 4 N = 5 N →∞
discrete nonlocal discrete nonlocal discrete nonlocal discrete nonlocal local

α = 1 0.88889 0.89114 0.90000 0.90043 0.90359 0.90373 0.90521 0.90526 0.90800
α = 10 4.44444 4.50137 4.73684 4.74878 4.83807 4.84192 4.88469 4.88628 4.96719
α = 100 7.40741 7.56690 8.25688 8.29322 8.56941 8.58152 8.71677 8.72185 8.98302
α = 1000 7.93651 8.11988 8.91972 8.96214 9.28555 9.29977 9.45883 9.46481 9.77315
α = 10000 7.99361 8.17966 8.99191 9.03502 9.36381 9.37827 9.54004 9.54613 9.85987

α→∞ 8 9 9.37258 9.54915 π2

Table 1: Buckling loads of the discrete and nonlocal Engesser elastica, according to Eqs. (14) and (43), for different values of N
and α. Hencky bar-chain model is recovered as α→∞ (see Eq. (15)). The local continuum is the case of N →∞, given also by
Eq. (20).

N = 2 N = 3 N = 4 N = 5 N →∞
discrete nonlocal discrete nonlocal discrete nonlocal discrete nonlocal local

α = 1 2.37228 2.40454 2.54138 2.54847 2.60203 2.60436 2.63036 2.63133 2.68113
α = 10 5.24695 5.33748 5.72381 5.74392 5.89614 5.90278 5.97686 5.97964 6.12187
α = 100 7.44563 7.60760 8.30952 8.34654 8.62814 8.64049 8.77853 8.78371 9.05049
α = 1000 7.93700 8.12041 8.92043 8.96286 9.28635 9.30057 9.45967 9.46565 9.77407
α = 10000 7.99361 8.17966 8.99191 9.03503 9.36381 9.37827 9.54005 9.54614 9.85988

α→∞ 8 9 9.37258 9.54915 π2

Table 2: Fundamental (compressive) buckling loads of the discrete and nonlocal Haringx elastica, given by Eqs. (62) and (78), for
different values of N and α. Hencky bar-chain model is recovered as α → ∞ (see Eq. (15)). The local continuum is the case of
N →∞, given also by Eq. (69).
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Figure Captions603

Figure 1. (a) Model of the generalized Hencky bar-chain. The angle of the axis of link i is Ψi = θi + γi, and
the angle of the end sections of link i is θi. (b) Free body diagram of the ith link, assuming that the reaction
force in the roller is zero. The moments in the bending springs are Mi and Mi−1, respectively.

Figure 2. Shear deformation of link i according to Timoshenko’s finite shear strain theory. The length of the
link axis is preserved, ai = a0.

Figure 3. First post-buckling equilibrium path of the discrete Engesser elastica (black), which is a solution
of Eq. (10), and that of the geometrically exact continualized nonlocal Engesser elastica (gray), which is a
solution of (25), for different values of N and α. For the discrete model Ψ1 is the angle of the first link axis,
while for the nonlocal model Ψ1 = Ψ(0) is the angle of the tangent to the beam axis at ξ = 0.

Figure 4. Bifurcation diagram of the discrete Engesser elastica of N = 2 links, for different values of the
stiffness parameter α. Numerical solutions of Eq. (10) within the domain of β ∈ [0, 150], Ψ1 ∈ [0, π] and
Ψ2 ∈ [−2π, 2π]. Solutions for negative load parameter β are derived using symmetry properties.

Figure 5. Bifurcation diagram of the discrete Engesser elastica of N = 3 links, for different values of the
stiffness parameter α. Numerical solutions of Eq. (10) within the domain of β ∈ [0, 150], Ψ1 ∈ [0, π],
Ψ2...3 ∈ [−2π, 2π]. Solutions for negative load parameter β are derived using symmetry properties.

Figure 6. Bifurcation diagram of the discrete Engesser elastica of N = 4 links, for different values of the
stiffness parameter α. Numerical solutions of Eq. (10) within the domain of β ∈ [0, 150], Ψ1 ∈ [0, π],
Ψ2...4 ∈ [−2π, 2π]. Solutions for negative load parameter β are derived using symmetry properties.

Figure 7. Shear deformation of link i according to Love’s finite shear strain theory. The length of the link
axis becomes ai = a0/ cos γi while the area of the link is preserved.

Figure 8. First compressive post-buckling equilibrium path of the discrete Haringx elastica (black), as a
solution of Eq. (58), and that of the continualized nonlocal Haringx elastica (gray), which is a solution of
Eq. (72) for different values of N and α. For the discrete model Ψ1 is the angle of the first link axis, but for
the nonlocal model Ψ1 = Ψ(0) is the angle of the beam axis tangent at ξ = 0.

Figure 9. Bifurcation diagram of the discrete Haringx elastica of N = 2 links, for different values of the
stiffness parameter α. Numerical solutions of Eq. (58) in the domain of β ∈ [0, 150], θ1 ∈ [0, π] and
θ2 ∈ [−2π, 2π]. Solutions for negative load parameter β are derived using symmetry properties.
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Figure 10. Bifurcation diagram of the discrete Haringx elastica of N = 3 links, for different values of
the stiffness parameter α. Numerical solutions of Eq. (58) in the domain of β ∈ [0, 150], θ1 ∈ [0, π],
θ2...3 ∈ [−2π, 2π]. Solutions for negative load parameter β are derived using symmetry properties.

Figure 11. Bifurcation diagram of the discrete Haringx elastica of N = 4 links, for different values of
the stiffness parameter α. Numerical solutions of Eq. (58) in the domain of β ∈ [0, 150], θ1 ∈ [0, π],
θ2...4 ∈ [−2π, 2π]. Solutions for negative load parameter β are derived using symmetry properties.
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Figure 1: (a) Model of the generalized Hencky bar-chain. The angle of the axis of link i is Ψi = θi + γi, and the angle of the end
sections of link i is θi. (b) Free body diagram of the ith link, assuming that the reaction force in the roller is zero. The moments in
the bending springs are Mi and Mi−1, respectively.
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Figure 2: Shear deformation of link i according to Timoshenko’s finite shear strain theory. The length of the link axis is preserved,
ai = a0.
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Figure 3: First post-buckling equilibrium path of the discrete Engesser elastica (black), which is a solution of Eq. (10), and that of
the geometrically exact continualized nonlocal Engesser elastica (gray), which is a solution of (25), for different values of N and
α. For the discrete model Ψ1 is the angle of the first link axis, while for the nonlocal model Ψ1 = Ψ(0) is the angle of the tangent
to the beam axis at ξ = 0.
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Figure 4: Bifurcation diagram of the discrete Engesser elastica of N = 2 links, for different values of the stiffness parameter α.
Numerical solutions of Eq. (10) within the domain of β ∈ [0, 150], Ψ1 ∈ [0, π] and Ψ2 ∈ [−2π, 2π]. Solutions for negative load
parameter β are derived using symmetry properties.
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Figure 5: Bifurcation diagram of the discrete Engesser elastica of N = 3 links, for different values of the stiffness parameter α.
Numerical solutions of Eq. (10) within the domain of β ∈ [0, 150], Ψ1 ∈ [0, π], Ψ2...3 ∈ [−2π, 2π]. Solutions for negative load
parameter β are derived using symmetry properties.
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Figure 6: Bifurcation diagram of the discrete Engesser elastica of N = 4 links, for different values of the stiffness parameter α.
Numerical solutions of Eq. (10) within the domain of β ∈ [0, 150], Ψ1 ∈ [0, π], Ψ2...4 ∈ [−2π, 2π]. Solutions for negative load
parameter β are derived using symmetry properties.
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Figure 7: Shear deformation of link i according to Love’s finite shear strain theory. The length of the link axis becomes ai =
a0/ cos γi while the area of the link is preserved.
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Figure 8: First compressive post-buckling equilibrium path of the discrete Haringx elastica (black), as a solution of Eq. (58), and
that of the continualized nonlocal Haringx elastica (gray), which is a solution of Eq. (72) for different values of N and α. For the
discrete model Ψ1 is the angle of the first link axis, but for the nonlocal model Ψ1 = Ψ(0) is the angle of the beam axis tangent at
ξ = 0.
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Figure 9: Bifurcation diagram of the discrete Haringx elastica of N = 2 links, for different values of the stiffness parameter α.
Numerical solutions of Eq. (58) in the domain of β ∈ [0, 150], θ1 ∈ [0, π] and θ2 ∈ [−2π, 2π]. Solutions for negative load
parameter β are derived using symmetry properties.
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Figure 10: Bifurcation diagram of the discrete Haringx elastica of N = 3 links, for different values of the stiffness parameter
α. Numerical solutions of Eq. (58) in the domain of β ∈ [0, 150], θ1 ∈ [0, π], θ2...3 ∈ [−2π, 2π]. Solutions for negative load
parameter β are derived using symmetry properties.
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Figure 11: Bifurcation diagram of the discrete Haringx elastica of N = 4 links, for different values of the stiffness parameter
α. Numerical solutions of Eq. (58) in the domain of β ∈ [0, 150], θ1 ∈ [0, π], θ2...4 ∈ [−2π, 2π]. Solutions for negative load
parameter β are derived using symmetry properties.
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