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Static and Dynamic Behaviors of Microstructured 
Membranes within Nonlocal Mechanics

B. Hérisson1; N. Challamel2; V. Picandet3; A. Perrot4; and C. M. Wang5

Abstract: In this paper, the static and dynamic behaviors of a finite microstructured rectangular membrane were studied. The microstruc-
tured membrane model comprised an equal number of elastic springs in both directions forming a rectangular lattice membrane. The authors 
considered the out-of-plane displacement of each node of this two-dimensional lattice. The rectangular lattice membrane was fixed at its 
boundary. A nonlocal continuous membrane model was developed to approximate the behavior of the finite lattice model. A continualization 
procedure was applied to the discrete equations in which the difference operators were approximated by differential operators. The resulting 
nonlocal continuum was governed by some length scales in each direction that depended on the size of the microstructure. This nonlocal 
continuum exactly coincided with the one elaborated by Rosenau in the 1980s in the dynamics range. The authors showed that such a 
nonlocal medium also can be used for static deflection of microstructured membranes. A comparison of both discrete (the reference lattice 
model) and continualized nonlocal responses brought out the effectiveness of this micromechanics-based approach. The continualized non-
local continuum also was compared with a phenomenological Eringen’s nonlocal model. 

Author keywords: Membrane; Continualization; Microstructure; Two-dimensional (2D) lattice; Nonlocal medium.

Introduction

The static and dynamic deflections of a lattice membrane were
studied in this paper using both discrete and nonlocal continuum
mechanics. This discrete membrane takes the form of a lattice,
comprising elastic springs connected in both directions, forming
a so-called microstructured rectangular membrane. The equivalent
one-dimensional (1D) problem is the string, first studied by
Lagrange (1759), who already showed the link between one-
dimensional lattices with the associated continuum. Lagrange
(1759) solved exactly the eigenfrequency problem of a fixed-fixed
lattice string composed of any finite number of concentrated
masses. Many research studies since were conducted on this prob-
lem with concentrated microstructure and, recent works, such as

Challamel et al. (2016c), showed the dependence of one-
dimensional enriched continuum models to the microstructural
patterns, including concentrated or distributed microstructures.
This paper generalized this one-dimensional analysis to a two-
dimensional (2D) microstructured membrane problem. The geo-
metric and mechanical analysis of the microstructured membrane
problem was on the basis of the work of Rosenau (1987) for trans-
verse vibrations of a 2D lattice, although the discrete equations
were linearized in this case. For the static part of this study, an
evenly distributed pressure was applied on the lattice, which con-
trolled the out-of-plane deflection.

The aim of this paper was to bridge discrete membrane mechan-
ics and continuous membrane mechanics for both statics and dy-
namics problems. In this paper, the authors presented some new
exact analytical solutions for both static and dynamic behaviors of
finite lattice membranes with fixed edges. A continualized nonlocal
model on the basis of the discrete difference equations of the lattice
membrane also was developed. Such a process is called a continu-
alization procedure, which was developed earlier by Kruskal and
Zabusky (1964), for approximating nonlinear elastic axial lattices
by enriched continuum models. Kruskal and Zabusky (1964) pri-
marily expanded the difference operators in the lattice equations
using Taylor-based asymptotic methods, leading to higher-order
differential operators. It also is possible to use Padé’s approximant
of the pseudodifferential operator to avoid higher-order differen-
tial equations, as shown by Rosenau (1986), Wattis (2000), or
Kevrekidis et al. (2002). Rosenau (1987) applied both methods
(Taylor-based expansion and rational expansion) for approximating
the vibration equations of the lattice membrane by a nonlocal
continualized membrane, and then analytically derived some non-
local dispersive wave equations that accounted for microstructured
effects. This wave propagation problem in a lattice membrane also
was investigated recently by Andrianov and Awrejcewicz (2008),
who used one-point and two-point Padé approximants for calibrat-
ing the nonlocal membrane model. Lombardo and Askes (2010)
approximated the lattice membrane by a nonlocal membrane model
via Padé approximants, and solved the eigenfrequency problem
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for a fixed-fixed nonlocal membrane by a finite-element method.
This problem was revisited in this paper, and features the derivation
of analytical solutions. A mathematically similar problem was
solved by Mindlin (1970) for three-dimensional (3D) lattice elas-
ticity solutions with direct and indirect neighboring interactions,
leading to similar linear second-order difference eigenvalue prob-
lems, although Mindlin did not specifically focus on the lattice
membrane. Tong et al. (1971) obtained the exact eigenfrequency
equation of the finite difference membrane problem, which is
equivalent to the lattice problem considered in this paper. From a
mathematical point-of-view, this problem is not so far from the dif-
fusion problem (thermal conduction) in a 2D lattice media, which
also is governed by a linear second-order spatial difference equa-
tion Challamel et al. (2016a). The lattice membrane problem is
governed by a linear second-order difference equation, as opposed
to the lattice plate model that is governed by a linear fourth-order
difference equation (Challamel et al. 2016b; Zhang et al. 2015,
2014). The present work generalized the results initially developed
by Rosenau (1987) for infinite membranes to finite size membranes
and also included the static behavior of these microstructured mem-
branes. In this paper, the authors present local and nonlocal models
that were compared with the reference discrete lattice model to
show that the nonlocality source in nonlocal membrane problems
may come from the discreteness of the matter at a smaller scale.

Static Deflection of Lattice Membrane

The discrete membrane considered was composed of connected
concentrated masses loaded by some vertical concentrated loads,
qa2, for the interior nodes in the direction orthogonal to the mem-
brane plane (q has the dimension of a load by unit surface, and a

defines the size of each membrane cell). All nodes of the membrane
had only one degree of freedom in the vertical direction denoted by
w, its out-of-plane deflection, and the rectangular membrane was
fixed at its boundary. The rectangular membrane was composed of
nx springs of length a in the x direction, and ny springs of the same
length in the y direction. The distributed tension applied to the side
of the membrane was denoted by T, as shown in Fig. 1. The length
in each direction is noted, Lx ¼ L, Ly ¼ λL, and the number of
elements in each direction, nx ¼ n, ny ¼ λn, in which λ is the as-
pect ratio. Fig. 2 shows a visualization of the membrane deflection
for a value of λ ¼ 0.5. The tensile load T was applied in the de-
formed configuration. The linearized static and dynamic equations
of motion were investigated for this lattice rectilinear membrane.
The vertical component of the force in each spring was calculated
from the tensile load T as

Px
iþ1=2;j ¼ T

wiþ1;j − wi;j

a

Py
i;jþ1=2 ¼ T

wi;jþ1 − wi;j

a

and
Px
i−1=2;j ¼ T

wi;j − wi−1;j
a

Py
i;j−1=2 ¼ T

wi;j − wi;j−1
a

ð1Þ

The equilibrium equation at each node may be written as

Px
iþ1=2;j − Px

i−1=2;j þ Py
i;jþ1=2 − Py

i;j−1=2 ¼ −qa ð2Þ

in which the transverse distributed load q has the dimension of a
load by unit surface. By using Eqs. (1) and (2), one obtains the
following linear second-order difference equation

T

�
wiþ1;j − 2wi;j þ wi−1;j

a2
þ wi;jþ1 − 2wi;j þ wi;j−1

a2

�
¼ −q ð3Þ

Fig. 1. Discrete membrane with uniform out-of-plane pressure
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The boundary conditions of the fixed-fixed lattice membrane are

w0;j ¼ wnx;j ¼ 0 for j ∈ f0; 1 : : : ; nyg and

wi;0 ¼ wi;ny ¼ 0 for i ∈ f0; 1 : : : ; nxg ð4Þ

The difference equation of the lattice membrane problem is the
finite difference formulation of the local continuous membrane
problem, given by the Poisson type of partial differential equation

TΔw ¼ −q with Δ ¼ ∂2
x þ ∂2

y ð5Þ

Indeed, Eq. (1) also can be reformulated by using a central finite
difference operator

Px
i;j ¼ T

wiþ1=2;j − wi−1=2;j
a

Py
i;j ¼ T

wi;jþ1=2 − wi;j−1=2
a

ð6Þ

which is the central finite difference scheme of the continuous
gradient law

P ¼ T∇w with P ¼
�
Px

Py

�
and ∇ ¼

� ∂x

∂y

�
ð7Þ

Eq. (2) also can be reformulated as

Px
iþ1=2;j − Px

i−1=2;j
a

þ Py
i;jþ1=2 − Py

i;j−1=2
a

¼ −q ð8Þ

which is the central finite difference scheme associated to the equi-
librium equation

∇ · P ¼ −q with P ¼
�
Px

Py

�
and ∇ ¼

� ∂x

∂y

�
ð9Þ

By introducing a dimensionless loading parameter β, Eq. (3)
becomes

wiþ1;j − 4wi;j þwi−1;j þwi;jþ1 þwi;j−1
L

¼ − qL
Tn2

¼ − β
n2

with
qL
T

¼ β and a¼ L
n

ð10Þ

This is a linear 2D second-order difference equation that can
be solved numerically and exactly. The exact solution relies on
the use of the double Fourier sine series, i.e.

T
wi;jþ1 þ wiþ1;j þ wi−1;j þ wi;j−1 − 4wi;j

a2

¼ −q ¼ −qX∞
m¼1

X∞
p¼1

Am;p sin
mπai
L

sin
pπaj
λL

ð11Þ

The constant Am;p is then established as

Am;p ¼ 4

λL2

Z
L

0

Z
λL

0

sin
mπx
L

sin
pπy
λL

dxdy ¼ 16

π2

sin2 mπ
2
sin2 pπ

2

mp

ð12Þ

By assuming that the deflection can be developed in Fourier
series, one obtains

wi;j ¼
X∞
m¼1

X∞
p¼1

Wm;p sin
mπai
L

sin
pπaj
λL

ð13Þ

The substitution of Eq. (13) into Eq. (11) furnishes

X∞
m¼1

X∞
p¼1

"
− 4T
a2

Wm;p

�
sin2

mπa
2L

þ sin2
pπa
2λL

�

þ 16q
π2

sin2 mπ
2
sin2 pπ

2

mp

#
sin

mπai
L

sin
pπaj
λL

¼ 0 ð14Þ

There are two cases for identifying Wm;p

sin

�
mπ
2n

�
≠ 0 or sin

�
pπ
2λn

�
≠ 0

⇒ Wm;p ¼ 4qa2

π2T

sin2 mπ
2
sin2 pπ

2

mp
�
sin2 mπa

2L þ sin2 pπa
2λL

� ð15Þ

or

sin

�
mπ
2n

�
¼ sin

�
pπ
2λn

�
¼ 0 ⇒ Wm;p ¼ 0 ð16Þ

The substitution of Eq. (15) into Eq. (14) leads to

wi;j ¼
4qa2

π2T

X∞
m¼1

X∞
p¼1

sin2 mπ
2
sin2 pπ

2

mp
�
sin2 mπa

2L þ sin2 pπa
2λL

� sin
mπai
L

sin
pπaj
λL

ð17Þ

Eq. (17) is valid for all m and p, except for ðm ¼ k12nÞ ∧
ðp ¼ k22λnÞ, in which k1 and k2 are positive integers, given by
Eqs. (15) and (16). Of course, an exact solution in the form of an
infinite summation always needs to be truncated when computed.
For example, with n ¼ 16, and truncating the expression after the
first 500 terms, a solution was obtained that is close to the recursive
exact solution within 0.5% margin of error. This can be presented
in a dimensionless formulation with the same conditions on m
and p as

w�
i;j ¼

4β
π2n2

X∞
m¼1

X∞
p¼1

sin2mπ
2
sin2 pπ

2

mp
�
sin2mπ

2n þ sin2 pπ
2λn

�sinmπi
n

sin
pπj
λn

ð18Þ

Fig. 2. Representation of membrane deflection of 2D lattice with
n ¼ 20 and λ ¼ 0.5

where w� ¼ w=L. 
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Static Deflection of Nonlocal Continuous Membrane

Nonlocal Continualized Membrane Model

To obtain a nonlocal approximation of the discrete system, a con-
tinualization procedure is applied on the discrete equations

wiþ1;j ¼
X∞
k¼0

ak∂k
x

k!
wðx; yÞ ¼ ea∂xwðx; yÞ ð19Þ

When Eq. (19) is applied to the difference formulation of the
lattice structural problem, one obtains

wiþ1;j − 2wi;j þ wi−1;j
a2

þ wi;jþ1 − 2wi;j þ wi;j−1
a2

¼
�
ea∂x − 2þ e−a∂x

a2
þ ea∂y − 2þ e−a∂y

a2

�
w

¼
�
2 coshða∂xÞ − 4þ 2 coshða∂yÞ

a2

�
w ð20Þ

The governing difference Eq. (3) becomes

−q
T

¼
�
4

a2
sinh2

�
a
2
∂x

�
þ 4

a2
sinh2

�
a
2
∂y

��
w ð21Þ

By using the Padé’s approximant of a second-order develop-
ment of Eq. (21), one obtains

−q
T

¼
"

∂2
x

1 − a2
12
∂2
x

þ ∂2
y

1 − a2
12
∂2
y

#
w ð22Þ

which may be rewritten as

−
�
1− a2

12
∂2
x

��
1− a2

12
∂2
y

�
q
T
¼
�
∂2
x þ ∂2

y −a2

6
∂2
x∂2

y

�
w ð23Þ

By using the Laplacian operator and by neglecting higher-order
terms in a4, Eq. (23) may be expressed as

T

�
Δ − a2

6
∂2
x∂2

y

�
w ¼ −

�
1 − a2

12
Δþ Oða4Þ

�
q ð24Þ

By omitting the higher-order terms in a4, the equation of the
continualized nonlocal membrane becomes

Δw − a2

6

� ∂4w
∂x2∂y2

�
¼ − 1

T

�
1 − a2

12
Δ

�
q ð25Þ

The governing second-order difference equation Eq. (3) was
continualized directly. If one now considers the continualization
of each first-order difference Eq. (6), one obtains�

1 − a2

24
∂2
x

�
Px ¼ T∂xw�

1 − a2

24
∂2
y

�
Py ¼ T∂yw ð26Þ

whereas for Eq. (8), one obtains the continualized nonlocal
equation

∂x

�
1− a2

24
∂2
y

�
Px þ ∂y

�
1− a2

24
∂2
x

�
Py ¼ −

�
1− a2

24
Δ

�
q ð27Þ

By multiplying Eq. (27) with the partial differential operator
ð1 − a2=24∂2

yÞð1 − a2=24∂2
xÞ, Eq. (27) also can be re-expressed as

�
1 − a2

12
∂2
y

�
∂x

�
1 − a2

24
∂2
x

�
Px þ

�
1 − a2

12
∂2
x

�
∂y

�
1 − a2

24
∂2
y

�
Py

¼ −
�
1 − a2

12
Δ

�
q ð28Þ

after the omission of higher-order terms. Eq. (28) can be equiva-
lently written as

T

�
1 − a2

12
∂2
y

�
∂2
xwþ T

�
1 − a2

12
∂2
x

�
∂2
yw ¼ −

�
1 − a2

12
Δ

�
q

ð29Þ

One recognizes the continualized nonlocal membrane Eq. (25)
from Eq. (29).

The authors looked for the static deflection solution of the
continualized nonlocal membrane with fixed-fixed boundary con-
ditions. Bearing in mind that, in this case, the vertical load was
uniform, so Δq ¼ 0; Am;p does not change in this case [Eq. (12)].
The Fourier series coefficient becomes

Δw− a2

6

� ∂4w
∂x2∂y2

�

¼
X∞
m¼1

X∞
p¼1

−Cm;p

�
m2π2

L2
þ p2π2

ðλLÞ2 þ
a2m2p2π4

6λ2L4

�
sin

mπx
L

sin
pπy
λL

ð30Þ

Following the same process as in Eq. (14), this gives the expres-
sion of Cm;p

Cm;p ¼ 16
qL2

Tπ4

X∞
m¼1

X∞
p¼1

sin2 mπ
2
sin2 pπ

2h
m2 þ ðpλÞ2 þ a2m2p2π2

6ðλLÞ2
i
mp

ð31Þ

The expression of the deflection for the nonlocal problem is
therefore

wðx; yÞ ¼ 16
qL2

Tπ4

X∞
m¼1

X∞
p¼1

sin2 mπ
2
sin2 pπ

2h
m2 þ ðpλÞ2 þ a2m2p2π2

6ðλLÞ2
i
mp

× sin
mπx
L

sin
pπy
λL

ð32Þ

By using dimensionless variables, Eq. (32) can be expressed as

w�ðx�; y�Þ ¼ 16
β
π4

X∞
m¼1

X∞
p¼1

sin2 mπ
2
sin2 pπ

2h
m2 þ ðpλÞ2 þ m2p2π2

6ðλnÞ2
i
mp

× sinmπx� sinpπy� ð33Þ

A specific case in which a ¼ 0 in Eq. (25), also can be studied
for comparison (local membrane problem)

wiþ1;j − wi;j þ wi−1;j
a2

¼ ∂2w
∂x2 þ oða2Þ

wi;jþ1 − wi;j þ wi;j−1
a2

¼ ∂2w
∂y2 þ oða2Þ ð34Þ

The local problem at hand was governed by the Poisson-type
partial differential equation
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∂2w
∂x2 þ

∂2w
∂y2 ¼ Δw ¼ − q

T
ð35Þ

An analytical solution to this problem can be found using the
double Fourier series because the deflection on the side of the mem-
brane cancelled out according to the boundary conditions. The
solution can be written as

wðx; yÞ ¼
X∞
m¼1

X∞
p¼1

Cm;p sin
mπx
L

sin
pπy
λL

ð36Þ

in which Cm;p is a constant obtained by calculating the Laplacian
of this solution

Δw ¼
X∞
m¼1

X∞
p¼1

−Cm;p

�
m2π2

L2
þ p2π2

ðλLÞ2
�
sin

mπx
L

sin
pπy
λL

ð37Þ

From Eq. (35), one can write

∇2w ¼ −q
T

¼
X∞
m¼1

X∞
p¼1

Am;p sin
mπx
L

sin
pπy
λL

ð38Þ

and Am;p is then calculated as

Am;p ¼ 4

λL2

Z
L

0

Z
λL

0

− q
T
sin

mπx
L

sin
pπy
λL

dxdy

¼ − 16qsin2 mπ
2
sin2 pπ

2

mpTπ2
ð39Þ

By observation, it can be deduced the value of Cm;p is given by

−Cm;p
π2

L2

�
m2 þ

�
p
λ

�
2
�
¼ Am;p

⇒ Cm;p ¼ 16
qL2

Tπ4

sin2 mπ
2
sin2 pπ

2�
m2 þ 	p

λ



2
�
mp

ð40Þ

The expression of the solution in Eq. (36) therefore becomes

wðx; yÞ ¼ 16
qL2

Tπ4

X∞
m¼1

X∞
p¼1

sin2 mπ
2
sin2 pπ

2�
m2 þ ðpλÞ2

�
mp

sin
mπx
L

sin
pπy
λL

ð41Þ

which can be presented in dimensionless terms as

wðx�; y�Þ� ¼ 16
β
π4

X∞
m¼1

X∞
p¼1

sin2 mπ
2
sin2 pπ

2�
m2 þ ðpλÞ2

�
mp

sinmπx� sinpπy�

ð42Þ

where x� ¼ x
L; and y� ¼ y=λL.

Eringen’s Type Nonlocal Membrane Model

The derived continualized nonlocal model can be compared with
another phenomenological nonlocality, namely a nonlocal model
on the basis of Eringen’s differential law Eringen (1983) for the
differential relation between the stress and the strain variables.
A vectorial formulation can be defined as

P − l2c∇2P ¼ T∇w and ∇ · P ¼ −q with

P ¼
�Px

Py

�
and ∇ ¼

� ∂x

∂y

�
ð43Þ

where ∇2 ¼ Δ1; ∇ = gradient operator; and P = vertical force
vector calculated for each direction of the plane. Eq. (43) also
can be written as

Px − l2c

�∂2Px

∂x2 þ ∂2Px

∂y2
�

¼ T
∂w
∂x

Py − l2c

�∂2Py

∂x2 þ ∂2Py

∂y2
�

¼ T
∂w
∂y

and
∂Px

∂x þ ∂Py

∂y ¼ −q

ð44Þ

In the nonlocal membrane using Eringen’s nonlocality, the latter
appears as the Laplacian of the load, i.e.

TΔw ¼ −½1 − l2cΔ�q ð45Þ

Eq. (45), when written in Cartesian coordinates, is given by

T

�∂2w
∂x2 þ

∂2w
∂y2

�
¼ −qþ l2c

�∂2q
∂x2 þ

∂2q
∂y2

�
ð46Þ

The same result can be obtained with a slight change in the
vectorial formulation as such

P − l2c∇ð∇ · PÞ ¼ T∇w and ∇ · P ¼ −q ð47Þ

which can be written in Cartesian coordinates as

Px − l2c

�∂2Px

∂x2 þ ∂2Py

∂x∂y
�

¼ T
∂w
∂x

Py − l2c

�∂2Px

∂x∂yþ
∂2Py

∂y2
�

¼ T
∂w
∂y

and
∂Px

∂x þ ∂Py

∂y ¼ −q

ð48Þ

Both Eqs. (44) and (48) lead to Eq. (45) despite the slight differ-
ence in the formulation. In this case, this nonlocal problem was
equivalent to the local membrane because the pressure applied to
the membrane was constant. Fig. 3 presents the results of the differ-
ent models with respect to the results of the discrete system for
small values of n, with

Err ¼ wðn
2
; n
2
ÞDiscrete − wð1

2
; 1
2
ÞContinous

wðn
2
; n
2
ÞDiscrete

ð49Þ

Fig. 4 shows the normalized deflection of the center of the mem-
brane. For Figs. 3 and 4, only even values of n were plotted because
odd values did not present a central point on the membrane. The
continualized nonlocal membrane model clearly offered the best
accuracy with respect to the lattice solution.

Dynamics of Lattice Membrane

The vibration equations of the lattice membrane were obtained
from Eq. (1), whereas the equilibrium [Eq. (2)] took into account
the inertia terms

Px
iþ1=2;j − Px

i−1=2;j þ Py
i;jþ1=2 − Py

i;j−1=2 ¼ ρaẅi;j ð50Þ

where ρ = membrane density. In view of Eqs. (1) and (50), a linear
second-order difference equation is obtained as
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T
wiþ1;j þ wi−1;j þ wi;jþ1 þ wi;j−1 − 4wi;j

a2
¼ ρẅi;j ð51Þ

The boundary conditions of the fixed-fixed lattice membrane are
given by Eq. (4). As observed for the static problem, the difference
equation of the lattice membrane problem was the spatial finite dif-
ferences formulation of the local continuous membrane problem
given by the following wave equation:

TΔw ¼ ρẅ with Δ ¼ ∂2
x þ ∂2

y ð52Þ
The equation governing the behavior of the discrete membrane

in dynamics is

T
wi;jþ1 þ wiþ1;j þ wi−1;j þ wi;j−1 − 4wi;j

a2
þ ρω2wi;j ¼ 0 ð53Þ

where ω = angular frequency. Eq. (53) can be written in the
form

T
wi;jþ1 þ wiþ1;j þ wi−1;j þ wi;j−1 þ ða2T ρω2 − 4Þwi;j

a2
¼ 0 ð54Þ

The linear 2D second-order difference eigenvalue problem to be
solved is

wi;jþ1 þ wiþ1;j þ wi−1;j þ wi;j−1 þ
�
a2

T
ρω2 − 4

�
wi;j ¼ 0 ð55Þ

A solution can be found of wi;j in the form

wi;j ¼ Wr;s sin
rπai
L

sin
sπaj
λL

ð56Þ

By substituting Eq. (56) into Eq. (55), the natural frequencies of
the discrete membrane can be extracted as

ωr;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4T
ρa2

�
sin2

rπa
2L

þ sin2
sπa
2λL

�s
with r ∈ f1; 2; : : : ; nxg

and s ∈ f1; 2; : : : ; nyg ð57Þ

Eq. (57) also was obtained by Tong et al. (1971) who solved the
exact finite element formulation of the continuous membrane prob-
lem on the basis of a linear interpolation field for the displacement
in the functional expressed with gradient variables, and a constant
interpolation field for the kinetic energy functional. Such formu-
lation may be labelled nonconsistent because the interpolation field
may differ in the considered functionals. This formulation is equiv-
alent to the finite difference formulation of the continuous mem-
brane problem. Eq. (57) has been also obtained independently by
Chen (1971) [see also Rutherford (1948) who derived the same re-
sult for a mathematical analogous problem]. The natural frequen-
cies of the fixed-fixed lattice membrane is normalised by

Ωr;s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4n2

�
sin2

rπ
2n

þ sin2
sπ
2λn

�s
with Ω ¼ ωL

ffiffiffiffi
ρ
T

r
ð58Þ

The lattice membrane can be compared with its local continuum
counterpart, governed by the following partial differential equation:

T∇2wþ ρω2w ¼ 0 ð59Þ

The exact solution of the local dynamic problem can be ob-
tained from standard textbooks, such as Wang and Wang (2013)

Fig. 3. Relative error of continualized and phenomenological
Eringen’s nonlocal models with respect to lattice response for dif-
ferent values of n—static response

Fig. 4. Normalized deflection of center of square membrane for n elements in each direction
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or Leissa and Qatu (2011), for a fixed-fixed membrane consider-
ing the sinusoidal vibration mode

wðx; yÞ ¼ sin
rπx
L

sin
sπy
λL

ð60Þ

where m, p = nonzero integers providing the number of half
waves in the x, y directions, respectively. The natural frequencies
of the membrane are given by

ωr;s ¼
π
L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T
ρ

�
r2 þ

�
s
λ

�
2
�s

ð61Þ

Again, the results are normalized, which gives

Ωr;s ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ

�
s
λ

�
2

s
ð62Þ

This exact solution does not require infinite summation comput-
ing as in the static case. These results are consistent with Wang and
Wang (2013) and Leissa and Qatu (2011) results for local rectan-
gular membranes.

Dynamics of Nonlocal Continuous Membrane

Nonlocal Continualized Membrane Model

The continualized nonlocal lattice-based model was obtained
by considering a similar reasoning to the one applied to the static
case, i.e.,

T

�
4

a2
sinh2

�
a
2
∂x

�
þ 4

a2
sinh2

�
a
2
∂y

��
wþ ρω2w ¼ 0 ð63Þ

Using Eq. (19) on Eq. (55) as in the static case, the nonlocal
approximation of the discrete membrane is obtained

TΔw − T
a2

6

∂4w
∂x2∂y2 þ ρω2

�
1 − a2

12
Δ

�
w ¼ 0 ð64Þ

This equation already was obtained by Rosenau (1987) from the
same reasoning on the basis of the Padé approximant of the pseu-
dodifferential operator. Eq. (64) may be written in the form as�

T − ρω2
a2

12

�
Δw − T

a2

6

∂4w
∂x2∂y2 þ ρω2w ¼ 0 ð65Þ

As in the local problem, the solution of the deflection is given by

wðx; yÞ ¼ sin
rπx
L

sin
sπy
λL

ð66Þ

By substituting Eq. (66) into Eq. (65), one obtains�
T − ρω2

a2

12

�
Δw − T

a2

6

∂4w
∂x2∂y2 þ ρω2w

¼ −
��

T − ρω2
a2

12

��
r2π2

L2
þ s2π2

ðλLÞ2
�

þ Ta2r2s2π4

6λ2L4
− ρω2

�
sin

rπx
L

sin
sπy
λL

ð67Þ

Finally, the natural frequencies of the nonlocal continuous mem-
brane can be extracted as

ωr;s ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T
�
r2 þ s2 þ a2r2s2π2

6ðλLÞ2
�

ρL2
h
1þ a2

12

�
r2π2

L2 þ s2π2

ðλLÞ2
�i

vuuut ð68Þ

By using the normalisation, Eq. (68) becomes

Ωr;s ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ s2 þ r2s2π2

6ðλnÞ2

1þ π2

12n2 ðr2 þ s2
λÞ

vuut ð69Þ

Eringen’s Type Nonlocal Membrane Model

For comparison, the case of the Eringen’s nonlocality for this mem-
brane can be studied. Defining a vectorial formulation as

P − l2c∇2P ¼ T∇w and ∇ · P ¼ −ρω2w with

P ¼
�Px

Py

�
and ∇ ¼

� ∂x

∂y

�
ð70Þ

where ∇2 ¼ Δ1; ∇ = gradient operator; and P = vertical force
vector calculated for each direction of the plane. Eq. (70) also
can be written as

Px − l2c

�∂2Px

∂x2 þ ∂2Px

∂y2
�
¼ T

∂w
∂x

Py − l2c

�∂2Py

∂x2 þ ∂2Py

∂y2
�
¼ T

∂w
∂y

and
∂Px

∂x þ ∂Py

∂y ¼ −ρω2w

ð71Þ

This continuous nonlocal, in the sense of the differential model
of Eringen (1983), membrane is then defined as

TΔwþ ρω2

�
1 − a2

12
Δ

�
w ¼ 0 ð72Þ

Eq. (72) can be written in Cartesian coordinates as

�
T − ρω2

a2

12

��∂2w
∂x2 þ ∂2w

∂y2
�
þ ρω2w ¼ 0 ð73Þ

which previously was obtained by Rosenau (1987) as a simpli-
fied engineering nonlocal membrane model. The same comment,
as in the static analysis, can be made regarding the alternative
vectorial
formulation

P − l2c∇ð∇ · PÞ ¼ T∇w and ∇ · P ¼ −ρω2w ð74Þ

which similarly can be written in Cartesian coordinates as

Px − l2c

�∂2Px

∂x2 þ ∂2Py

∂x∂y
�
¼ T

∂w
∂x

Py − l2c

�∂2Px

∂x∂yþ
∂2Py

∂y2
�
¼ T

∂w
∂y

and
∂Px

∂x þ ∂Py

∂y ¼ −ρω2w

ð75Þ

which also leads to Eq. (72). Again, the solution the authors
looked for was in the form of Eq. (66). This allows one to obtain
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�
T − ρω2

a2

12

�
Δwþ ρω2w

¼ −
��

T − ρω2
a2

12

��
r2π2

L2
þ s2π2

ðλLÞ2
�
− ρω2

�
sin

rπx
L

sin
sπy
λL

ð76Þ

Finally, the natural frequencies of the Eringen’s nonlocal mem-
brane are extracted as

ωr;s ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tðr2 þ s2

λÞ
ρL2

h
1þ a2

12

�
r2π2

L2 þ s2π2

ðλLÞ2
�i

vuut ð77Þ

By using the normalisation, Eq. (77) becomes

Ωr;s ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
r2 þ s2

λ

�
1þ π2

12n2

�
r2 þ s2

λ

�
vuuut ð78Þ

One can observe that Eq. (65) can be presented as a mixed gra-
dient [Eq. (72)] nonlocal vibration model by using the higher-order
term of the membrane deflection. Fig. 5 presents the results of the
different models with respect to the results of the discrete system
for small values of n, with

Err ¼ ΩDiscrete − Ωcontinous

ΩDiscrete
ð79Þ

Fig. 5 shows that local and Eringen’s nonlocal models do not
offer good results; the latter being the only one that gave a stiffer
response than the discrete model. The nonlocal model with the
coupled term presented the best results. Fig. 6 shows the normal-
ized natural frequencies of the membrane for different values of n.

The nonlocal engineering membrane model of Rosenau (1987),
who investigated a truncated form of the continualized nonlocal
model (to be cast in an Eringen’s differential form), is not suffi-
ciently accurate, as compared with the complete nonlocal form,
also derived by Rosenau (1987). In particular, for the static behav-
ior of the uniformly loaded membrane, the truncated nonlocal
model gave similar results as compared with the local membrane

model, which clearly was not accurate because the lattice mem-
brane possessed scale effects even in the static range. Therefore,
the use of the complete form of the nonlocal continualized model
as derived by Rosenau in dynamics is recommended, and is ex-
tended to static loading as

TΔw − T
a2

6

∂4w
∂x2∂y2 ¼

�
1 − a2

12
Δ

�
ðρẅ − qÞ ð80Þ

High Frequency Behavior

For low frequency, Eq. (63) is approximated by Eq. (64) as already
shown by Rosenau (1987) (Andrianov and Awrejcewicz 2008).
For high-frequency range, Andrianov and Awrejcewicz (2008) sug-
gested calibrating the nonlocal terms as

TΔw − βa2T
∂4w

∂x2∂y2 þ ρω2ð1 − αa2ΔÞw ¼ 0 ð81Þ

where α ¼ 1
4
− 1

π2. For a one-dimensional system, this equation re-
duces to the nonlocal vibration of string (which is mathematically
equivalent to the nonlocal vibration of elastic axial bars)

T
∂2w
∂x2 þ ρω2

�
1 − ðe0aÞ2

∂2

∂x2
�
w ¼ 0 ð82Þ

where e0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
1
4
− 1

π2

q
≈ 0.386. This last value, e0 ≈ 0.39, is indeed

the value obtained by Eringen (1983) from the calibration of his
nonlocal model with the wave dispersive relationship of Born-
Kármán lattice model in the Brillouin zone. In Eq. (81), the param-
eters (α, β) were calibrated with respect to the highest frequency
range. The lattice frequency in this frequency range was calculated
from Eq. (58)

r ¼ n and s ¼ λn ⇒ Ωn;λn ¼ 2
ffiffiffi
2

p
n ð83Þ

If the sinusoidal displacement field Eq. (60) now is used and
inserted in the nonlocal vibration equation Eq. (81), one obtains

r ¼ n and s ¼ λn ⇒ Ωn;λn ¼ nπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ βπ2

1þ 2απ2

s
ð84Þ

Fig. 5. Relative error of continualized and phenomenological
Eringen’s nonlocal models with respect to lattice response for dif-
ferent values of n—dynamic response

Fig. 6. Normalized natural frequencies Ω for m ¼ p ¼ 1 of square
membrane (λ ¼ 1) for n elements in each direction
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By equalizing Eqs. (83) and (84) with α ¼ 1
4
− 1

π2, one obtains

β ¼ 2

π2
− 8

π4
ð85Þ

which is the value reported by Andrianov and Awrejcewicz
(2008) for the wave propagation of the nonlocal membrane cali-
brated with respect to the lattice one in the high-frequency range.

The low-frequency and the high-frequency nonlocal models can
be compared with the exact lattice model in the specific case Ωr;λr
with respect to r ∈ f1; 2; : : : ; ng. Eq. (58) is specified in this
case as

Ωr;λr ¼ 2
ffiffiffi
2

p
n sin

�
rπ
2n

�
ð86Þ

The nonlocal model valid for low frequencies on the basis of
Eq. (64) gives

Ωr;λr ¼ kπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ðrπÞ2

6n2

1þ ðrπÞ2
6n2

vuut ð87Þ

whereas, the nonlocal model valid for high frequencies is on the
basis of Eq. (81), and is written

Ωr;λr ¼ rπ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ β ðrπÞ2

n2

1þ 2α ðrπÞ2
n2

vuut ð88Þ

where α ¼ 1
4
− 1

π2; and β ¼ 2
π2 − 8

π4.
Fig. 7 shows the evolution of the eigenfrequencies for the

lattice model, the nonlocal model of Rosenau (1987) for low
frequencies (see also Andrianov and Awrejcewicz 2008) and the
one established by Andrianov and Awrejcewicz (2008) for high
frequencies. The validity of each nonlocal model strongly depends
on the frequency range considered, but both approximations, for
low frequencies and high frequencies are relevant in their validity
domain.

Wave Dispersion Analysis

In this section, the plane wave propagation in the 2D membrane
lattice was studied and was compared with its nonlocal counterpart,
especially in the so-called first Brillouin zone.

The dispersion equation can be obtained from the following
harmonic wave formulation:

wi;j ¼ W exp½Jðωt − kxxi − kyxjÞ� ð89Þ

where ω = angular frequency; W = amplitude; J ¼ ffiffiffiffiffiffi−1p
= imagi-

nary number; xi ¼ ia; and yj ¼ ja.
Introducing Eq. (89) in the 2D wave equation of the lattice

membrane, Eq. (51), leads to the dispersion relation in the 2D
lattice

~ω2 ¼ 4

�
sin2

�
kxa
2

�
þ sin2

�
kya

2

��
with ~ω ¼ ωa

ffiffiffiffi
ρ
T

r
ð90Þ

which was obtained by Rosenau (1987) and Lombardo and Askes
(2010). As suggested by the latter, it is possible to introduce a
direction angle that characterizes the wave vector orientation with
respect to the horizontal axis


kx ¼ k cos θ

ky ¼ k sin θ
ð91Þ

so that the wave dispersion relation can be re-expressed by

~ω ¼ �2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2

�
ka cos θ

2

�
þ sin2

�
ka sin θ

2

�s
ð92Þ

This wave dispersive relation can be compared with the one ob-
tained for the wave propagation equation in the nonlocal membrane
associated with Eq. (81)

TΔw − βa2T
∂4w

∂x2∂y2 − ρð1 − αa2ΔÞẅ ¼ 0

with α ¼ 1

4
− 1

π2
and β ¼ 2

π2
− 8

π4
ð93Þ

as previously obtained form the high-frequency calibration [see the
parameters calibration of (Andrianov and Awrejcewicz 2008)].

Fig. 7. Normalized natural frequencies Ω for n ¼ 8 of rectangular membrane with respect to the mode number k

9



Now, considering the harmonic wave formulation in the nonlocal
countinuous membrane model

w ¼ W exp½Jðωt − kxx − kyxÞ� ð94Þ

Introducing Eq. (94) in the nonlocal wave equation, Eq. (93),
leads to the wave dispersive relationship

~ω2 ¼ ðkxaÞ2 þ ðkyaÞ2 þ βðkxaÞ2ðkyaÞ2
1þ α½ðkxaÞ2 þ ðkyaÞ2�

ð95Þ

which can be re-expressed using the polar representation

~ω ¼ �ka

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ β

4
ðkaÞ2sin2ð2θÞ

1þ αðkaÞ2

s
ð96Þ

This wave dispersive equation was obtained by Lombardo and
Askes (2010), in which α and β were calibrated in the so-called
low-frequency range. The comparison of the lattice model and
the nonlocal one in the first Brillouin zone, i.e., for ka cos θ ∈
½0; π� and θ ∈ f0; π

8
; π
4
g, shows the efficiency of the nonlocal model

in terms of wave dispersive properties on the basis of Eq. (93) with
the so-called high-frequency calibration (Fig. 8).

The dispersive wave properties calibration of the 2D wave mem-
brane problem in the present problem was similar to the one per-
formed by Eringen (1983) for one-dimensional wave problems.
Eringen (1983) obtained the same calibration for the α parameter,
i.e., α ¼ 1

4
− 1

π2. The present nonlocal dispersive wave analysis gen-
eralized the results of (Eringen 1983) to the 2D lattice media, using
the nonlocal calibration established by Andrianov and Awrejcewicz
(2008).

Conclusions

The out-of-plane deflection and vibration of a 2D discrete mem-
brane and the associated continualized models were studied in this
paper. The results showed that a nonlocal continuous structure can
behave as a microstructured lattice model, the former equations
being derived from the discrete equations using a continualization
procedure. Analytical solutions found for the different structural

membrane problems and numerical simulations confirmed the re-
sults on the basis of programming the algebraic problem. In com-
parison with an Eringen’s type nonlocality, the fully coupled
nonlocal model seemed to better fit the discrete response both
in statics (in which it is equivalent to a local model) and in dynam-
ics. The size of the microstructure of the rectangular membrane
determined the characteristic length of the nonlocal model at the
macroscopic scale. The authors found a nonlocal characteristic
length that was load-independent and only on the basis of the size
of the microstructure. The length scale was the same in statics and
in dynamics for low-frequency range. However, for high-frequency
range, the characteristic length could be fitted with respect to 2D
lattice wave dispersive properties, which generalizes the results ob-
tained by Eringen (1983) from the one-dimensional axial lattice
with direct neighboring interaction. The generalization of the effec-
tiveness of such nonlocal membrane model as compared with the
lattice one probably should be confirmed for general end-supports
boundary conditions. Also, the effect of the cell geometry, includ-
ing hexagonal lattice, could be treated in a future study to cover
more microstructural patterns.
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