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Abstract

Based on the convex least-squares estimator, we propose two different procedures

for testing convexity of a probability mass function supported on N with an unknown

finite support. The procedures are shown to be asymptotically calibrated.

1 The testing problem

Modeling count data is an important issue in statistical research, see e.g. Gómez-Déniz and

Caldeŕın-Ojeda (2011). A popular parametric model for such data is the Poisson model.

While non-parametric extensions are conceivable, those that only assume a shape constraint

of the underlying probability mass function (pmf) may offer more flexibility. Recent papers

on estimating a pmf under a shape constraint are Jankowski and Wellner (2009), Durot

et al. (2013, 2015), Balabdaoui et al. (2013), Giguelay (2016), Chee and Wang (2016). In
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any case, it is sensible to validate the chosen model using a goodness-of-fit test. Goodness-

of-fit tests to validate a model connected to the Poisson distribution are given in Karlis

and Xekalaki (2000), Meintanis and Nikitin (2008), Ledwina and Wy lupek (2016) and the

references therein. However, to the best of our knowledge, no goodness-of-fit test has been

proposed to validate an assumed shape constraint for discrete data.

Motivated by the biological application in Durot et al. (2015), where the number of

species is estimated assuming a convex abundance distribution, we develop here a goodness-

of-fit test for convexity of the underlying pmf on N. To the best of our knowledge, this is the

first attempt to build a convexity test for count data. Precisely, based on i.i.d. observations

X1, . . . , Xn from some pmf p0 on N, we test the null hypothesis H0: “p0 is convex on N” (i.e.

p0(k + 1)− p0(k) ≥ p0(k)− p0(k − 1) for all integers k ≥ 1) versus H1: “p0 is not convex”.

The test is based on the convex least-squares estimator p̂n := argminp∈C1‖pn−p‖, where C1

is the set of all convex pmfs on N, ‖q‖2 =
∑

j∈N(q(j))2 for any sequence q = {q(j), j ∈ N},

and pn(j) = n−1
∑n

i=1 1{Xi=j}, j ∈ N, is the empirical pmf. It is proved in Durot et al.

(2013, Sections 2.1 to 2.3) that p̂n exists, is unique, and can be implemented with an

appropriate algorithm. We reject H0 if {Tn > tα,n} where Tn =
√
n‖pn− p̂n‖ and tα,n is an

appropriate quantile, chosen in such a way that the test has asymptotic level α.

In the sequel, we assume that p0 has a finite support in {0, . . . , S} with an unknown

integer S > 0 and we consider two different constructions of tα,n. First, we define tα,n as the

(1−α)-quantile of a random variable whose limiting distribution coincides with the limiting

distribution of Tn under H0. Next, we calibrate the test under a least favorable hypothesis

(when the true pmf is triangular). Theoretical justification requires knowledge of the

limiting distribution of Tn under H0. This needs some notation. For all p = {p(j), j ∈ N}

and k ∈ N\{0} we set ∆p(k) = p(k + 1) − 2p(k) + p(k − 1) (hence p is convex on N iff

∆p(k) ≥ 0 for all k) and a given k ∈ N\{0} is called a knot of p if ∆p(k) > 0. For all s > 0
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and u = (u(0), . . . , u(s+ 1)) ∈ Rs+2, we set ‖u‖2s =
∑s+1

k=0(u(k))2. Also, let g0 be a (S + 2)

centered Gaussian vector whose dispersion matrix Γ0 has component (i+ 1, j + 1) equal to

1{i=j}p0(i)− p0(i)p0(j) for all i, j = 0, . . . , S + 1, and ĝ0 the minimizer of ‖g − g0‖S over

g ∈ K0 :=
{
g = (g(0), . . . , g(S + 1)) ∈ RS+2 : ∆g(k) ≥ 0 for all k ∈ {1, . . . , S}

such that ∆p0(k) = 0
}
.

Existence, uniqueness and characterization of ĝ0 are given in Balabdaoui et al. (2017,

Theorem 3.1). The asymptotic distribution of Tn under H0 is given below.

Theorem 1.1. (i)The distribution function of T̂0 := ‖ĝ0 − g0‖S is continuous on (0,∞).

(ii) Under H0, Tn
d−→ T̂0 and supt≥0 |P (Tn ≤ t)− P (T̂0 ≤ t)| → 0, as n→∞.

2 Calibrating by estimating the limiting distribution

Here, we build a random variable that weakly converges to T̂0 and can be approximated via

Monte-Carlo simulations. Let Sn = max{X1, . . . , Xn}, and let gn be a random vector which,

conditionally on (X1, . . . , Xn), is a Sn+2 centered Gaussian vector whose dispersion matrix

Γn has component (i+ 1, j + 1) equal to 1{i=j}pn(i)− pn(i)pn(j) for all i, j = 0, . . . , Sn + 1.

Now, let ĝn = argming∈Kn‖g − gn‖Sn , the least squares projection of gn on Kn, where Kn

“approaches” K0 as n→∞:

Kn =
{
g = (g(0), . . . , g(Sn + 1)) ∈ RSn+2 : ∆g(k) ≥ 0 for all k ∈ {1, . . . , Sn}

such that ∆p̂n(k) ≤ vn

}

for an appropriate positive sequence (vn)n. Choosing vn = 0 would make Kn to be the

largest possible and hence ‖ĝn−gn‖Sn the smallest possible; this distance would be stochas-
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tically smaller than the actual limit of Tn, yielding a large probability of rejection. In fact,

choosing vn = 0 amounts to estimate the knots of p0 by those of p̂n, which is not desirable

since p̂n has typically more knots than p0. The conditions required on vn are given below.

Theorem 2.1. Let gn, Kn, and ĝn be as above, and take vn > 0 such that vn = o(1) and

vn � n−1/2. (i) Then, ĝn uniquely exists, both ĝn and T̂n := ‖ĝn − gn‖Sn are measurable.

(ii) Under H0, conditionally on X1, . . . , Xn we have T̂n
d−→ T̂0 in probability as n→∞.

By (i) in Theorem 1.1, the conditional convergence T̂n
d−→ T̂0 in probability means that

sup
t∈R

∣∣∣P (T̂n ≤ t|X1, . . . , Xn)− P (T̂0 ≤ t)
∣∣∣ = op(1). (2.1)

In Balabdaoui et al. (2017, Theorem 3.3) it is shown that limn→∞ P (Kn 6= K0) = 0 for any

(vn)n satisfying the conditions of the theorem. The intuition behind is as follows: when k

is a knot of p0 and ∆p̂n(k) ≤ vn, then
√
n(∆p̂n(k)−∆p0(k)) < −

√
nε0 for some ε0 > 0 and

n large enough. Weak convergence of p̂n to p0 implies that this happens with probability

converging to zero. In case k is not a knot; i.e., ∆p0(k) = 0 such that ∆p̂n(k) > vn then

√
n∆p̂n(k) >

√
nvn →∞, which again happens with decreasing probability. We now state

the main result of the section, which is proven is the supplement.

Theorem 2.2. Let T̂n as in Theorem 2.1. Let α ∈ (0, 1) and tα,n the conditional (1− α)-

quantile of T̂n given X1, . . . , Xn. Under H0, lim supn→∞ P
(
Tn > tα,n

)
≤ α.

Hence, the test is asymptotically calibrated. In fact, it can be shown that the asymptotic

Type I error is precisely equal to α for appropriate range of α, i.e. limn→∞ P (Tn > tα,n) = α,

see the supplementary material. An approximative value of tα,n can be computed using

Monte-Carlo simulations as follows. Having observed X1, . . . , Xn, draw independent se-

quences (Z
(b)
i )0≤i≤Sn+1 for b ∈ {1, . . . , B}, of i.i.d. N (0, 1) variables Z

(b)
i , where B > 0
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is the number of Monte-Carlo runs. For all b, compute g
(b)
n = Γ

1/2
n (Z

(b)
0 , . . . , Z

(b)
Sn+1)

T and

ĝ
(b)
n the minimizer of ‖g(b)n − g‖Sn over Kn using Dykstra’s algorithm, see Balabdaoui et al.

(2017). If (sj)j is the sequence of successive knots of p̂n such that ∆p̂n(sj) > vn, then the

algorithm performs iterative projections on the cones {g ∈ RSn+2 : ∆g(k) ≥ 0 for all k ∈

{sj + 1, . . . , sj+1 − 1}}, whose intersection is precisely Kn. See Dykstra (1983) for more

details and a proof of convergence. Then, tα,n can be approximated by the (1−α)-quantile

of the empirical distribution corresponding to ‖g(b)n − ĝ(b)n ‖Sn , with b ∈ {1, . . . , B}.

3 Calibrating under the least favorable hypothesis

We consider below an alternative calibration that is easier to implement than the first one

since it does not involve a sequence (vn). In what follows we denote by Ta the triangular

pmf supported on {0, . . . , a−1} for a given integer a ≥ 1; i.e., Ta(i) = 2(a− i)+[a(a+1)]−1.

Consider K̃0 the set of all vectors g = (g(0), . . . , g(S+1)) ∈ RS+2 such that ∆g(k) ≥ 0 for all

k ∈ {1, . . . , S}. Similarly, let K̃n be the set of all vectors g = (g(0), . . . , g(Sn + 1)) ∈ RSn+2

such that ∆g(k) ≥ 0 for all k ∈ {1, . . . , Sn}. Let g̃0 be the least squares projection of g0

onto K̃0 and g̃n that of gn onto K̃n, with g0 and gn as in Sections 1 and 2. Finally, let t̃α,n

be the conditional (1 − α)-quantile of T̃n := ‖g̃n − gn‖Sn given (X1, . . . , Xn). Recall that

T̂0 = ‖ĝ0 − g0‖S is the weak limit of Tn. We start with the following proposition.

Proposition 3.1. We have ‖g̃0 − g0‖S ≥ T̂0. Moreover under H0, conditionally on

X1, . . . , Xn, T̃n
d−→ ‖g̃0 − g0‖S in probability, as n→∞.

Hence, T̃n is typically larger that Tn, which provides the intuition for the following

theorem. A proof of the theorem is given in the Supplement.

Theorem 3.2. Let α ∈ (0, 1). Under H0, lim supn→∞ P
(
Tn > t̃α,n

)
≤ α with equality if p0

is TS+1 and α < α̃0, with α̃0 = P (‖g̃0 − g0‖S 6= 0) ∈ [1/2, 1).
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The test is asymptotically calibrated since the Type I error does not exceed α. It reaches

precisely α when p0 is triangular, which can be viewed as the least favorable hypothesis

for testing convexity. The test is thus refereed to as the LFH test in the sequel. The

theorem above does not exclude existence of other least favorable hypotheses. Since with

an appropriate sequence (vn), the test of Section 2 has the exact asymptotic Type I error

α, it is typically less conservative and more powerful than the LFH test. The performance

could be however poor with a bad choice of (vn). On the other hand, the LFH test has

the great advantage of not requiring the choice of such a sequence, which makes it easier

to implement.

4 Simulations

To illustrate the theory, we have considered four pmf’s supported on {0, . . . , 5}. It follows

from Theorem 7 in Durot et al. (2013) that any convex pmf on N can be written as∑
k≥1 πkTk where πk ∈ [0, 1],

∑
k≥1 πk = 1 and Tk is the triangular pmf supported on

{0, . . . , k−1} already defined above. Under H0, we considered the triangular pmf p
(1)
0 = T6

and p
(2)
0 =

∑6
k=1 πkTk with π1 = 0, π2 = π3 = 1/6, π4 = 0 and π5 = π6 = 1/3, which

has knots at 2, 3, 5 and 6. Under H1 we considered p
(1)
1 the pmf of a truncated Poisson

on {0, . . . , 5} with rate λ = 1.5 and p
(2)
1 the pmf equal to p

(1)
0 on {2, . . . , 5} such that

(p
(2)
1 (0), p

(2)
1 (1)) = (p

(1)
0 (0) + 0.008, p

(1)
0 (1) − 0.008). To investigate the asymptotic type I

error and power of our tests, we have drawn n ∈ {50, 100, 500} rv’s from the aforementioned

pmf’s. Here, α = 5%, tα,n and t̃α,n were estimated for each drawn sample using B = 1000

i.i.d. copies of gn. The rejection probability was estimated using N = 500 replications

of the whole procedure. For the first convexity test, we considered the sequences vn =√
log(log n)n−1/2 and n−1/4. We also added the sequence vn = 0 to compare our approach
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PMF
n = 50 n = 100 n = 500

0 (log(logn))1/2

n1/2 n−1/4 0 (log(logn))1/2

n1/2 n−1/4 0 (log(logn))1/2

n1/2 n−1/4

p
(1)
0 0.208 0.082 0.08 0.224 0.160 .0.066 0.226 0.106 0.054

p
(2)
0 0.102 0.054 0.036 0.096 0.038 0.012 0.190 0.046 0.020

p
(1)
1 0.618 0.512 0.488 0.836 0.774 0.740 1 1 1

p
(2)
1 0.192 0.108 0.044 0.206 0.120 0.036 0.234 0.102 0.038

Table 1: Type I error for the pmfs p
(1)
0 and p

(2)
0 and power for p

(1)
1 and p

(2)
1 of the convexity

test based on the sequence (vn)n, with vn ∈ {0,
√

log(log n)n−1/2, n−1/4}. The asymptotic
level is 5%.

PMF n = 50 n = 100 n = 500

p
(1)
0 0.040 0.052 0.048

p
(2)
0 0.014 0.014 0.014

p
(1)
1 0.444 0.714 1

p
(2)
1 0.052 0.036 0.042

Table 2: Type I error for the pmfs p
(1)
0 and p

(2)
0 and power for p

(1)
1 and p

(2)
1 of the test based

on the least favorable hypothesis. The asymptotic level is 5%.

with the naive one where no knot extraction is attempted. The results are reported in Tables

1 and 2. Some more results for pmfs with a larger support are given in the Supplement.

The simulations confirm that the first test depends on the choice of vn and that choosing

vn = 0 does not yield a valid test. The choice vn =
√

log(log n)n−1/2 is appropriate for p
(2)
0

whereas vn = n−1/4 is appropriate for p
(1)
0 . Small sequences can have the same effect as

choosing vn = 0. On the contrary, large sequences can yield a conservative test in case the

true pmf has small slope changes so that the estimated conditional quantile is too large to

be exceeded: in such a case it may happen that no knot is extracted up so that the distance

‖ĝn − gn‖Sn is too large. The question is then open as to how to choose such a sequence.

To select among possible candidates of sequences (vn)n, it would be possible to resort to a

cross-validation approach. This is however beyond the main scope of this article.

The second testing approach is, as expected, conservative when the true pmf is not
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triangular. For p
(1)
1 , which strongly violates the convexity constraint, the power is equal

to 1 for n = 500. For p
(2)
1 , which has only a small flaw at 2 with a change of slope

equal to −0.008, the power is comparable to that obtained with the first testing method

and vn ≡ n−1/4. This is somehow expected as it is the largest sequence among the ones

considered, yielding the largest distance ‖ĝn−gn‖Sn . As for any result based on asymptotic

theory, it is difficult to know in advance the range of the sample size which would guarantee

the applicability of this theory, since this would require a theoretical statement on the

convergence of the involved processes at the second order. Our numerical investigation

above shows that n = 500 is enough to obtain the correct type I error for both tests.

5 Proofs

We begin with two preparatory lemmas and then go to the proof of the main results.

Lemma 5.1. Let s ∈ N\{0} and K ⊂ Rs+2 a non-empty closed convex set. Then, for

u = (u(0), . . . , u(s + 1)) ∈ Rs+2, the minimizer of ‖g − u‖s over g ∈ K uniquely exists.

Denoting by Φ(u) the minimizer, the applications Φ and u 7→ ‖u−Φ(u)‖s are measurable.

Proof: It follows from standard results on convex optimization that Φ(u) uniquely exists for

all u, and ‖Φ(u)−Φ(v)‖s ≤ ‖u−v‖s for all u and v in Rs+2. Hence, Φ is continuous, whence

it is measurable. Now, the function u 7→ (u,Φ(u)) is continuous, whence measurable. By

continuity of the norm, this ensures that u 7→ ‖u− Φ(u)‖s is measurable. �

Lemma 5.2. If p0 has support {0, . . . , S}, with g0 = (g0(0), . . . , g0(S + 1)) as in Section

1, (∆g0(1), . . . ,∆g0(S)) is a centered Gaussian vector with invertible dispersion matrix.

Proof: For notational convenience, we assume in the sequel that S ≥ 3. The case

S ≤ 2 can be handled likewise. Let B be the S × (S + 1)-matrix which j-th line has
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components j,j + 1 and j + 2 equal to 1,−2 and 1 respectively while the other compo-

nents are zero, for j = 1, . . . , S − 1, and S-th line has components equal to zero except

the penultimate and the last one, which are equal respectively to 1 and −2. We have

pn(S + 1) = p0(S + 1) = 0 almost surely so that in the limit, g0(S + 1) = 0 almost

surely and (∆g0(1), . . . ,∆g0(S))T = B (g0(0), . . . , g0(S))T . Hence, (∆g0(1), . . . ,∆g0(S)) is

a centered Gaussian vector with dispersion matrix V = BΣ0B
T where Σ0 is the dispersion

matrix of (g0(0), . . . , g0(S))T , i.e. Σ0 is obtained by deleting a line and a column of zeros

in Γ0, the dispersion matrix of g0. It remains to prove that V is invertible.

Let
√
p
0

be the column vector with components
√
p0(0), . . . ,

√
p0(S) and let diag(

√
p
0
)

be the (S + 1) × (S + 1) diagonal matrix with diagonal vector
√
p
0
. Denoting by I the

identity matrix on RS+1, the matrix (in the canonical basis) associated with the orthogonal

projection from RS+1 onto the orthogonal supplement of the linear space generated by
√
p
0

is given by I − Π0 = I − √p
0

√
pT
0
. The linear subspace of RS+1 generated by

√
p
0

has

dimension 1, so its orthogonal supplement in RS+1 has dimension S, whence rank(I −

Π0) = S. Now, Σ0 = diag(
√
p
0
)(I − Π0)diag(

√
p
0
) where diag(

√
p
0
) is invertible, so that

rank(Σ
1/2
0 ) = rank(Σ0) = S. Hence, the kernel of Σ

1/2
0 is a linear subspace of RS+1 of

dimension 1. Let λ be the column vector in RS+1 whose components are all equal to 1.

Using that
∑S

k=0 p0(k) = 1, it is easy to see that Σ0λ is the null vector in RS+1, whence

λTΣ0λ = 0. This means that ‖Σ1/2
0 λ‖2 = 0 with ‖ . ‖ the Euclidean norm in RS+1.

Hence, Σ
1/2
0 λ is the null vector in RS+1, so the kernel of Σ

1/2
0 is the linear subspace of RS+1

generated by λ.

Next, let us determine the kernel of V . Let µ = (µ1, . . . , µS) ∈ RS with V µ = 0. Then,

µTV µ = 0 where V = BΣ0B
T , so that ‖Σ1/2

0 BTµ‖2 = µTBΣ0B
Tµ = 0. Hence, Σ

1/2
0 BTµ =

0. Since the kernel of Σ
1/2
0 is the linear subspace of RS+1 spanned by λ, we conclude that

BTµ = aλ for some a ∈ R. Hence, µ1 = a, µ2 − 2µ1 = a, µk−2 − 2µk−1 + µk = a for all k ∈
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{3, . . . , S} and µS−1− 2µS = a. This is equivalent to 2µk = ak(k+ 1) for all k ∈ {1, . . . , S}

and 2µS = µS−1−a. Combining the first equation with k = S, S−1 to the second equation

yields aS(S + 1) = −a + a(S − 1)S/2. Therefore, a(2 + S2 + 3S)/2 = 0, whence a = 0.

Hence, µ is the null vector in RS and therefore, rank(V ) = S, and hence V is invertible.�

Proof of Theorem 1.1: Let F be the c.d.f. of T̂0 := ‖ĝ0−g0‖S. Note that T̂0 is a properly

defined random variable by the measurability proved in Lemma 5.1. The proof of Theorem

1.1 is inspired by that of Lemma 1.2 in Gaenssler et al. (2007). First, we will prove that

F (t) > 0 for all t ≥ 0. (5.2)

To this end, note that F (0) = P (g0 ∈ K0), hence F (0) ≥ P (δ ∈ A) with A the set

of all vectors (u1, . . . , uS) ∈ RS such that uk ≥ 0 for all k ∈ {1, . . . , S}, and δ =

(∆g0(1), . . . ,∆g0(S)). From Lemma 5.2, the dispersion matrix of the centered Gaussian

vector δ is invertible, so δ has a strictly positive density with respect to the Lebesgue

measure on RS. This implies that the probability that δ belongs to a Borel set whose

Lebesgue measure is not equal to zero, is strictly positive, whence P (δ ∈ A) > 0. Thus,

F (0) ≥ P (δ ∈ A) > 0. Combining this with the monotonicity of F yields (5.2).

Next, we prove that the function log(F ) (which is well defined on [0,∞) thanks to (5.2))

is concave on [0,∞). For u = (u(0), . . . , u(S + 1)) ∈ RS+2, let us write û the minimizer of

‖g − u‖S over g ∈ K0. For all t ∈ [0,∞), letAt be the set of all u = (u(0), . . . , u(S + 1)) ∈

RS+2 such that ‖û−u‖S ≤ t. Note that At is a Borel set in B(RS+2) for all t since, according

to Lemma 5.1, the application u 7→ ‖û−u‖S is measurable. Finally, let µ = P ◦ g−10 be the

distribution of g0 on RS+2 endowed with the Borel σ-algebra B(RS+2). This means that

F (t) = µ(At). Fix λ ∈ (0, 1), t, t′ ∈ [0,∞), and consider an arbitrary x ∈ λAt + (1− λ)At′ .

Then, x takes the form x = λu + (1 − λ)v for some (non necessarily unique) u ∈ At
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and v ∈ At′ . By definition, both û and v̂ belong to the convex set K0 and therefore,

λû+ (1− λ)v̂ ∈ K0. Since x̂ minimizes ‖g − x‖S over g ∈ K0, we conclude that

‖x̂− x‖S ≤ ‖λû+ (1− λ)v̂ − x‖S ≤ ‖λ(û− u) + (1− λ)(v̂ − v)‖S,

using that x = λu+ (1− λ)v. It then follows from the triangle inequality that ‖x̂− x‖S ≤

λ‖û − u‖S + (1 − λ)‖v̂ − v‖S. Since u ∈ At and v ∈ At′ , we have ‖û − u‖S ≤ t and

‖v̂ − v‖S ≤ t′, which implies that ‖x̂− x‖S ≤ λt+ (1− λ)t′. Hence, x ∈ Aλt+(1−λ)t′ and

λAt + (1− λ)At′ ⊂ Aλt+(1−λ)t′ . (5.3)

Now, µ = P ◦ g−10 is a Gaussian probability measure on B(RS+2), so it follows from Lemma

1.1 in Gaenssler et al. (2007) that µ is log-concave in the sense that µ?(λA+ (1− λ)B) ≥

µ(A)λµ(B)1−λ for all λ ∈ (0, 1) and A,B ∈ B(RS+2), with µ? the inner measure per-

taining to µ. Applying this with A = At and B = At′ , and combining with (5.3) yields

µ?(Aλt+(1−λ)t′) ≥ µ(At)
λµ(At′)

1−λ for all t, t′ ∈ [0,∞) and λ ∈ (0, 1). The same inequality

remains true with µ? replaced by µ. Using the equality F (t) = µ(At), t ∈ [0,∞), and tak-

ing the logarithm on both sides of the inequality, we conclude that log(F (λt+ (1−λ)t′)) ≥

λ log(F (t)) + (1 − λ) log(F (t′)) for all λ ∈ (0, 1), and t, t′ ∈ [0,∞). This means that the

function log(F ) is concave on [0,∞). Recalling (5.2), this implies (i).

Now, with probability one, p̂n is supported on {0, . . . , S + 1} for sufficiently large n

(see Balabdaoui et al. (2017, Proposition 3.5)), and pn also is supported on that set by

definition, so Tn =
√
n‖pn − p̂n‖S. It can be proved in the same manner as (Balabdaoui

et al., 2017, Theorem 3.2) that under H0,
√
n (p̂n − p0, pn − p0)

d−→ (ĝ0, g0) as n → ∞ as

a joint weak convergence on {0, . . . , S + 1}, so Tn
d−→ T̂0 as n → ∞. The last assertion

follows from the latter weak convergence together with (i), since Tn ≥ 0 and T̂0 ≥ 0. �
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Proof of Theorem 2.1: Clearly, Kn is a non-empty closed convex subset of RSn+2.

Hence, we consider the specific case of s = Sn and K = Kn in Lemma 5.1. In the notation

of the lemma, we have ĝn := Φ(gn), so that ĝn is uniquely defined. Moreover, since both Φ

and gn are measurable, we conclude that ĝn = Φ(gn) is measurable. Likewise, ‖gn− ĝn‖Sn is

measurable. This proves the fist two assertions in Theorem 2.1. Next, similar to Balabdaoui

et al. (2017, Theorem 3.3), the following joint weak convergence on {0, . . . , S + 1} can be

proved under H0: conditionally on X1, . . . , Xn, (ĝn, gn)
d−→ (ĝ0, g0) in probability as n →

∞. The result follows, since Sn = S with provability that tends to one. �

Proof of Proposition 3.1: The first assertion follows from the inclusion K̃0 ⊂ K0. Next,

similar to Balabdaoui et al. (2017, Theorem 3.3), the following joint weak convergence on

{0, . . . , S + 1} can be proved under H0: conditionally on X1, . . . , Xn, (g̃n, gn)
d−→ (g̃0, g0)

in probability as n→∞. The second assertion follows since limn→∞ P (Sn = S) = 1. �
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