
HAL Id: hal-01693817
https://hal.science/hal-01693817v1

Submitted on 1 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

pke: an open source python-based keyphrase extraction
toolkit

Florian Boudin

To cite this version:
Florian Boudin. pke: an open source python-based keyphrase extraction toolkit. COLING, Dec 2016,
Osaka, Japan. pp.69 - 73. �hal-01693817�

https://hal.science/hal-01693817v1
https://hal.archives-ouvertes.fr


Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: System Demonstrations,
pages 69–73, Osaka, Japan, December 11-17 2016.

pke: an open source python-based keyphrase extraction toolkit

Florian Boudin
LINA - UMR CNRS 6241, Université de Nantes, France

florian.boudin@univ-nantes.fr

Abstract

We describe pke, an open source python-based keyphrase extraction toolkit. It provides an
end-to-end keyphrase extraction pipeline in which each component can be easily modified or
extented to develop new approaches. pke also allows for easy benchmarking of state-of-the-art
keyphrase extraction approaches, and ships with supervised models trained on the SemEval-2010
dataset (Kim et al., 2010).

1 Introduction

Keyphrase extraction is the task of identifying the words and phrases that represent the main topics of a
document. Keyphrases have been shown to be useful for a variety of natural language processing appli-
cations such as document indexing (Gutwin et al., 1999), text categorization (Hulth and Megyesi, 2006)
or summarization (Qazvinian et al., 2010). Recent years have witnessed increased interest in keyphrase
extraction (Gollapalli et al., 2015), and several benchmark datasets have become available in various
domains and languages (Hasan and Ng, 2014). Yet, there are few tools available for automatic keyphrase
extraction, and none of them offer implementations of current state-of-the-art approaches nor the suit-
ability for rapid prototyping like the python-based Natural Language Toolkit (nltk) (Bird et al., 2009)
does. In this demonstration, we describe an open source python-based keyphrase extraction toolkit,
called pke, which 1) provides implementations of existing supervised and unsupervised keyphrase ex-
traction approaches; 2) can be easily extended to develop new approaches; 3) ships with a collection of
already trained models, which are ready for use. The pke toolkit is open source under the GNU GPL
licence and available at https://github.com/boudinfl/pke

2 Architecture

Text

Document
reader

Candidate
selection

Candidate
weighting

Feature
extraction

Candidate
classification

N-best
selection

Keyphrases

self.sentences self.candidates self.instances self.weights

Unsupervised

Supervised

Instantiated
data structures

Figure 1: Overall architecture of pke.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

69



The overall architecture of pke is depicted in Figure 1. Extracting keyphrases from an input document
involves three steps. First, keyphrase candidates (i.e. words and phrases that are eligible to be keyphrases)
are selected from the content of the document. Second, candidates are either ranked using a candidate
weighting function (unsupervised approaches), or classified as keyphrase or not using a set of extracted
features (supervised approaches). Third, the top-N highest weighted candidates, or those classified as
keyphrase with the highest confidence scores, are selected as keyphrases.

Document reader: three input formats are supported: raw text, preprocessed text1 and Stanford
CoreNLP XML (Manning et al., 2014). When raw text is provided, preprocessing (i.e. tokenization,
sentence splitting and POS-tagging) is carried out using nltk. Preprocessed text files are expected to
use POS tags from the Penn Treebank tagset. Document logical structure information2, used as features
in some supervised approaches, can by specified by incorporating attributes into the sentence elements
of the CoreNLP XML format.

Implemented approaches: The pke toolkit currently implements the following approaches, each con-
sisting of a unique combination of candidate selection and candidate ranking methods.

U
ns

up
er

vi
se

d

TfIdf: we re-implemented the TF×IDF n-gram based baseline in (Kim et al., 2010). By de-
fault, it uses 1, 2, 3-grams as keyphrase candidates and filter out those shorter than 3 characters,
containing words made of only punctuation marks or one character long3.

SingleRank (Wan and Xiao, 2008): keyphrase candidates are the sequences of adjacent
nouns and adjectives. Candidates are ranked by the sum of their words scores, computed using
TextRank (Mihalcea and Tarau, 2004) on a word-based graph representation of the document.

TopicRank (Bougouin et al., 2013): this model improves SingleRank by grouping lexi-
cally similar candidates into topics and directly ranking topics. Keyphrases are produced by
extracting the first occurring candidate of the highest ranked topics.

KP-Miner (El-Beltagy and Rafea, 2010): keyphrase candidates are sequences of words that do
not contain punctuation marks or stopwords4. Candidates that appear less than three times or that
first occur beyond a certain position are removed. Candidates are then weighted using a modified
TF×IDF formula that account for document length.

Su
pe

rv
is

ed

Kea (Witten et al., 1999): keyphrase candidates are 1, 2, 3-grams that do not begin or end with
a stopword. Keyphrases are selected using a naı̈ve bayes classifier with two features: TF×IDF
and the relative position of first occurrence.

WINGNUS (Nguyen and Luong, 2010): keyphrase candidates are simplex nouns and noun
phrases detected using a set of POS filtering rules. Keyphrases are then selected using a naı̈ve
bayes classifier with a large set of features including document logical structure information.

Already trained models: to promote benchmarking of current state-of-the-art keyphrase extraction ap-
proaches on new datasets, we make available supervised models for Kea and WINGNUS, as well as
document frequency counts, trained on the training part of the SemEval-2010 dataset (Kim et al., 2010).

Non English languages: while the default language in pke is English, extracting keyphrases from doc-
uments in other languages is easily achieved by inputting already preprocessed documents, and setting
the language parameter to the desired language. The only language dependent resources used in pke
are the stoplist and the stemming algorithm from nltk that are available in 11 languages5. Examples of
use for other languages are provided in the documentation.

1whitespace-separated POS-tagged tokens, one sentence per line.
2We use the classification categories proposed by Luong et al. (2012).
3This filtering process is also applied to the other models.
4We use the stoplist in nltk, http://www.nltk.org
5http://www.nltk.org/_modules/nltk/corpus.html

70



3 Elementary Usage

Python Library: pke can be imported as a Python module, which is its primary use. Figure 2 gives a
complete example of use, showing the typical three-step process involved in keyphrase extraction. Par-
ticular attention was paid to modularity: each method instantiates a different data structure (see Figure 1),
thus making it easier to develop new approaches by modifying the behaviour of only some components.
Modifying the example to apply another approach is quite straightforward: replace TopicRank at line
4 with another model (e.g. TfIdf).

1 import pke
2

3 # initialize TopicRank
4 extr = pke.TopicRank(input_file='/path/to/input')
5

6 # load the content of the document
7 extr.read_document(format='raw')
8

9 # step 1: candidate selection
10 extr.candidate_selection()
11

12 # step 2: candidate weighting
13 extr.candidate_weighting()
14

15 # step 3: N-best selection
16 keyphrases = extr.get_n_best(n=10)

Figure 2: Example of keyphrase extraction using TopicRank with pke.

Figure 3 illustrates how to train a new supervised model in pke. The training data consists of a set of
documents along with a reference file containing annotated keyphrases in the SemEval-2010 format6.
Candidate classification is performed using the implementations available in scikit-learn 7.

1 import pke
2

3 # load document frequency counts (DF) as a dictionary
4 df_counts = pke.load_document_frequency_file('/path/to/file')
5

6 # train new Kea model
7 pke.train_supervised_model(input_dir='/path/to/input/directory/',
8 reference_file='/path/to/reference/file',
9 model_file='/path/to/model/file',

10 df=df_counts,
11 model=pke.Kea())

Figure 3: Training a new Kea supervised model with pke.

Command Line: the pke toolkit also includes a command line tool that allows users to perform
keyphrase extraction without any knowledge of the Python programming language. An example of
use is given below.

python cmd_pke.py -i /path/to/input -f raw -o /path/to/output -a TopicRank

Here, unsupervised keyphrase extraction using TopicRank is performed on a raw text input file, and the
top ranked keyphrase candidates are outputted into a file.

4 Benchmarking

We evaluate the performance of our re-implementations using the SemEval-2010 benchmark
dataset (Kim et al., 2010). This dataset is composed of 244 scientific articles (144 in training and 100

6http://docs.google.com/Doc?id=ddshp584_46gqkkjng4
7http://scikit-learn.org

71



for test) collected from the ACM Digital Library (conference and workshop papers). Document logi-
cal structure information, required to compute features in the WINGNUS approach, is annotated with
ParsCit (Kan et al., 2010)8. The Stanford CoreNLP pipeline9 (tokenization, sentence splitting and POS-
tagging) is then applied to the documents from which irrelevant pieces of text (e.g. tables, equations,
footnotes) were filtered out10.

We follow the evaluation procedure used in the SemEval-2010 competition and evaluate the perfor-
mance of each implemented approach in terms of precision (P), recall (R) and f-measure (F) at the top N
keyphrases. We use the set of combined author- and reader-assigned keyphrases as reference keyphrases.
Extracted and reference keyphrases are stemmed to reduce the number of mismatches. Detailed results
for each approach are presented in Table 1.

Approach P R F

TfIdf 20.0 14.1 16.4
TopicRank 15.6 10.8 12.6
SingleRank 2.2 1.5 1.8
KP-Miner 24.1 17.0 19.8
Kea 23.5 16.6 19.3
WINGNUS 24.7 17.3 20.2

Table 1: Performance of each approach computed at the top 10 extracted keyphrases. Results are ex-
pressed as a percentage of precision (P), recall (R) and f-measure (F).

5 Related Work

Most of the tools available for automatic keyphrase extraction only implement one approach, and are
often outdated with respect to the current state-of-the-art. These tools also rely on in-house text pre-
processing and candidate selection/filtering pipelines, which makes it difficult to compare results across
several approaches. One notable exception to this is the DKPro Keyphrases Java framework (Erbs et al.,
2014), which provides a UIMA-based workbench for developing and evaluating new keyphrase extrac-
tion approaches. However, this framework requires users to learn UIMA before they can get started, and
does not provide supervised approaches that are known to perform better (Hasan and Ng, 2014).

6 Conclusion

We presented pke, an open source python-based keyphrase extraction toolkit that provides an end-to-
end pipeline in which each component can be easily modified to develop new models. pke includes
implementations of state-of-the-art supervised and unsupervised approaches, and comes with a collection
of already trained models. It is our hope that this toolkit will help researchers to compare, build upon
and devise keyphrase extraction approaches.

Acknowledgments

This work was partially supported by the TALIAS project (grant of CNRS PEPS INS2I 2016, https:
//boudinfl.github.io/talias/). We thank the anonymous reviewers for their comments.

References
[Bird et al.2009] Steven Bird, Ewan Klein, and Edward Loper. 2009. Natural language processing with Python.

O’Reilly.

8We use ParsCit v110505.
9Use use Stanford CoreNLP v3.6.0.

10Further details about preprocessing can be found at https://github.com/boudinfl/semeval-2010-pre

72



[Bougouin et al.2013] Adrien Bougouin, Florian Boudin, and Béatrice Daille. 2013. Topicrank: Graph-based topic
ranking for keyphrase extraction. In Proceedings of IJCNLP, pages 543–551.

[El-Beltagy and Rafea2010] Samhaa R. El-Beltagy and Ahmed Rafea. 2010. Kp-miner: Participation in semeval-
2. In Proceedings of SemEval, pages 190–193.

[Erbs et al.2014] Nicolai Erbs, Pedro Bispo Santos, Iryna Gurevych, and Torsten Zesch. 2014. Dkpro keyphrases:
Flexible and reusable keyphrase extraction experiments. In Proceedings of ACL, pages 31–36.

[Gollapalli et al.2015] Sujatha Das Gollapalli, Cornelia Caragea, Xiaoli Li, and C. Lee Giles, editors. 2015. Pro-
ceedings of the ACL 2015 Workshop on Novel Computational Approaches to Keyphrase Extraction.

[Gutwin et al.1999] Carl Gutwin, Gordon Paynter, Ian Witten, Craig Nevill Manning, and Eibe Frank. 1999. Im-
proving Browsing in Digital Libraries with Keyphrase Indexes. Decision Support Systems, 27(1):81–104.

[Hasan and Ng2014] Kazi Saidul Hasan and Vincent Ng. 2014. Automatic keyphrase extraction: A survey of the
state of the art. In Proceedings of ACL, pages 1262–1273.

[Hulth and Megyesi2006] Anette Hulth and Beáta B. Megyesi. 2006. A study on automatically extracted keywords
in text categorization. In Proceedings of COLING/ACL, pages 537–544.

[Kan et al.2010] Min-Yen Kan, Minh-Thang Luong, and Thuy Dung Nguyen. 2010. Logical structure recovery in
scholarly articles with rich document features. Int. J. Digit. Library Syst., 1(4):1–23.

[Kim et al.2010] Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Timothy Baldwin. 2010. Semeval-2010 task
5 : Automatic keyphrase extraction from scientific articles. In Proceedings of SemEval, pages 21–26.

[Luong et al.2012] Minh-Thang Luong, Thuy Dung Nguyen, and Min-Yen Kan. 2012. Logical structure recovery
in scholarly articles with rich document features. Multimedia Storage and Retrieval Innovations for Digital
Library Systems, 270.

[Manning et al.2014] Christopher Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven Bethard, and David
McClosky. 2014. The stanford corenlp natural language processing toolkit. In Proceedings of ACL, pages
55–60.

[Mihalcea and Tarau2004] Rada Mihalcea and Paul Tarau. 2004. Textrank: Bringing order into texts. In Proceed-
ings of EMNLP, pages 404–411.

[Nguyen and Luong2010] Thuy Dung Nguyen and Minh-Thang Luong. 2010. Wingnus: Keyphrase extraction
utilizing document logical structure. In Proceedings of SemEval, pages 166–169.

[Qazvinian et al.2010] Vahed Qazvinian, Dragomir R. Radev, and Arzucan Ozgur. 2010. Citation summarization
through keyphrase extraction. In Proceedings of COLING, pages 895–903.

[Wan and Xiao2008] Xiaojun Wan and Jianguo Xiao. 2008. Collabrank: Towards a collaborative approach to
single-document keyphrase extraction. In Proceedings of COLING, pages 969–976.

[Witten et al.1999] Ian H. Witten, Gordon W. Paynter, Eibe Frank, Carl Gutwin, and Craig G. Nevill-Manning.
1999. Kea: Practical automatic keyphrase extraction. In Proceedings of the Fourth ACM Conference on Digital
Libraries, pages 254–255. ACM.

73


