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Abstract.1

The problem on internal waves in a weakly stratified two-layered fluid is studied semi-analytically. We discuss the 2.5-layer2

fluid flows with exponential stratification of both layers. The long-wave model describing travelling waves is constructed by3

means of scaling procedure with a small Boussinesq parameter. It is demonstrated that solitary wave regimes can be affected4

by the Kelvin — Helmholtz instability arising due to interfacial velocity shear in upstream flow.5

1 Introduction6

In this paper, we consider an analytical model of internal solitary waves in a two-layer fluid with the density continuously7

increasing with depth in both layers. This model is a development of non-linear two-layer models previously suggested8

by Ovsyannikov (1985), Miyata (1985) and Choi & Camassa (1999), as well as the latest 2.5-layer models considered by9

Voronovich (2003), Makarenko and Maltseva (2008, 2009a,b). Two-layer approximation is a standard model of sharp pycno-10

cline in a stratified fluid with constant densities in each layer, but discontinuous at the interface. Correspondingly, the 2.5-layer11

model takes into account a slight density gradient in stratified layer which is comparable with the density jump at the interface.12

In all these cases, internal solitary waves can be described in closed form by the solutions resulting from the quadrature13

(
dη

dx

)2

= f(η) (1)14

for stationary wave elevation η(x). The simplest version of non-linearity f appears in a two-layer system, hence, it is the rational15

function f(η) = P (η)/Q(η) in this case when P is a fourth degree polynomial, and Q depends linearly on η. Equation (1)16

also appears as a travelling wave equation for nonlinear evolution systems being similar to single-layer dispersive Green –17

Naghdi model (see Choi & Camassa, 1999). These non-linear dispersive equations can be obtained by means of long-wave18

perturbation technique as well as by Whitham’s variational method. Several authors noted that solitary wave solutions of such19

approximate models are in good agreement with the numerical solutions of fully nonlinear Euler equations for a perfect two-20

layer fluid. In this context, Camassa & Tiron (2011) also compared numerical travelling wave-solutions, supported by smooth21
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stratification, with the known explicit solitary-wave solutions in order to optimize a two-layer model of the Euler system with1

smooth stratification.2

We apply the method of derivation involving asymptotic analysis of the non-linear Dubreil-Jacotin — Long equation that3

results from fully nonlinear Euler equations of stratified fluid. Long-wave scaling procedure uses a small Boussinesq parameter4

which characterizes slightly increasing density in the layers and a small density jump at their interface. This method combines5

the approaches applied formerly to a pure two-fluid system with perturbation technique discussed for the first time by Long6

(1965) and developed by Benney and Ko (1978) for a continuous stratification. Parametric range of solitary wave is considered7

in the framework of the constructed mathematical model. It is demonstrated that these wave regimes can approach the paramet-8

ric domain of the Kelvin — Helmholtz instability. The stability of solitary travelling-wave solutions of the Euler equations for9

continuously stratified, near two-layer fluids was studied numerically and analytically by Almgren, Camassa, & Tiron (2012).10

They demonstrated that the wave-induced shear can locally reach unstable configurations and give rise to local convective11

instability. This is in good qualitative agreement with the laboratory experiments performed by Grue et al. (2000). It seems that12

such a marginal stability of long internal waves could explain the formation mechanism of a very long billow trains in abyssal13

flows observed by Van Haren et al. (2014).14

2 Basic Equations15

We consider a 2D motion of inviscid two-layer fluid which is weakly stratified due to gravity in both layers. The fully nonlinear16

Euler equations describing the flow are17

ρ(ut +uux + vuy)+ px = 0, (2)18

ρ(vt+uvx + vvy)+ py =−ρg, (3)19

ρt +uρx + vρy = 0, (4)20

ux + vy = 0, (5)21

where ρ is the fluid density, (u,v) is the fluid velocity, p is the pressure and g is the gravity acceleration. We assume that the22

flow domain is bounded by the flat bottom y =−h1 and the rigid lid y = h2 (see Fig. 1), with the boundary condition23

v = 0
∣∣
y=−h1, y=h2

. (6)24

25

The layers are separated by the interface y = η(x,t) with the equilibrium level at y = 0. Non-linear kinematic and dynamic26

boundary conditions at this interface are27

ηt +uηx = v
∣∣
y=η

, [p ] = 0
∣∣
y=η

(7)28

2
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Figure 1. Scheme of the flow

where the square brackets denote the discontinuity jump at the interface between the layers. Non-disturbed parallel flow has1

no vertical velocity and elevation (i.e. v = 0, η = 0) but the horizontal velocity u= u0(y) may be piece-wise constant,2

u0(y) =





u1 (−h1 < y < 0),

u2 (0< y < h2).
(8)3

In this stationary case, the fluid density ρ= ρ0(y) and pressure p= p0(y) should be coupled by the hydrostatic equation4

dp0/dy = gρ0. We consider the density profile depending exponentially on height,5

ρ0(y) =





ρ1 exp(−N2
1 y/g) (−h1 < y < 0),

ρ2 exp(−N2
2 y/g) (0< y < h2),

(9)6

where Nj = const is the Brunt — Väisälä frequency in the j-th layer, and constant densities ρ1 and ρ2 are related as ρ2 < ρ1.7

The special case Nj = 0 (j = 1,2) gives a familiar two-fluid system with piece-wise constant density ρ= ρj in the j-th layer.8

Further we consider a steady non-uniform flow, hence we have ηt = 0 and ut = vt = ρt = 0 in Eqs. (2) – (4). We introduce9

the stream function ψ by standard formulae u= ψy, v =−ψx, hence the mass conservation implies the dependence ρ= ρ(ψ),10

and pressure p can be found from the Bernoulli equation11

1
2
|∇ψ|2 +

1
ρ(ψ)

p+ gy = b(ψ). (10)12

Seeking for a solitary-wave solutions, we require that the upstream velocity of the fluid (u,v) tends to (uj ,0) as x→−∞. In13

this case, boundary conditions (6) transform to the conditions for the stream function as14

ψ =−u1h1

∣∣
y=−h1

, ψ = 0
∣∣
y=η

, ψ = u2h2

∣∣
y=h2

. (11)15

It is known (Yih, 1980) that system (2) – (5) can be reduced in a stationary case to the non-linear Dubreil-Jacotin — Long16

(DJL) equation for the stream function17

ρ(ψ)∇2ψ+ ρ′(ψ)
(
gy+

1
2
|∇ψ|2

)
=H ′(ψ). (12)18

Here, the functionH(ψ) = ρ(ψ)b(ψ) involves the Bernoulli function b(ψ) and the density function ρ(ψ), so thatH is specified19

by the upstream condition. More exactly, the density function is determined by the relation ρ(ψ) = ρ0(ψ/uj) in the j-th layer,20

3
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and the Bernoulli function b(ψ) is defined by the formula1

b=





1
2
u2

1 + g
ψ

u1
+
g2

N2
1

(
1− e

N2
1ψ
gu1

)
(−h1 < y < η(x)),

1
2
u2

2 + g
ψ

u2
+
g2

N2
2

(
1− e

N2
2ψ
gu2

)
(η(x)< y < h2).

2

As a consequence, we can rewrite the DJL equation (12) as follows:3

∇2ψ =
N2
j

guj

{
g

(
y− ψ

uj

)
+

1
2
(
|∇ψ|2−u2

j

)}
, (13)4

where j = 1 is related to the lower layer, and j = 2 to the upper layer. Further, in accordance with relations (7) and (10), the5

continuity of pressure p provides non-linear boundary condition for stream function ψ6

[ρ(ψ)(|∇ψ|2 + 2gy− 2b(ψ)] = 0
∣∣
y=η

. (14)7

Using the explicit form of functions ρ(ψ) and b(ψ), condition (14) can be also rewritten in detail as follows:8

2g(ρ1− ρ2)η =9

= ρ2

(
|∇ψ|2−u2

2

)∣∣
y=η(x)+0

− ρ1(|∇ψ|2−u2
1)
∣∣
y=η(x)−0

.

We reformulate this boundary condition in view of conservation of the total horizontal momentum in a steady two-layer flow,10

which has integral formulation11

h2∫

−h1

(p+ ρu2) dy = C12

where constant C is determined by the upstream condition. Excluding pressure p from here using the Bernoulli equation (10)13

leads to the integral relation14

ρ1

η(x)∫

−h1

e−
N2

1ψ
gu1 Ψ1 dy+ ρ2

h2∫

η(x)

e−
N2

2ψ
gu2 Ψ2 dy = C (15)15

where the integrand functions Ψj are16

Ψj = ψ2
y −ψ2

x +u2
j +2g

(
ψ

uj
− y
)
− 2g2

N2
j

(
e
N2
j ψ

guj − 1

)
,17

and constant C depends on the parameters of the upstream flow as follows:18

C = 2ρ1g

[(
e
N2

1h1
g − 1

)(
u2

1

N2
1

+
g2

N4
1

)
− gh1

N2
1

]
+19

+2ρ2g

[(
1− e−

N2
2h2
g

)(
u2

2

N2
2

+
g2

N4
2

)
− gh2

N2
2

]
.

It is important here that the integral relation (15) is equivalent to the boundary condition (14) which is rather simple. This20

equivalence can be checked immediately by differentiation the relation (15) with respect to the variable x, so the integrals can21

be evaluated explicitly due to Eq.(13). Equation (15) will be used later instead of (14) by the construction model differential22

equation for the function η(x) describing strongly nonlinear waves.23

4
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3 Non-Dimensional Formulation1

Now we introduce scaled independent variables x̄, ȳ and scaled unknown functions η̄, ψ̄ in order to reformulate the basic2

equations in the dimensionless form. Namely, the fixed ratio h1/π is used as an appropriate length scale for x, y, η, and3

normalized volume discharges ujhj/π serve as the units for the stream function; thus, we have4

(x,y,η) =
h1

π
(x̄, ȳ, η̄), ψ =

ujhj
π

ψ̄5

separately in the lower layer (j = 1) or in the upper layer (j = 2). The number π is only introduced here due to the specific6

form of trigonometric modal functions which are typical for the exponential density (9). Scaling procedure with this density7

profile uses the Boussinesq parameters σ1, σ2 and the Atwood number µ defined by the formulae8

σj =
N2
j hj

πg
(j = 1,2), µ=

ρ1− ρ2

ρ2
. (16)9

Here, constants σj characterize the slope of the density profile in continuously stratified layers, and parameter µ determines10

the density jump at interface.11

Following Turner (1973), we introduce densimetric (or internal) Froude number12

Fj =
uj√
gjhj

(j = 1,2)13

which presents scaled fluid velocity uj in the j-th layer, defined with reduced gravity acceleration gj = (ρ1− ρ2)g/ρj . In14

addition to the Froude numbers Fj , it is also convenient to use the pair of the Long’s numbers λj given by the formula15

λj =
Njhj
πuj

(j = 1,2).16

The Long’s numbers λj are coupled with the Boussinesq parameters σ1, σ2, the Atwood number µ and the Froude numbers Fj17

by the relations18

λ2
1 =

πσ1(1 +µ)
µF 2

1

, λ2
2 =

πσ2

µF 2
2

. (17)19

Finally, we introduce the ratio of undisturbed thicknesses of the layers r = h1/h2. By that notation, we locate the bottom20

as ȳ =−π, and relation ȳ = π/r defines the rigid lid. Thus, we obtain the equations for scaled stream function ψ̄ and non-21

dimensional wave elevation η̄ as follows (bar is omitted throughout what follows):22

∇2ψ+λ2
1 (ψ− y) =

1
2
σ1

(
|∇ψ|2− 1

)
(18)23

in the lower layer −π < y < η(x), and24

∇2ψ+λ2
2 r

2(ψ− ry) =
1
2
σ2

(
|∇ψ|2− r2

)
(19)25

in the upper layer η(x)< y < π/r. Kinematic boundary conditions (11) can be rewritten now as follows:26

ψ(x,−π) =−π, ψ(x,η(x)) = 0, ψ(x,π/r) = π. (20)27

5
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Correspondingly, Eq. (14) providing continuity of pressure at interface y = η(x) leads to nonlinear boundary condition1

2η = F 2
2 (|∇ψ|2− r2)

∣∣
y=η+0

−F 2
1 (|∇ψ|2− 1)

∣∣
y=η−0

, (21)2

and the dimensionless version of integral relation (15) takes the form3

η∫

−π

e−σ1ψΨ1 dy+

π/r∫

η

e−σ2ψΨ2 dy = C (22)4

where is denoted5

Ψ1 =
µF 2

1

2

(
ψ2
y −ψ2

x +1
)

+
1 +µ

π

(
ψ− y− eσ1ψ − 1

σ1

)
,6

7

Ψ2 =
µF 2

2

2r3

(
ψ2
y −ψ2

x + r2
)

+
1
πr

(
ψ− ry− eσ2ψ − 1

σ2

)
.8

Constant9

C = πµ

(
F 2

1 +
F 2

2

r2

)
+10

+(1+µ)
eσ1π − 1−σ1π
π(λ2

1 +σ2
1)

+
1−σ2π− e−σ2π

πr2(λ2
2 +σ2

2)

is chosen here so that the horizontal upstream flow given by the solution11

η = 0, ψ0(y) =





y (−π < y < 0),

ry (0< y < π/r)
(23)12

satisfies momentum relation (22).13

The model of fully nonlinear travelling waves in a two-layer irrotational flows, with the interface y = η(x) between the fluids14

with constant densities ρ2 in the upper layer and ρ1 > ρ2 in the lower layer, can be specified as follows. In this limit case, at15

least formally, the Boussinesq parameters σj and Long’s numbers λj vanish: σ1 = σ2 = λ1 = λ2 = 0. Therefore, we obtain the16

Laplace equation17

∇2ψ = 0 (24)18

instead of Eqs. (18)–(19), but all the boundary conditions (20) and (21) still remain unchanged.19

4 Spectrum of Harmonic Waves20

In many cases, parametric range of solitary waves can be determined a priori as the domain being supercritical with respect to21

the spectrum of small–amplitude sinusoidal waves. It is helpful while the critical phase speed can be simply defined from the22

6
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dispersion relation of infinitesimal waves. In our case, linearizing of Eqs. (18)–(21) for the upstream solution (23) leads to the1

dispersion relation2

∆(k;F1,F2) = 0 (25)3

for stationary harmonic wave-packets4

η(x) = aeikx, ψ = ψ0(y)+W (y)eikx.5

Here k is the non-dimensional wave-number, a is the amplitude of interfacial wave, and W (y) is the modal eigenfunction6

which describes deformation of streamlines within the fluid layers. For the given Long’s numbers λ1, λ2 and the Boussinesq7

parameters σ1, σ2, we also introduce non-dimensional values8

κj =

√
|λ2
j − k2

j −
1
4
π2σ2

j | (j = 1,2), (26)9

where k1 = rk and k2 = k are dimensionless wave-numbers specified for each layer. According to these notations, dispersion10

function ∆(k;F1,F2) in (25) has the form11

∆ = F 2
1

(
κ1Cot1κ1 +

πσ1

2

)
+F 2

2

(
κ2Cot2κ2−

πσ2

2

)
− 112

where functions Cotj (j = 1,2) are denoted as follows:13

Cotj κj =





cotκj (λ2
j > k2

j +
1
4
π2σ2

j )

cothκj (λ2
j < k2

j +
1
4
π2σ2

j ).
14

In fact, function ∆ takes such a combined form since modal function W (y) depends on y trigonometrically or hyperbolically,15

if the radicand term λ2
j − k2

j − 1
4π

2σ2
j in (26) is positive or negative. Explicit formulae for these modal eigenfunctions W (y)16

are given in Appendix A.17

Spectrum of stationary harmonic waves, defined on the (F1,F2)-plane, is formed by the Froude points (F1,F2) so that18

dispersion function ∆(k;F1,F2), which is even in k, has at least one pair of real roots ±k. Wave modes differ by the number19

of these pairs, and this number can change only by passing of the root across the value k = 0. Therefore, the modal bounds20

should satisfy the equation ∆(0;F1,F2) = 0; these bounds are defined by separate branches of the curve21

F 2
1

{√
λ2

1−
(πσ1

2

)2

cot

√
λ2

1−
(πσ1

2

)2

− πσ1

2

}
+ (27)22

+F 2
2

{√
λ2

2−
(πσ2

2

)2

cot

√
λ2

2−
(πσ2

2

)2

+
πσ2

2

}
= 1

where parameters λj should be coupled with the Froude numbers Fj using the formulae (17).23

We emphasize that parameters σj characterize the slope of density profile in continuously stratified layers, and µ defines the24

density jump at the interface. As usual, all these parameters are small in the case of low stratification. However, the interfacial25

7
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Figure 2. Spectrum of linear waves (colored modes 1-3) (left) and fragment of parametric domain of solitary waves (right).

mode dominates over the modes of internal waves in stratified layers when σj ≪ µ is valid. In this limit case, linearized1

boundary conditions (20)–(21), considered together with the linear Laplace equation (24), lead to the standard dispersion2

relation of two-layer fluid3

F 2
1 rk cothrk+F 2

2 k cothk = 1. (28)4

This relation determines only a single pair of real wave-numbers of the interfacial mode, so the spectral domain of a perfect5

2-layer system occupies the unit disk6

F 2
1 +F 2

2 6 1. (29)7

The 2.5-layer model starts with the hypotheses that the Boussinesq parameters σ1, σ2 and the Atwood number µ are of the8

same order, so we can use a single small parameter σ by setting9

σ = σ1 = σ2 = µ. (30)10

The limit passage σ→ 0 is singular because the Long’s numbers λj involve the ratios σj/µ in formulae (17). However,11

condition (30) allows us to simplify the spectral portrait, hence modal curve (27) defining the critical wave speeds takes the12

form13

√
πF1 cot

√
π

F1
+
√
πF2 cot

√
π

F2
= 1. (31)14

8
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Figure 2 demonstrates the parts of the spectrum defined by curve (31) for the dominating modes. The domain covered only1

by the first mode is marked with the blue color. Correspondingly, the embedded domain of the second mode is highlighted2

with the yellow, and the third mode is marked with the pink color. It is important that this spectrum differs essentially from the3

ordinary 2-layer spectrum (29), even the flow is characterized with a pair of the Froude numbers F1, F2, defined by the same4

manner. We specially note that the 2.5-layer spectrum extents infinitely on the spectral plane by involving unbounded Froude5

numbers Fj .6

5 The Non-Linear Long-Wave Model7

The derivation procedure of non-linear long-wave 2.5-layer model should involve, in accordance with hypothesis (30), the slow8

horizontal variable ξ =
√
σx, as it was demonstrated by Benney & Ko (1978) in the case of slight linear stratification. Scaling9

with the parameter σ gives the equation10

σψξξ +ψyy +λ2
1 (ψ− y) =

1
2
σ
(
σψ2

ξ +ψ2
y − 1

)
(32)11

in the lower layer −π < y < η(ξ), and12

σψξξ +ψyy +λ2
2r

2 (ψ− y) =
1
2
σ
(
σψ2

ξ +ψ2
y − r2

)
(33)13

in the upper layer η(ξ)< y < π/r. Kinematic boundary conditions (11) can be rewritten now as follows:14

ψ(ξ,−π) =−π, ψ(ξ,η(ξ)) = 0, ψ(ξ,π/r) = π. (34)15

We find that stream function ψ is expanded in a power series with respect to σ as16

ψ = ψ(0)(ξ,y)+σψ(1)(ξ,y)+ ... (35)17

where the leading-order term ψ(0) defines the hydrostatic mode, and the coefficient ψ(1) provides the correction due to non-18

linear dispersion. All these coefficients ψ(k) can be uniquely determined from equations (32) and (33) (with fixed Long’s19

numbers λ1 and λ2) under kinematic boundary condition (34). Thus, we obtain20

ψ(0) = y− η sinα1(y)
sinα1(η)

(−π < y < η),21

and22

ψ(0) = ry− rη sinα2(y)
sinα2(η)

(η < y < π/r),23

where24

α1(y) = λ1(π+ y), α2(y) = λ2(π− ry). (36)25

The final form of dispersive term ψ(1) is much more complicated, therefore this coefficient is given in Appendix A.26

9
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Now we substitute power expansion (35) for function ψ into the scaled version of integral relation (22) and truncate the1

terms with the powers higher than the first power of σ. By that, equation (22) reduces to the first-order ordinary differential2

equation for the wave elevation η(x) and is written as3

(
dη

dx

)2

= η2 D(η;F1,F2)
Q(η;F1,F2)

. (37)4

Here function D is given by the formula5

D(η;F1,F2) =6

7 =
√
πF1 cotα1(η)+

√
πF2 cotα2(η)+

1
3

(1− r)η− 1

where α1 and α2 should be taken as8

α1(η) =
π+ η√
πF1

, α2(η) =
π− rη√
πF2

(38)9

since we have at the leading order in σ the relations λj = 1/
√
πFj (j = 1,2) obtained under condition (30). Denominator Q in10

(37) has a complicated form, therefore this function is given in Appendix C. Solitary-wave solutions of Eq. (37) are given in11

the implicit form by the formula12

x=±
η∫

a

√
Q(s;F1,F2)
D(s;F1,F2)

ds

s
(39)13

where parameter a determines non-dimensional amplitude of the wave.14

Small-amplitude waves can be modelled by simplified weakly nonlinear version of the Eq.(37) having the form15

(
dη

dx

)2

= η2 D0 +D1 η+D2 η
2

Q(0;F1,F2)
(40)16

where the coefficients D0 =D(0;F1,F2) and D1 =D′
η(0;F1,F2) are17

D0 =
√
πF1 cot

√
π

F1
+
√
πF2 cot

√
π

F2
− 1,18

19

D1 =−cot2
√
π

F1
+ r cot2

√
π

F2
+

2
3

(r− 1),20

and the explicit form of coefficient D2 is not important here. This model takes into account the balance of quadratic and cubic21

nonlinearities in the weakly-nonlinear KdV–mKdV – Gardner model (Kakutani and Yamasaki 1978; Gear and Grimshaw,22

1983; Helfrich and Melville 2006; Grimshaw et al 2002).23

Solitary wave regimes are obtained depending on the multiplicity of the roots aj(F1,F2, r) (j = 1,2) of the numerator on24

the right-hand side of (40). Profile of solitary wave is given by the formula25

η(x) = a
1− tanh2 kx

1− θ2 tanh2 kx
, k =

a
√

3/q∗
2θ

,26
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with q∗ =Q(0), a= a1 and θ2 = a1/a2 < 1, and the bore (internal front) corresponds to the double root a= a1 = a2, it has1

the following profile2

η(x) =
a

2

(
1+ tanhkx

)
, k =

a
√

3/q∗
2

.3

Parametric range of strongly nonlinear solitary waves described by Eq. (37) is formed by the domain in (F1,F2)-plane4

where the radical function Q/D in (39) is ensured to be non-negative. It is easy to check that Q(0;F1,F2)> 0, hence function5

Q(s;F1,F2) is positive in the vicinity of point s= 0. Therefore, function D plays the determining role here. Depending on6

F1 and F2, this function can change the sign even by small s, where the leading-order coefficient D0 from formula (40)7

dominates. As a consequence, the map of solitary-wave regimes is formed by the Froude numbers (F1,F2) such that inequality8

D0(F1,F2)> 0 holds. Indeed, this inequality defines the range of non-linear waves, which are supercritical with respect to the9

phase speed of linear harmonic wave-packets (see Fig. 2).10

6 Waves in Marginally Stable Abyssal Flows11

Large-amplitude internal waves are generated in abyssal flows due to the interaction of internal tides with irregular bottom12

topography near underwater ridges (Morozov 1995, Morozov et al. 2010). These waves play a significant role in the energy13

transformation and mass transport in the oceanic stratified flows while they intensify mixing of the abyssal waters. Note that14

internal Froude numbers F1 and F2 characterize the magnitude of the velocity jump at the interface in upstream flow. The15

shear u1 ̸= u2 between the layers can initiate the development of the Kelvin — Helmholtz instability which provides non-16

stationary formation of billow trains (Thorpe 1985; Drazin 2002). Constant two-layer flow is linearly stable under long-wave17

perturbations if the inequality18

|u1−u2|<
√
g(ρ1− ρ2)(ρ1h2 + ρ2h1)

ρ1ρ2
19

holds, and this flow is unstable in the opposite case. Exactly the same bound for a variable difference |u1−u2| and variable20

layer thicknesses h1, h2 follows from the non-linear stability criteria predicted by the shallow water theory (Ovsyannikov et21

al. 1985; Gavrilyuk, Makarenko, Sukhinin 2017). As a consequence, we have the stability domain22

|√rF1−F2|<
√

1+ r23

shown for r = 3 in Fig. 2 (right panel) as unshadowed domain in the fragment of quarter-plane (F1,F2).24

Figures 3 and 4 demonstrate fragments of quasi-steady shear flow recorded with a 350 m mooring station located at a depth25

of 4720 m at the entrance of the Romanche Fracture Zone in the equatorial Atlantic (Van Haren et al. 2014). Trains of internal26

waves modulated by tide propagate here along a sharp interface corresponding to the 0.85◦C isotherm which separates the27

lower layer of cold Antarctic Bottom Water (AABW) from the overlying warmer layer. By that, moored CTD/LADCP data28

indicate permanently marginal stability of the flow having the Richardson number 0.25< Ri< 1. Tidal amplification of the29

shear triggers the formation of small-scale overturns which create long trains of the Kelvin — Helmholtz billows. Bold curves30

11
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Figure 3. Internal front in abyssal stratified flow
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Figure 4. Interfacial solitary waves affected by the Kelvin — Helmholtz instability

in Fig. 3 and Fig. 4 show overlapped profiles of internal waves calculated by solution (39). Internal front shown in Fig. 31

corresponds to the Froude point A with coordinates (F1,F2) = (1.719,0.891) in Fig. 2 (right panel). Point A belongs to the2

bore diagram which is tangential to the spectrum boundary at the point O. Figure 4 demonstrates a series of solitary waves3

with intense overturns, which are distributed uniformly along with gently sloping wave top (Froude point B with coordinates4

(F1,F2) = (1.634,0.959)). It is interesting that similar overturning near the middle part of broad solitary wave was observed5

in laboratory experiments (Grue et al. 2000).6

7 Conclusions7

In this paper we have considered the problem on permanent internal waves at the interface between exponentially stratified8

fluid layers. An ordinary differential equation describing large amplitude solitary waves has been obtained using the long-wave9

scaling procedure. Parametric range of solitary waves is characterized, including regimes of broad plateau-shape solitary waves10

and internal fronts. It is demonstrated that these solitary wave regimes can be affected by the Kelvin — Helmholtz instability11

generated due to the velocity shear at the interface.12
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Appendix A Modal functions of linearized problem4

Eigenfunction W (y) considered in the strip −π < y < 0 has the form5

W = a1e
1
2σ1y





eκ1π
sinhκ1(π+ y)

κ1
(λ2

1 < k2
1 + π2

4 σ
2
1)

π+ y (λ2
1 = k2

1 + π2

4 σ
2
1)

sinκ1(π+ y)
κ1

(λ2
1 > k2

1 + π2

4 σ
2
1).

6

Similarly, eigenfunction W (y) defined in upper layer which corresponds to the strip 0< y < π/r has the form7

W = a2e
1
2σ2y





eκ2π
sinhκ2(π− ry)

κ2
(λ2

2 < k2
2 + π2

4 σ
2
2)

π− ry (λ2
2 = k2

2 + π2

4 σ
2
2)

sins1(π− ry)
κ2

(λ2
2 > k2

2 + π2

4 σ
2
2).

8

The dimensionless wave-numbers κj (j = 1,2) are introduced in formula (26), and the factors aj are the amplitude parameters.9

Appendix B Dispersive term of the long-wave expansion10

The coefficient ψ(1)(ξ,y) which gives the correction due to the dispersion in power expansion (35) has the form11

ψ(1) =
η(η−y)

2
sinα1(y)
sinα1(η)

+
sinα1(y)

2λ1

(
η

sinα1(η)

)

ξξ

×12

13

×
{

(π+ η)cotα1(η)− (π+ y)cotα1(y)
}

+
η2

6
×14

15

×
{

sinλ1(y−η)−sinα1(y)
sin3α1(η)

+
1+ sin2α1(y)

sin2α1(η)
− sinα1(y)

sinα1(η)

}
,16

in the lower layer −π < y < η. Similarly, we have17

ψ(1) =
r2η(η−y)

2
sinα2(y)
sinα2(η)

+
sinα2(y)

2λ2

(
η

sinα2(η)

)

ξξ

×18

19

×
{

(y−π/r)cotα2(y)− (η−π/r)cotα2(η)
}

+
r2η2

6
×20

21

×
{

sinλ2r(η−y)−sinα2(y)
sin3α2(η)

+
1+ sin2α2(y)

sin2α2(η)
− sinα2(y)

sinα2(η)

}
22

in the upper layer η < y < π/r. Here the functions αj are given by the formula (36).23
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Appendix C Denominator of the non-linear long-wave equation1

Denominator Q in (37) has the form2

2Q(η;F1,F2) =3
4 (

πF 2
1 − 2

√
πF1η cotα1(η)+ η2 cot2α1(η)

)
×5

6

×
(

η+π

sin2α1(η)
−√πF1 cotα1(η)

)
+7

8

+
(
πF 2

2

r2
− 2
√
πF2

r
η cotα2(η)+ η2 cot2α2(η)

)
×9

10

×
(

π− rη
sin2α2(η)

−√πF2 cotα2(η)
)

11

where functions αj(η) are given by formula (38) which is an approximate version of (36).12
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