
HAL Id: hal-01693687
https://hal.science/hal-01693687v2

Preprint submitted on 26 Oct 2018 (v2), last revised 4 Jan 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Unifying Computational Model of Decision Making
Alexandra Kirsch

To cite this version:

Alexandra Kirsch. A Unifying Computational Model of Decision Making. 2018. �hal-01693687v2�

https://hal.science/hal-01693687v2
https://hal.archives-ouvertes.fr

myjournal manuscript No.
(will be inserted by the editor)

A Unifying Computational Model of Decision Making

Alexandra Kirsch

Received: date / Accepted: date

Abstract Decision-making has long been of interest as

a descriptive phenomenon in psychology and as a gener-

ative one in artificial intelligence. Research ranges from

general, descriptive models of heuristic decision-making

to detailed studies of decision parameters. This paper

introduces a model formalizes and integrates several de-

scriptive models so that it can both serve as a frame-

work for psychological models and as an algorithm for

computational decision-making. We set special focus on

the instantiation of this model with respect to aggre-

gating cue values by reviewing some methods from the

field of computational social choice. To show its applica-

bility in the context of artificial intelligence we present

a case study of computational problem solving.

1 Introduction

The human capacity of making appropriate, timely de-

cisions in changing, partially unknown environments

has been fascinating cognitive scientists and researchers

in artificial intelligence alike. Heuristics seem to be the

key to this unique capacity. Despite occasional flaws

(Ariely, 2010), heuristics generally lead to ecologically

valid decisions (Gigerenzer and Brighton, 2009).

Several heuristics have been identified in a variety of

contexts. Svenson (1979) classifies decision rules along

several dimensions. Gigerenzer (2001) has proposed the

“Adaptive Toolbox”, characterizing heuristics along three

modules: search rules, stopping rules and decision rules.

Shah and Oppenheimer (2008) classify heuristics in an

effort-reduction framework, where a basic approach to

Independent Scientist, Germany
E-mail: ak@alexkirsch.de
www.alexkirsch.de

decision making is analyzed with respect to cognitive

costs and how heuristics reduce such costs.

All of these attempts are descriptive in style. In

this article, we incorporate these models into a mod-

ular computational model that can be instantiated to

arbitrary heuristics from the literature. The purpose is

on the one hand to offer a more precise description of

the processes underlying heuristic decision making, and

on the other hand to provide an implemented decision

procedure to engineers that may help to make more

human-like decisions and thus improve human-machine

interaction. The engineering aspect is related to the tra-

dition of cognitive architectures (Langley, 2017; Kot-

seruba and Tsotsos, 2016), trying to model human in-

telligence as well as using the models in artificial intel-

ligence applications.

Along with the overarching descriptive models, on-

going research has attempted to determine the choice

of different strategies or to model underlying cogni-

tive processes (Marewski and Mehlhorn, 2011). Such

approaches differ in their assumptions of the underly-

ing representation of decisions (Lee and Newell, 2011;

Glöckner et al., 2014), whether strategies are distinct

or emerge from parameters of the underlying decision

mechanism (Rieskamp and Otto, 2006; Marewski and

Schooler, 2011; Glöckner et al., 2014), or whether they

are fixed or learned (Rieskamp and Otto, 2006). Most

of this research limits its attention to compensatory vs.

noncompensatory mechanisms to choose among alter-

natives. Our model allows for any aggregation mecha-

nism in the context of af full, iterative decision proce-

dure.

In Section 3 we review voting methods from the field

of computational social choice, which make it possible

to aggregate ordinal-scale cues, in addition to the well-

2 Alexandra Kirsch

known numeric cues that are typically aggregated with

a weighted or unweighted sum.

We demonstrate the versatility of our model in a

multi-step decision procedure, the Traveling Salesper-

son Problem. While on the one hand being a well for-

malized task, it is a complex decision problem since its

result emerges from a sequence of decisions. The pur-

pose of the case study is to provide an example of how

the model can be used for computational decision mak-

ing and how the choice of parameters might be tackled,

rather than a general insight into which parameters are

best.

Finally, we present a generalization of the model

that makes any parameter adjustable in every decision

step. By this transformation, the choice of parameters

(which corresponds to the use of a specific heuristic) be-

comes simply another decision task, and can therefore

be decided with the mechanism of the model.

2 The Computational Model

Heuristics are usually described as distinct strategies for

decision making. Some frameworks, as mentioned in the

introduction, have tried to classify heuristics and ex-

plain heuristic decision-making by basic principles that

are adapted according to the task, the situation and

the decision maker. We first transform two approaches

from the literature into a more formalized form. Then

we derive a general computational decision procedure

that incorporates both approaches and discuss how its

components form different heuristics. In a next step we

extend the model to allow for flexible choice of strate-

gies and learning. We then discuss the model with re-

spect to the adaptive toolbox (Gigerenzer, 2001) and

Svenson (1979)’s 1979 classification.

2.1 Formalization of Heuristics

A decision consists of choosing an alternative a∗ from a

set of alternatives ai ∈ A (which may be given or may

be retrieved by the decision-maker). The quality of each

alternative is assessed by a number of cues ci ∈ C.

We formalize cues as functions in two ways: 1) as a

cue value function mapping alternatives to real values,

v : A → [0.0, . . . 1.0]. The restriction to the interval

between 0 and 1 is just a convenience to make sure that

cues map to a comparable range, otherwise the range

of a cue could introduce an implicit weight. 2) as a cue

ranking function returning a preference ranking, which

is a linear ordering � of A.

Shah and Oppenheimer (2008) build their effort-

reduction framework on the weighted additive rule and

divide the decision process into five tasks:

0. A vector of alternatives is given

a = (a1, a2, . . . , an), a ∈ A1

1. “Identifying all cues—all relevant pieces of infor-

mation must be acknowledged.” (Shah and Op-

penheimer, 2008, p. 1, item 1). We formalize this

with a function get-cues that returns a vec-

tor of cues (i.e., value or ranking functions) c =

(c1, c2, . . . , cm)

2. “Recalling and storing cue values—the values for

the pieces of information must either be recalled

from memory or processed from an external source.”

(Shah and Oppenheimer, 2008, p. 1, item 2). The

cue values in this quote correspond to the result

of a cue value function, thus, for the weighted ad-

ditive rule we restrict cues to cue value functions.

Applying the cues to all alternatives is equivalent

to filling a decision matrix M :

a1 a2 . . . an
c1 c1(a1) c1(a2) . . . c1(an)

c2 c2(a1) c2(a2) . . . c2(an)

.

cm cm(a1) cm(a2) . . . cm(an)

3. “Assessing the weights of each cue—the impor-

tance of each piece of information must be de-

termined.” (Shah and Oppenheimer, 2008, p. 1,

item 3). This is another retrieval process. We

treat weights as a special case of parameters that

may be necessary in the process (such as param-
eters of the cue functions). Therefore, we call the

retrieval function get-params, which returns (pos-

sibly among other things) a vector of weights

w, |w| = m.

4. “Integrating information for all alternatives—the

weighted cue values must be summed to yield an

overall value or utility for the alternative.” (Shah

and Oppenheimer, 2008, p. 1, item 4). This cor-

responds to a multiplication of the filled decision

matrix with the weight vector, resulting in a vec-

tor of utilities u = MT ·w, |u| = n.

5. “All alternatives must be compared, and then

the alternative with the highest value should be

selected.” (Shah and Oppenheimer, 2008, p. 1,

item 5). This is the mathematical operation of

choosing the alternative with the highest utility

value a∗ = maxu a.

1 (Shah and Oppenheimer, 2008) do not explicitly mention
this step, we added it as step 0 for consistency with our gen-
eralized model.

A Unifying Computational Model of Decision Making 3

def decide (a, c, p):
M ← fill-decision-matrix(a, c)
r← aggregate-and-order(M,p)
a∗ ← first(r)
if acceptable (a∗, r,M,p):
return a∗

else:

decide (update-alternatives (a, M),
update-cues (c, M),
update-params (p, M))

Fig. 1: General model of heuristic decision-making. The

functions and parameters are explained in the text.

The weighted additive rule is also the standard ap-

proach in computational decision making in all types

of search and optimization tasks. By making the above

steps explicit, Shah and Oppenheimer (2008) point out

ways in which heuristics reduce the cognitive effort,

such as examining only a subset of available cues or

omitting the weights.

Other simplifications require a modification of the

process to allow for several iterations of decisions. The

QuickEst heuristic (Hertwig et al., 1999) is a good ex-

ample of such an approach:

1. A vector of alternatives is given or retrieved from

memory or the environment a = (a1, a2, . . . , an).

2. Cues are ranked according to their “coarseness”

(Hertwig et al., 1999, p. 223), which means those

cues that can eliminate many alternatives quickly

are used first. We thus get the cue vector c� =

(c1, c2, . . . , cm) with ordered cues. In the Quick-

Est heuristic, cues are assumed to be boolean

functions, thus mapping any alternative to the

value 0 (false) or 1 (true), meaning that an alter-

native either has a certain property or not.

3. Repeat, starting with i← 1 and ã← a:

(a) Apply cue ci to alternatives in ã, resulting in

a set of alternatives with positive evaluation

ã+ and alternatives with negative evaluation

ã−.

(b) If |ã+| = 1, return the only element in ã+,

otherwise repeat with i← i+ 1 and ã← ã+

The stopping criterion in step 3 is incomplete. One

can define different ways of dealing with situations where

no single alternative fulfills all available cues. QuickEst

is just one example of many heuristics that decide in

iterations, changing the cues and/or the alternatives in

each iteration.

2.2 The Integrated Model

We combine the concepts from the weighted additive

rule with iterative procedures into one algorithm, shown

in Figure 1. The initial call is

decide (get-alternatives (), get-cues (),

get-params ())

The get-... functions are special cases of the update-

... functions without initial values. These functions re-

trieve alternatives, cues and parameters (such as weight

vectors) from memory or from the environment, the

get- functions without any prior knowledge (except for

the situation and task context), the update- functions

with knowledge about the values of the last iteration.

Thus, decide starts with an initial vector of alter-

natives a, an initial vector of cues c and an initial set of

parameters p. Let us assume that alternatives and cues

contain at least one element, whereas p can be empty,

depending on the configuration of the algorithm. The

function fill-decision-matrix calls all cues in c on

all alternatives in a. The cue functions may be value or

ranking functions (more on this in the next section).

The function aggregate-and-order combines the

judgements of different cues and different alternatives

and sorts alternatives so that the collectively highest

ranked alternative is first. aggregate-and-order may

need a weight vector or other parameters, depending on

the used aggregation function, as discussed in the fol-

lowing section. The sorting is not strictly necessary and

seems very unlikely as a model of human thinking, it

just facilitates the next step, which is just to take the

first alternative in the ranked vector r. Without the
sorting, the function first would have to be replaced

with a function that retrieves the best alternative from

the set. The typically low number of alternatives in

human-like decision procedures leads only to a slight

computational overhead.

The ordering step can contain many special cases

that are not explicitly handled in the algorithm in Fig-

ure 1, but can be set according to the heuristic to be

modeled or used. If there is only one cue in c, the step

contains only the sorting of alternatives according to

the cue values or the alternatives are already sorted by

the cue rating function. If there is just one alternative

in a, the step is trivial. The preceding step of filling the

matrix, however, should not be omitted, because the

decision of whether to accept the alternative is still to

come. If several alternatives share the first rank, they

will be sorted in some way in the ranked vector r, maybe

using a random order for equal evaluations. Again, the

next step may decide to run another iteration to make

a more informed choice.

4 Alexandra Kirsch

The function acceptable decides whether the best

alternative is good enough to be the result of the de-

cision process. This function can base its decision on

the ranking r or the pure cue values from the decision

matrix M, and can be configured by parameters in p.

Thus, an alternative may be judged unacceptable when

the next-best alternative in the ranking has an equal

or very close utility score. Or it may be rejected as be-

ing rated too low on certain cue values. For practical

reasons, it is advisable to also include a counter in ac-

ceptable to set a maximum number of iterations, or

lower the limits for acceptance, otherwise the decision

process could run indefinitely. On top of these consider-

ations is the question of how difficult or simple it would

be to generate more cues or alternatives. With a high

effort to get more cues, one might be more inclined to

guess between equally ranked alternatives.

If acceptable is not satisfied with the best alter-

native, decide is called again, but the input parame-

ters may be changed. The vector of alternatives might

be diminished by alternatives that failed on some cue

criterion (as in the QuickEst heuristic) or that fall be-

low a certain threshold (as in the elimination by as-

pects heuristic (Svenson, 1979)). Alternatives may also

be added if none of the previous alternatives was good

enough. This could mean additional effort of memory

retrieval or perception. In the same way cues can be re-

duced or added to. Several heuristics such as QuickEst

or Take-the-best (Gigerenzer and Goldstein, 1999) use

one cue per iteration, thus update-cues would return

the next cue. One may re-consider cues (see Rieskamp

and Hoffrage (1999, p. 150)) that have been used in pre-

vious iterations. The weight vector is usually assumed

to be static, but the algorithm leaves the possibility

open to also adapt weights or other parameters.

2.3 Discussion of the Model

We motivated the model by formalizing the basic deci-

sion procedure by Shah and Oppenheimer (2008) and

the QuickEst heuristic (Hertwig et al., 1999) as an in-

stance of iterative heuristics. Let us first make sure that

the algorithm in Figure 1 really comprises the two.

For the Shah and Oppenheimer (2008) model, a list

of fixed alternatives can be provided with the function

get-alternatives (step 0); get-cues corresponds to

the retrieval of cues (step 1), get-params models the

retrieval of the weight vector (step 3). The retrieval

and storage of cue values (step 2) corresponds to fill-

decision-matrix, and their aggregation (step 4) as a

weighted sum is one way of instantiating aggregate-

and-order. The choice of the best alternative (step 5)

is simplified by the ordering included in aggregate-

and-order. The Shah and Oppenheimer (2008) model

assumes only one decision cycle. Therefore, accept-

able will accept the alternative with the highest aggre-

gated cue value, the update- functions are irrelevant.

For QuickEst, step 1 again corresponds to

get-alternatives being instantiated to returning a

list of fixed alternatives. For get-/update-cues we

need a vector of ordered cues c�. The functions get-

/update-cues return one element per round in the

order given in c�. fill-decision-matrix is reduced

to applying the one cue chosen for the iteration to all

the alternatives, filling the matrix with boolean values

(or integers 0 and 1). The function acceptable ac-

cepts a choice when only one alternatives comes out

true, otherwise it requires another iteration. update-

alternatives returns all alternatives that were rated

as true in the last iteration.

With respect to Gigerenzer’s (2001) adaptive tool-

box, the algorithm in Figure 1 can be mapped to the

tools in the following way:

Search rules Gigerenzer (2001) distinguishes the

search for alternatives, as modeled in the get-/

update-alternatives functions, and the search

for cues, as in the get-/update-cues functions.

The options he lists (“random search, ordered search

(e.g., looking up cues according to their validities),

and search by imitation of conspecifics, such as stim-

ulus enhancement, response facilitation, and prim-

ing” (Gigerenzer, 2001, p. 44)) would have to be im-

plemented by different versions of these functions.

Stopping rules are implemented by the function ac-

ceptable. They can, for instance, be based on ab-

solute aspiration levels as in satisficing models (Si-

mon, 1956) or if a cue is found that favors one al-

ternative as in QuickEst or other one-good-reason

heuristics (Gigerenzer and Goldstein, 1999).

Decision rules correspond to aggregate-and-

order, i.e. the aggregation of cue values. Gigeren-

zer (2001) describes them after the stopping rules,

whereas our model performs this step before calling

acceptable. If acceptable is implemented in a

way that it can decide without knowing the aggre-

gated values, the algorithm may be modified to first

test for acceptability and then call aggregate-

and-order only in the affirmative case. But some-

times one may base this choice on aggregated values,

as in our case study below, where we use an accept-

ability criterion that compares the aggregated value

of the best choice to the aggregated value of the sec-

ond best choice. Thus, the algorithm in Figure 1 is

slightly more general, but also less efficient in cases

A Unifying Computational Model of Decision Making 5

where acceptable works with unaggregated val-

ues.

Svenson (1979) classifies decision rules along three

dimensions, which correspond to our model in the fol-

lowing ways:

Metric level of cues: We have differentiated between

cue ranking and cue value functions, where ranking

corresponds to an ordinal scale and values to ratio

or interval scale. The ordinal scale, however, is not

treated as a mere ordering by Svenson (1979), some

rules use criterion values corresponding to absolute

thresholds. The instantiation of aggregate-and-

order must be consistent with the output of the

cue functions. Different ways of combining ordinal

values are presented in the next section.

Lexicographic order: This dimension says whether

cues are used all at once (which would mean that

no order is necessary) or whether they are used in

an iterative fashion, one per iteration, in which case

the cues must be ordered. We have shown in the

QuickEst heuristic, how this can be implemented

with our model.

Commensurability: This dimension classifies rules

according to whether a high score by one cue can

counterbalance a low score by another. Weighted

sums are an example of commensurable aggregation,

whereas QuickEst is non-commensurable (because

once an alternative has been eliminated it will never

be the final choice, no matter how well it would

be rated by subsequent cues). This quality is deter-

mined by an interplay of aggregate-and-order,

acceptable and the control of the iterations by

update-alternatives and update-cues.

Svenson (1979) points out that decision rules could

change or be adapted during the decision process. Sec-

tion 5 presents a generalized version of our model that

includes this functionality.

The literature discusses other options for decision

making than heuristics. Figure 2 classifies the broad

lines of decision making theories. In the following we

show how rational decision making and decisions by

recognition are encompassed in our model.

Rational decision making is another way of choosing

among alternatives. It assumes that the decision maker

has access to all possible alternatives and should ide-

ally choose the one with the highest expected utility.

Each alternative leads to possible outcomes ra1 , . . . r
a
m

with probabilities pa1 , . . . p
a
m, and each outcome has a

subjective value of desirability ν(r). The utility of each

alternative i is calculated by

U(a) =

m∑
k=1

(ν(rak) ∗ pak

Decision strategy

Recognition
(Klein, 2017)

Exploration of
alternatives

Heuristic
(Gigerenzer and
Brighton, 2009)

Rational
(Newell, 1982)

Fig. 2: Ontology of decision strategies with examples of

references holding the particular view.

A rational decision maker chooses the option with maxi-

mum utility. The desirability is usually given as a weighted

sum of features

ν(r) =
∑
i

wifi(r)

If we multiply the weight vector w with the prob-

ability distribution, we get a new weight vector that

includes both desirability of a feature and the probabil-

ities of the different outcomes. Thus, rational choice is

a heuristic choice where 1) all possible alternatives are

considered and 2) the weight vector contains probabil-

ities (if probabilities are modeled at all, otherwise it is

identical to the original weight vector).

Choice by recognition assumes that no alternatives

are compared, but that the decision maker chooses the

alternative that first comes to mind. This approach is

a special case of a take-the-best or recognition heuris-

tic. In our model, the decision maker would generate

only one alternative. The challenge of decision making

by recognition is the memory access and distance func-
tions to decide whether situations are similar enough to

reuse a prior solution. This challenge is the same when

generating more than one alternative in our decision

model.

3 Aggregation of Cues

If the decision matrix has more than one column and

more than one row, we have to aggregate the judge-

ments of all cues to determine the overall best alter-

native. The classical approach is a weighted sum, or

the simpler variant, an unweighted sum (which corre-

sponds to a weighted sum when all weights have the

same value). But still we would need all cues to be im-

plemented as a cue value function, which means they

have to provide numeric values. In many cases it seems

simpler to just rank the alternatives by preference with-

out giving them explicit values. But how can we aggre-

gate rankings?

6 Alexandra Kirsch

The field of computational social choice (Brandt

et al., 2016) is concerned with developing fair voting

systems. The assumption there is that each voter from

a finite set of voters2 V, |V | = m is given a finite set of

alternatives A, |A| = n. Each voter i casts a ballot (or

ranking), which is a linear ordering �i of A. A profile

P = (�1,�2, . . . ,�m) specifies a ballot for all voters in

V ; L(A)m denotes the set of all such profiles for a given

m. A social choice function maps a profile to a single

combined preference ranking scf : L(A)m → L(A).

If we now replace the set of voters V by the set

of cues C in our decision procedure, we can use so-

cial choice functions to combine cue rankings into an

overall ranking of the alternatives. However, there is a

fundamental difference in the tasks of voting and cue

aggregation: voting assumes equality of voters (each has

one vote), whereas cues are often assumed to be of

unequal importance. For example, Russo and Dosher

(1983) assume that the least important cue is “the one

with the smallest dimensional difference” (Russo and

Dosher, 1983, p. 683). Huber (1979) mentions the rela-

tion of his weighted-sets-of-dimensions model to social

choice functions and suggests an interpretation of � as

a “partial order of social power” (Huber, 1979, p. 163).

Even though social choice is not motivated by cogni-

tive mechanisms, there are certain connections. For ex-

ample, Katsikopoulos and Martignon (2006) draw an

explicit connection between heuristics and Condorcet

theorems.

Cue value functions can be transformed into cue

ranking functions by sorting the alternatives for each

cue according to the value assigned by the cue. Thus, a

value aggregation function (i.e. summing) can be used

as a social choice function, by sorting the alternatives

according to the combined score. The reverse case (from

ranking to value) is possible, but under-specified. Scor-

ing functions offer different ways of assigning cue values

to ranked alternatives.

Scoring Scoring rules assign a value to each alternative

in a ranking, thus transforming a ranking function into

a value function. The methods differ in the way they

assign the numbers, here are two examples:

Borda count: f(r) = n − r, where r is the rank of

the alternative and n is the number of all alterna-

tives. Thus, the highest ranked alternative receives

value n−1, the second highest n−2, the lowest one

0.

Formula One Championship: The values 25, 18, 15,

12, 10, 8, 6, 4, 2, 1, 0, . . . 0 are assigned to the

2 The notation and definitions are taken from Zwicker
(2016).

ranked alternatives in the given order, i.e. the high-

est ranked alternative is assigned the value 25, the

second highest 18, etc.

For a comprehensive list of scoring methods we refer to

Zwicker (2016, p. 36 ff.). The transformed cue values

are aggregated with an unweighted sum.

Voting Voting methods combine rankings directly with-

out the intermediate step of assigning scores. For two

alternatives and odd number of cues, majority rule is

the uncontroversial choice (Brandt et al., 2016, p. 34,

proposition 2.2).

For more than two alternatives, most voting rules

are based on the concept of net preference. The net

preference of alternative a1 over alternative a2 is defined

as

Net(a1 > a2) = |{c ∈ C|a1 �c a2}|−|{c ∈ C|a2 �c a1}|

i.e. the number of cues that rank a1 over a2 diminshed

by the number of cues that rank a2 over a1
Note that even though the decision matrix is filled

row-wise (cue-wise), the net preference compares alter-

natives, resulting in a matrix of preferences for alterna-

tives:

a1 a2 . . . an
a1 − Net(a2 > a1) Net(an > a1)

a2 Net(a1 > a2) − Net(an > a2)

. . . −
an Net(a1 > an) Net(a2 > an) −

An alternative a that defeats every other alternative

in the strict pairwise majority sense a > ai for all ai 6= a

is called a Condorcet winner. It is generally assumed

that a Condorcet winner is a fair choice in an election.

However, not every profile has a Condorcet winner, but

it seems desirable that a social choice function returns

the Condorcet winner if one exists. Such a function is

called a Condorcet extension. The Borda and Formula-

One-Championship scoring methods are not Condorcet

extensions. Here are two examples of voting rules that

are:

Copeland method: Compute the Copeland score for

each alternative: Copeland(ai) = |{aj ∈ A|Net(ai >
aj)}| − |{aj ∈ A|Net(aj > ai)}|, i.e. count all al-

ternatives that are worse than ai and subtract the

number of alternatives that are better than ai ac-

cording to the net preference. Select the alternative

with the highest Copeland score.

Sequential Majority Comparison is a pairwise com-

parison of alternatives:

1. pick some order of alternatives: (a1, a2, . . . an)

2. winner ← a1

A Unifying Computational Model of Decision Making 7

3. for i = 2 . . . n:

if Net(ai > winner) then winner ← ai
4. return winner

We treat Sequential Majority Comparison as an atomic

social choice function. In the decision model, one

could treat it as an iterative method, in which al-

ternatives are excluded in each iteration. However,

Sequential Majority Comparison assumes that all

alternatives are compared sooner or later so that the

iterative approach does not give any benefit here.

More on voting rules and Condorcet extensions can be

found in Zwicker (2016, p. 33 ff.).

Multiround rules Another class of voting rules com-

pares alternatives in rounds, removing alternatives in

each round and re-ranking the remaining alternatives.

This approach is similar to the elimination by aspects

heuristic (Svenson, 1979, p. 90), which we use below.

For example, the Nanson rule (a Condorcet extension)

eliminates in each round the alternatives with a Borda

score below the average Borda score. For more details

on multiround rules refer to Zwicker (2016, p. 37).

4 Case Study

The goal of our computation model is on the one hand

to integrate existing models of heuristic decision-making,

as we have already discussed. On the other hand, we

want it to be usable as a component in computational

decision-making systems. In this section we present ex-

periments for a specific task, the Traveling Salesperson

Problem. We first introduce the task, then we address

some implementation details, and finally show experi-

ments with different parameter combinations of the al-

gorithm.

4.1 The Traveling Salesperson Problem

The Euclidean Traveling Salesperson Problem (TSP) is

the task of finding the shortest possible tour through

a set of given 2D points, and returning to the starting

point. Apart from being a representative of the class of

NP complete problems (i.e. problems where the num-

ber of potential solutions grows exponentially with the

size of the problem instance), it has been an object

of research on human problem solving (MacGregor and

Chu, 2011). Optimization programs can nowadays solve

instances with thousands of points optimally and prob-

lems with millions of points near-optimally. These ap-

proaches usually tackle the whole task at once, whereas

people start with one point and add connections one

8

76

5

4

3
2

1

p
artial

solu
tion

rem
aining problem

Fig. 3: Representation of TSP instances and states in

the solution process. The numbers next to the points

are labels. The partial solution starts at point 1 and

includes points 6 and 5. Point 5 is the current point

from which to decide the next step. Points 4 and 7 are

alternatives for the next decision.

after the other (Tenbrink and Wiener, 2009) and find

surprisingly good solutions (MacGregor and Ormerod,

1996). For related tasks that involve user interaction,

a human-like approach seems desirable. Therefore, we

treat a TSP solution process as a sequence of decisions

of which point to add next to the tour.

One characteristic of TSPs is that the instances dif-

fer a lot, so that it is hard to find one parameteriza-

tion that solves any instance equally well (Kirsch, 2011,

2012). This also puts some limit on the optimization of

parameters, because a set of parameters might work

well for one TSP instance and bad for another.

For the experiments we use an open dataset 3 that

contains over 25,000 human solutions to 90 TSP prob-

lems (Rach and Kirsch, 2016).

4.2 Implementation

We implemented the general decision algorithm in a

system called Heuristic Problem Solver (HPS) (Kirsch,

2016). The source code used for the experiments below

is available at https://bitbucket.org/kirschalexandra/

heuristicproblemsolver/commits/tag/compSoC-TSP.

A TSP instance is represented by a set of 2D points.

A state in the solution process is a partial solution,

which is initially empty and contains all the points plus

one (the starting point has to be the same as the end

point) in the end. The last point in a partial solution is

the current point, from which the next step of the tour

has to be decided (Figure 3).

3 http://www.wsi.uni-tuebingen.de/lehrstuehle/

human-computer-interaction/home/code-datasets/

tsp-dataset/perlentaucher-2.html

8 Alexandra Kirsch

The implementation of get-alternatives is con-

stant in all experiments. In HPS alternatives are gen-

erated by so-called producers, functions that return al-

ternatives according to the state of the world. We used

three producers that decide, which point should be the

start point (Rach and Kirsch, 2016): one that returns

the three closest unvisited points to the current point,

one that suggests the next point on the convex hull

(the outline of the problem), and one that suggests the

starting point to return to when the rest of the tour has

been constructed.

The cues are represented in HPS by so-called evalu-

ators, functions that receive all alternatives in the iter-

ation and return an assignment of alternatives to real

values between 0 and 1. We have a total of 10 evaluators

available (the abbreviations are used in Figure 7):

nearest-neighbour (nn) prefers alternatives that are

close to the current point.

last-chance (lc) tries to avoid that a point skips its

nearest neighbour. Sometimes points are “left out”

on the way and need to be collected in the last steps,

which inevitably leads to long tours with crossings.

remaining-acc-dist (rd) estimates the accumulated

distance to the remaining points and chooses the one

with the lowest estimated future path length. This

is a similar rationale as the heuristic function in an

A∗ search.

no-intersections (ni) rejects alternatives that would

lead to an intersection by adding the next edge.

avoid-splitting (as) punishes points that would lead

to a line through the middle of the problem, thus

splitting it into two halves that could only be com-

bined later by a crossing line.

start-intersection (si) avoids alternatives whose di-

rect connection to the starting point would cause an

intersection.

follow-lines (fl) prefers alternatives that lead to a

wide angle of the edges at the current point, rather

than alternatives that lead to sharp turns.

convex-hull (ch) prefers moving along the convex

hull.

regions (rg) uses a clustering of points into regions.

In the TSP literature, hierarchical approaches have

long been discussed (Graham et al., 2000). This

evaluator prefers alternatives that are in the same

region as the current point.

regions-convex-hull (rc) like regions prefers points

in the same region, but also points in the region that

follows the current one on the convex hull.

Not all cues are equally useful, and it may depend

on the aggregation of cues, which ones should be used.

Therefore, in the experiment we ran an optimization

for each cue aggregation function to find the best set

of cues, and for weighted sums the weight for each cue.

In the first experiment, the get-cues function returns

a fixed set of evaluators, depending on the used aggre-

gation function. get-params returns an association of

cues to weights, if necessary.

In the first set of experiments, the functions update-

alternatives and update-cues are irrelevant, be-

cause only one iteration is run. For the second set of

experiments, the functionality of these functions is ex-

plained below.

Different options for aggregate-and-order are

tested in the first set of experiments. acceptable is

by default a function that accepts any alternative. In

the second experiments we use another definition that

allows for an iterative process.

4.3 Aggregation Functions

First, we test the rather classical approach of evaluating

a given number of alternatives with a given number of

cues, thus filling the whole decision matrix once. We

look at the effect of different aggregation functions to

determine the best choice:

summing: weighted sum, unweighted sum (weighted

sum with equal weights)

ranking: copeland , sequential majority comparison

scoring: borda, formula-one championship

All of these six strategies have parameters: weighted

sums assign a weight value between 0 and 1 to each cue,

for simplicity we assume steps of 0.1, which results in a

parameter space with a size in the order4 of 1010. For

the other methods, there is only the choice of whether

to use a cue or not, thus each cue is assigned a Boolean

value, resulting in a parameter space of 210 − 1 = 1023

(the empty set of cues is excluded).

Parameter Optimization From the 90 problems in our

TSP data set, 20 are pairs of problems with identical

geometrical layout, but slight variations in presenta-

tion (e.g. one task is presented with differently colored

points, the other with one color for all points). From

these pairs, one version per pair was used as a training

set, thus we had 10 training tasks for the optimization

process. The remaining 70 tasks served as test prob-

lems.

The solution quality of the Traveling Salesperson

Problem is usually measured by the percentage above

the optimal tour length (PAO). For each TSP instance,

only a finite number of specific PAO values is possible

4 1010 is an upper bound, because some configurations are
equivalent, for example when all weights have the same value.

A Unifying Computational Model of Decision Making 9

(since there is a finite number of tours). Therefore, the

PAO values of different TSP instances are incompara-

ble and should not be aggregated. To allow for some

aggregation of the 70 PAOs for each tour, we normalize

the PAO value among all solutions that were generated

in the following experiments with a student transfor-

mation: p′i = pi−mi

si
, where pi is the percentage above

optimum for a specific solution of TSP instance i; p′i is

the normalized value; mi is the mean PAO of all solu-

tions for instance i, and si is the (descriptive) standard

deviation of PAO values over all solutions of instance i.

This normalization allows for a comparison among dif-

ferent instantiations of the decision procedure, but it is

inappropriate and unintended for assessing the absolute

solution quality.

For the five conditions that are controlled only by

the number of cues used, we used the brute force method

of solving each of the 10 training tasks with each of the

1023 parameter sets, normalizing over the solutions per

task, aggregating the PAO values for each parameter

set, and choosing the one with the lowest relative tour

length. This takes about 20 minutes per condition on

a desktop computer (Intel Core i5-2520M (2.50GHz), 8

GB RAM).

For the weighted sum, as the parameter space is far

too large for the brute force approach, we used a ge-

netic algorithm (Banzhaf et al., 1998) with a population

size of 16 and 64 generations, resulting in 1024 tested

parameter combinations, thus having an optimization

effort comparable to the other conditions. The fitness

of each parameter combination was again assessed by

aggregating normalized PAO values.

To evaluate the robustness of the aggregation func-

tions, we ran the same optimizations with two other

measures of tour quality: 1) a rating that measures the

similarity of a solution to human solutions of the same

task, and 2) the count of how many participants in the

data set chose the same solution for a tour. In addition,

for the weighted sum we experimented with different

numbers of generations of the genetic algorithms to as-

sess the necessary effort for optimization.

Quality of Decisions Figure 4 shows the comparative

results over the 70 test problems, lower values denote

shorter, and therefore better, tours. The median un-

der all conditions is below 0 (which would be the av-

erage relative performance per tour), which shows that

in general the performance is on some common level,

but that all conditions can produce exceptionally long

tours. The performance in all conditions is practically

the same when the normalized PAO is aggregated. This

does not mean, however, that they all produce the same

results on the same tasks. Figure 5 shows the unnormal-

ized PAO values per task for the first 20 tasks from the

test set.

Optimization Effort For this experiment we more or

less arbitrarily decided on using 1024 parameter set-

tings in the optimization. Possibly, a similar level of per-

formance could be reached with less optimization effort,

or an additional effort could boost the performance.

Figure 6a shows the performance for the weighted sum

on the test data when trained in 16, 32, 64 and 128

generations. The performance is practically identical for

all variants. To better understand the reason, Figure 6b

shows the performance on the training data. This shows

that the algorithm is improving on the training data

with more generations, but this has no effect on the

performance on the test data.

This overfitting can be explained by the high diver-

sity of TSP instances. In such a setting, a costly op-

timization seems not to pay off, because instances re-

quire different parameters. This confirms the finding of

others (Keller and Katsikopoulos, 2016) where in real-

world tasks parameter optimization is not possible, or

even necessary.

Influence of Parameter Choice Another question is how

important the parameters are for making good deci-

sions. In the optimization, all variants of aggregation

functions faced the same challenge of the diversity of

TSP instances. But how much is the performance influ-

enced when the value to be optimized for is a different

one than that is tested for? Or how does the perfor-

mance change with a non-optimized configuration?

Figure 7 analyzes which cues were used in the opti-

mized configurations. It shows that there are some cues

that were used more often than others. It also shows

that the weighted sum used 9 or 10 cues, no matter for

which target value it was optimized, whereas the con-

ditions with a boolean choice of cues mostly used 3–5

cues.

From these observations we constructed the follow-

ing parameter sets:

– opt pao/ rating/ count : the individual parameter

set for the aggregation function when optimized

for PAO, rating of similarity to human solutions,

and the count how often a solution was chosen by

participants

– four/ five/ all : Using the four/ five cues that

were used most often in the optimization pro-

cess (four : dark blue cues in Figure 7a, five: dark

and medium blue cues in Figure 7a); all uses

all available cues. For the weighted sum for each

condition, six randomly generated sets of weights

were used; Figure 8a shows the median of those

10 Alexandra Kirsch

Rank-Copeland Rank-SMC Score-Borda Score-FOC Sum-Equal Sum-Weighted
3

2

1

0

1

2

3

no
rm

al
iz

ed
 P

A
O

Fig. 4: Quality with optimized configurations over 70 test tasks. Lower values denote shorter, i.e. better, tours.

TSP instances in test set
0.1

0.0

0.1

0.2

0.3

0.4

0.5

PA
O

Rank-Copeland
Rank-SMC

Score-Borda
Score-FOC

Sum-Equal
Sum-Weighted

Fig. 5: (Unnormalized) PAO of optimized configurations for 20 test tasks.

six variants, Figure 8b shows the single parfor-

mances.

Figure 8a shows that the scoring methods are the

most robust with respect to parameter choice. The rank-

ing methods are mostly stable, but perform notably

worse when trained on the rating value. The unweighted

sum shows a similar level of stability as the scoring

methods, but in most cases performs slightly worse. The

most fluctuation is shown in the weighted sums aggre-

gation function. Interestingly, it performs best (tested

on PAO) when trained on the number of times a so-

lution was chosen by participants. Figure 8b suggests

that this fluctuation is due to the choice of particular

weights. In all three predefined parameter sets, there is

a set of weights that outperforms or at least compares to

the scoring methods, but there are always other choices

of weights that make the performance notably worse.

Summary of Aggregation Functions The method of ag-

gregation is mostly irrelevant in the specific task re-

garded here. The optimization effort we used could prob-

ably be reduced even further for all the aggregation

functions. However, the weighted sum seems to need

slightly more attention to the parameters, the scoring

methods seem to be the most stable ones. In less di-

verse tasks or with an adequate classification of TSP

instances, the effort to learn weights for a weighted sum

might pay off.

4.4 Iterative Decision Methods

We now test methods that use more flexibility of the

decision model. In the last experiment, we varied the

setting of aggregate-and-order, now we look at

some combinations of the functions acceptable, get-

/update-cues and update-alternatives, consider-

ing only one cue at a time. Thus, the decision ma-

A Unifying Computational Model of Decision Making 11

16 32 64 128

Iterations of genetic algorithm

3

2

1

0

1

2

3

no
rm

al
iz

ed
 P

A
O

(a) Tested on test data.

16 32 64 128

Iterations of genetic algorithm

2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

no
rm

al
iz

ed
 P

A
O

(b) Tested on training data.

Fig. 6: Results for weighted sum after different number

of iterations in genetic algorithm. 64 iterations corre-

spond to the optimization effort of the non-weighted

aggregation functions.

trix has only one line per iteration, which means that

aggregate-and-order just orders the alternatives

according to the one value provided. The other parts

are configured as follows:

acceptable: We accept an alternative if
c(a∗)−c(a+)

c(a+) > η, where c(a∗) is the (single) cue value

of the best alternative, c(a+) is the cue value of the

second-best alternative, η is a parameter, which is

varied in the experiment between 0.01 and 2. If there

is only one alternative left or no more cues, the best

(or only) alternative is chosen.

get-/update-cues: We mimic two one-good-reason

heuristics (Gigerenzer and Goldstein, 1999), which

use one cue per iteration:

– The Minimalist heuristc uses cues in random or-

der and makes use of the recognition heuristic

whenever possible (i.e. prefers the option that it

recognizes). The recognition heuristic makes no

sense in TSPs, so we use the cues in random or-

der.

– The Take the Best heuristic assumes that the de-

cision maker has some knowledge about the im-

0 2 4 6 8 10 12 14 16

Number of times used

nn

ch

rd

rc

lc

ni

fl

rg

as

si

C
ue

s

(a) Number of times expert was chosen in the 18
optimized configurations.

Copeland SMC Borda FOC Equal Weighted
0

2

4

6

8

10

N
um

be
r o

f c
ue

s i
n

op
tim

iz
ed

 c
on

fig
ur

at
io

n

pao
rating
count

(b) Number of experts in optimized configurations.

Fig. 7: Expert usage in optimized configurations.

portance of cues for a specific task and uses the

cues in the order from most important to least

important. Determining the “best” order of cues

is similar to determining weights. We used for

all tasks the order of the cues as they were in-

cluded in the optimized configurations shown in

Figure 7a. When several cues have the same rele-

vance (as rd and rc), the order is chosen randomly.

update-alternatives:
– Keeping all alternatives by passing them on to

the next round.

12 Alexandra Kirsch

opt pao opt rating opt count four five all
1.0

0.8

0.6

0.4

0.2

0.0

0.2

no
rm

al
iz

ed
 P

A
O

Rank-Copeland
Rank-SMC

Score-Borda
Score-FOC

Sum-Equal
Sum-Weighted

(a) Configurations of optimization process and three constructed ones (for
weighted sum: median of six random configurations).

four five all optimized
1.5

1.0

0.5

0.0

0.5

1.0

(b) Single results of configurations
with weighted sum.

Fig. 8: Robustness with respect to configuration. Lower values denote shorter tours.

condition update-cues update-alternatives
min minimalist keep all

elim-min minimalist elimination by aspects
ttb take-the-best keep all

elim-ttb take-the-best elimination by aspects

Table 1: Conditions for iterative decision procedure.

– The elimination by aspects heuristic of Svenson

(1979, p. 90). In each iteration it removes low-

ranked alternatives. We defined “low-ranked” as

being below the mean of the cue value (unless

all alternatives have the same value, then all are
kept). We experimented with other parameters,

such as one or two standard deviations below the

mean, the results were very similar to the ones

shown below.

The conditions are summarized in Table 1. get-

/update-cues now contains some randomness (even

for take-the-best as some cues have the same relevance).

Therefore, each task was now solved 20 times per con-

dition.

Acceptance parameter The approach has several pa-

rameters, some of which are fixed and were justified

in the preceding paragraph. For the parameter η of the

acceptable function, the choice is not so obvious. Fig-

ure 9 shows the performance of the ttb condition for dif-

ferent choices of η (the other conditions reveal a similar

picture).

The data suggests that it is beneficial to use a low

acceptance threshold. For the take-the-best update func-

tion, this makes sense as the (presumably) better cues

are used first and if their decision is not used, the less

reasonable cues make the decision. For the minimal-

ist update function, this argument does not hold, but

since the cues are used in random order, waiting for

other cues does not in general bring any benefit either.

Also from a computational point of view, few iterations

are preferable.

Quality Figure 10 shows the result of testing the four

conditions of Table 1 with η = 0.1, Figure 10a showing

the best runs from each of the 20 runs per task, and

Figure 10b the worst runs. Be aware that the y-axis

shows different ranges, in Figure 10a all median values

are below 0, in Figure 10b, most of them are above 0.

Condition min can lead both to very good and very

poor results, depending on the random choice of cues.

The elimination of alternatives stabilizes the behavior

significantly. The poorest results of condition elim-min

are only slightly worse than the best ones. But this sta-

bilization also removes the positive outliers of condition

min. Possibly, in some cases the best decision is one

that is evaluated poorly by most cues and good by few.

By eliminating alternatives, a kind of aggregation sets

in, which removes the positive as well as the negative

outliers.

Condition ttb performs comparably to elim-min. In-

terestingly, adding elimination of aspects leads to re-

sults similar to those of min. One might conclude that

good results can be obtained either by a good ranking

of cues (ttb vs. min) or by elimination of alternatives

(elim-min), when such knowledge is not available. The

A Unifying Computational Model of Decision Making 13

0.01 0.1 0.25 0.5 0.75 1.0 2.0

Relative acceptance limit

3

2

1

0

1

2

3

4

N
um

be
r o

f e
xp

er
ts

 in
 o

pt
im

iz
ed

 c
on

fig
ur

at
io

n

Fig. 9: Acceptance parameter η for ttb condition.

min elim-min ttb elim-ttb
3.0
2.5
2.0
1.5
1.0
0.5
0.0
0.5
1.0
1.5

no
rm

al
iz

ed
 P

A
O

(a) best runs

min elim-min ttb elim-ttb
2

0

2

4

6

8

no
rm

al
iz

ed
 P

A
O

(b) worst runs

Fig. 10: Different variants of one-good-reason heuristics

with acceptance parameter η = 0.1.

question remains of how to obtain the positive outliers

(or produce more of those) of min and elim-ttb.

Summary of Iterative Methods The parameterization of

the cue ordering and whether to eliminate unpromising

alternatives, has a notable effect in the TSP domain.

With the general decision procedure many more vari-

ations are possible, like using two cues per iteration,

combined with different aggregation functions for those

cues. Also the generation of alternatives could be ex-

plored in different directions.

We have shown some of the possibilities of using the

model on the Traveling Salesperson Problem. The ap-

proaches were compared relative to each other rather

than to a static baseline such as human performance

data. One reason is the difficulty of finding a metric.

The PAO measure that we used here is known to be

unfit to compare to human solutions (Tak et al., 2008),

but there is no generally agreed alternative metric for

doing so. The other reason is that none of our instanti-

ations of the model can compete with human solutions.

People adapt their strategy not only to the problem,

but it seems even to a particular situation in the so-

lution process. As we will see in the next section, our

model is powerful enough to encompass this change of

strategies. But we know of no representation that would

encode a solution step in a generalized way to allow for

a situation-specific choice of parameters. The field of

qualitative reasoning might offer a way to solve this in

the future (Wolter and Kirsch, 2015).

5 The Adaptive Model

The model of Section 2.2 can be parameterized into

different kinds of heuristics as we have seen in the case

14 Alexandra Kirsch

def decide (a, c, p,
aggregate-and-order,
acceptable,
update-alternatives,
update-cues,
update-parameters):

M ← fill-decision-matrix(a, c)
r← call(aggregate-and-order,M,p)
a∗ ← first(r)
if call (acceptable, a∗, r,M,p):
return a∗

else:

decide (call (update-alternatives, a, M),
call (update-cues, c, M),
call (update-params, p, M),
∗reconfigure (aggregate-and-order,

acceptable,
update-alternatives,
update-cues,
update-parameters,
a∗, r, M , p))

Fig. 11: Adaptive model of heuristic decision-making.

call is a second-order function that applies the func-

tion given as its first argument to the remaining argu-

ments; ∗ denotes an unpacking operator like the one in

Python, i.e. the list of functions returned by recon-

figure is unpacked into single arguments to match the

signature of decide.

study. However, it seems clear that people choose their

strategies, i.e. heuristics, for making choices according

to the situation.

We can extend our model to allow for such adapta-

tions in each decision and even in each decision cycle.

In the algorithm in Figure 11 the functions that dis-

tinguish different heuristics (aggregate-and-order,

acceptable) are passed as arguments to the algorithm

and can thus be changed in every iteration cycle. Es-

pecially in cognitively demanding tasks, people change

their representation of the the task (Newell and Simon,

1972). Passing the update-. . . functions as part of the

configuration, allows for such a change in the sense

that strategies for retrieving cues and alternatives from

memory or the environment can be adapted in each

cycle.

The update of the functional parameters in this

extended algorithm is performed in one function re-

configure5. The reason is that these choices are in-

terdependent as illustrated in Figure 12. aggregate-

and-order together with parameters such as weight

vectors determines the strategy for combining cue val-

ues. This choice has to fit the one of acceptable (in-

cluding parameters). For example an absolute thresh-

5 One could go further and also make reconfigure recon-
figurable.

aggregate-and-order + p

acceptable + p

update-parameters

update-alternatives update-cues

fi
t

eff
ort effort

interact

Fig. 12: Interdependence of function parameters.

old in acceptable only makes sense if aggregate-

and-order works with cue values, not rankings. The

retrieval of alternatives and cues influence each other,

depending on the underlying memory structure. Mov-

ing the attention to a new cue may also lead to new

ideas for further alternatives and vice versa.

Many controversies in current research are encapsu-

lated in this generalization. A configuration of update-

functions, aggregate-and-order and acceptable

corresponds to one heuristic, therefore the dynamic choice

of alternatives corresponds to a choice of heuristics. re-

configure can be used to choose among a fixed set of

configurations (Marewski and Mehlhorn, 2011) or it can

use the full parameter space (Glöckner et al., 2014). In

our view, the choice of the parameters is simply another

decision to make. reconfigure is supposed to produce

a vector of functions for the next iteration. It can do so

by calling decide, generating alternatives of vectors of

the functions and evaluating them. Only at some point,

the recursive call of decide will have to stop, so some

instance of reconfigure will have to be fixed.

6 Discussion and Conclusion

We have presented a unifying computational model of

decision making, covering descriptive theories of human

decision making as well as computational theories of ar-

tifial systems (Simon, 1996). The framework is intended

as a better means to explore, model and simulate dif-

ferent strategies. The instantiation options of the func-

tions are far from trivial. In this paper we have given

some ideas of how to represent cue functions and how

to aggregate different cues using methods from compu-

tational social choice. Some of these methods resemble

the aggregation methods in the literature on heuristic

decision making.

A Unifying Computational Model of Decision Making 15

6.1 Learning

Our model does not contain an explicit learning func-

tionality, but offers different options of adaptation. For

example, in iterative procedures with one cue per it-

eration, the order of the cues can be learned on the

outcome of previous decisions. Simple decision meth-

ods, such as aggregation by voting, may also serve as a

bridge to more refined methods, such as weighted sums:

for a new task the cruder method can be applied, while

each decision provides more experience, from which, in

the long run, weights or other parameters for more so-

phisticated methods can emerge.

Svenson (1979, p. 92) argues in the opposite direc-

tion. He proposes that over time, decision makers de-

velop simplifying methods and apply the more sophisti-

cated methods in new or important situations. The two

views can be reconciled in that decision makers might

learn over time how to configure the decision process

and to know in which situations more costly decision

methods pay off (Rieskamp and Otto, 2006). Svenson

(1979, p. 93) notes that “[. . .] a decision problem may

be more fruitfully viewed as a problem of classification”.

This idea corresponds to a choice by recognition (Klein,

2017), which is in compassed in our model, as discussed

in Section 2.3.

The model currently does not explicitly include feed-

back from observations, which would be necessary for

reinforcement learning. We have implicitely assumed

that the state of the environment and of memory is

globally accessible to all the functions. With this as-

sumption also reinforcement learning would be possible.

However, the assignment of environment observations

to model configurations is usually difficult. For exam-

ple, in the Traveling Salesperson Problem we would first

need a representation of situations rather than problem

instances. Having made a single choice gives only lim-

ited feedback (if we observe that the last edge we added

has led to a crossing, we can infer a negative reward, but

in most situations we have no such feedback). Reward

assignment is a well-known challenge of reinforcement

learning and would have to be tackled in the decision

making context (Rieskamp and Otto, 2006).

6.2 Relation to Cognitive Architectures

This model makes the basic assumption that intelligent

decisions and behavior, both in natural and in artificial

systems, emerge from an iterative process of interacting

entities (Gharajedaghi, 2011). It can be regarded as an

orthogonal view to cognitive architectures: Cognitive

architectures make assumptions about specific compo-

nents and how they interact, where usually the com-

ponents are the focus of attention. In our model, the

components are as open as possible (we make no as-

sumption of how alternatives are represented, memory

is organized, or how the strategies are chosen), while

we focus on the wiring as an iterative procedure.

6.3 Engineering Perspective

From an engineering point of view, the model provides

a structure that may help to make decisions that are

better understandable for people. A program might ex-

plicitly display the alternatives and cues considered.

This can also open possibilities of mixed-initiative prob-

lem solving of collaborating humans and computers.

However, parameters such as aggregation function or

weights, are hard to determine for users. The different

choices for the components of the model constitute new

parameters that again have to be optimized for or that

have to be set by people. Learning or classification ap-

proaches are necessary to relieve users and developers

from this choice.

We have presented a specific example of a compu-

tational decision-making process for TSP solving. The

results are not intended to be generalized to other tasks

and we have by far not explored the whole spectrum of

instantiations of the algorithm. One especially interest-

ing path is to examine noncommensurable aggregation

methods for cues. Compromises as in weighted sums

(which are the predominant method of attribute inte-

gration in artificial intelligence) can lead to acceptable

average results, but may fail in special cases. As an ex-

ample, we have used the Heuristic Problem Solver for

robot navigation (Kirsch, 2017), where the alternatives

are possible control commands and cues contain con-

siderations such as moving towards the goal, moving

forwards (instead of side- or backwards), and staying

away from obstacles. If the robot starts in a narrow

space with its back to the goal position, it sometimes

doesn’t move at all, because the urge of moving towards

the goal is canceled out by the urge to move forward

and to stay away from obstacles. A noncommensurable

strategy might help to make sure that the robot moves

at all.

6.4 Open Questions

While our model provides a unifying view on the pro-

cess of decision making, it says nothing about some es-

sential aspects of the process: representation of situa-

tions and memory organization and retrieval, and the

role of habits (Wood and Neal, 2007).

16 Alexandra Kirsch

These interlinked aspects are still poorly understood.

The research community should invest more effort in

understanding these basic mechanisms of cognition, not

just in the context of decision making. Marewski and

Mehlhorn (2011) illustrate the benefits of explicitly mod-

eling memory access to better understand human deci-

sion making.

The presented use case of the Traveling Salesperson

problem is suffering from this white spot in our under-

standing. From our data (Rach and Kirsch, 2016) we see

that people use different strategies throughout one TPS

instance and change their strategies when repeating in-

stances. But we know neither how people represent a

situation in the solution process nor how they man-

age to retrieve only such options from memory that are

most promising.

The generation of promising alternatives and cues is

core to make a decision process work. Maybe because

our understanding of this process is so limited, engi-

neers are still adhering to rational methods of decision

making that simply assume that all alternatives are ac-

cessible at the same time. But both our understanding

and use of decision processes would be greatly improved

by understanding how people manage to consider very

good alternatives first (March, 1988).

In sum, our model provides a general framework for

research on human heuristics as well as decision making

in artificial intelligence. We have given some ideas for

instantiating the framework and using it in a compu-

tational context. There are many more ways in which

this model can be instantiated and used in the future.

Acknowledgements With the support of the Bavarian
Academy of Sciences and Humanities.

Compliance with Ethical Standards

The author has no conflicts of interest. The research

involved no human participants or animals.

References

Ariely, D. (2010). Predictably irrational: The hidden

forces that shape our decisions. Harper Perennial,

New York.

Banzhaf, W., Nordin, P., Keller, R., and Francone, F.

(1998). Genetic Programming — An Introduction.

Morgan Kaufmann, San Francisco, CA.

Brandt, F., Conitzer, V., Endriss, U., Lang, J., and Pro-

caccia, A. D., editors (2016). Handbook of Computa-

tional Social Choice. Cambridge University Press.

Gharajedaghi, J. (2011). Systems Thinking: Managing

Chaos and Complexity. Morgan Kaufmann, 3rd edi-

tion.

Gigerenzer, G. (2001). The adaptive toolbox. In

Gigerenzer, G. and Selten, R., editors, Bounded ratio-

nality: The adaptive toolbox. MIT Press, Cambridge,

MA.

Gigerenzer, G. and Brighton, H. (2009). Homo heuristi-

cus: Why biased minds make better inferences. Top-

ics in Cognitive Science, 1:107–143.

Gigerenzer, G. and Goldstein, D. G. (1999). Betting

on one good reason: The take the best heuristic.

In Gigerenzer, G., Todd, P. M., and the ABC Re-

search Group, editors, Simple Heuristics That Make

Us Smart. Oxford University Press.

Glöckner, A., Hilbig, B. E., and Jekel, M. (2014).

What is adaptive about adaptive decision making?

a parallel constraint satisfaction account. Cognition,

133:641–666.

Graham, S. M., Joshi, A., and Pizlo, Z. (2000). The

traveling salesman problem: A hierarchical model.

Memory & Cognition, 28(7):1191–1204.

Hertwig, R., Hoffrage, U., and Martignon, L. (1999).

Quick estimation: Letting the environment do the

work. In Gigerenzer, G., Todd, P. M., and the

ABC Research Group, editors, Simple Heuristics

That Make Us Smart. Oxford University Press.

Huber, O. (1979). Nontransitive multidimensional pref-

erences: Theoretical analysis of a model. Theory and

Decision, 10:147–165.

Katsikopoulos, K. V. and Martignon, L. (2006). Näıve

heuristics for paired comparisons: Some results on

their relative accuracy. Journal of Mathematical Psy-

chology, 50(5):488–494.

Keller, N. and Katsikopoulos, K. V. (2016). On the role

of psychological heuristics in operational research;

and a demonstration in military stability operations.

European Journal of Operational Research, 3:1063–

1073.

Kirsch, A. (2011). Humanlike problem solving in the

context of the traveling salesperson problem. In

AAAI Fall Symposium on Advances in Cognitive Sys-

tems.

Kirsch, A. (2012). Hierarchical knowledge for heuris-

tic problem solving — a case study on the traveling

salesperson problem. In First Annual Conference on

Advances in Cognitive Systems.

Kirsch, A. (2016). Heuristic decision-making for

human-aware navigation in domestic environments.

In 2nd Global Conference on Artificial Intelligence

(GCAI).

Kirsch, A. (2017). A modular approach of decision-

making in the context of robot navigation in domestic

A Unifying Computational Model of Decision Making 17

environments. In 3rd Global Conference on Artificial

Intelligence (GCAI).

Klein, G. (2017). Sources of Power: How People Make

Decisions. The MIT Press. MIT Press.

Kotseruba, I. and Tsotsos, J. K. (2016). A re-

view of 40 years of cognitive architecture research:

Core cognitive abilities and practical applications.

arXiv:1610.08602.

Langley, P. (2017). Progress and challenges in research

on cognitive architectures. In Proceedings of the

Thirty-First AAAI Conference on Artificial Intelli-

gence (AAAI-17).

Lee, M. D. and Newell, B. R. (2011). Using hierarchical

bayesian methods to examine the tools of decision-

making. Judgment and Decision Making, 6(8):832–

842.

MacGregor, J. and Ormerod, T. (1996). Human perfor-

mance on the traveling salesman problem. Perception

& Psychophysics, 58(4):527–539.

MacGregor, J. N. and Chu, Y. (2011). Human perfor-

mance on the traveling salesman and related prob-

lems: A review. The Journal of Problem Solving, 3(2).

March, J. G. (1988). Bounded rationality, ambiguity,

and the engineering of choice, pages 33–57. Cam-

bridge University Press.

Marewski, J. N. and Mehlhorn, K. (2011). Using the

act-r architecture to specify 39 quantitative process

models of decision making. Judgment and Decision

Making, 6(6):439–519.

Marewski, J. N. and Schooler, L. J. (2011). Cogni-

tive niches: An ecological model of strategy selection.

Psychological Review, 118(3):393–437.

Newell, A. (1982). The knowledge level. Artificial In-

telligence, 18:81–132.

Newell, A. and Simon, H. (1972). Human Problem Solv-

ing. Prentice Hall, Upper Saddle River, New Jersey.

Rach, T. and Kirsch, A. (2016). Modelling human prob-

lem solving with data from an online game. Cognitive

Processing, 17(4):415–428.

Rieskamp, J. and Hoffrage, U. (1999). When do people

use simple heuristics and how can we tell? In Gigeren-

zer, G., Todd, P. M., and the ABC Research Group,

editors, Simple Heuristics That Make Us Smart. Ox-

ford University Press.

Rieskamp, J. and Otto, P. E. (2006). Ssl: A theory

of how people learn to select strategies. Journal of

Experimental Psychology: General, 135(2):207–236.

Russo, J. E. and Dosher, B. A. (1983). Strategies

for multiattribute binary choice. Journal of Exper-

imental Psychology: Learning, Memory, Cognition,

9(4):676–696.

Shah, A. K. and Oppenheimer, D. M. (2008). Heuristics

made easy: An effort-reduction framework. Psycho-

logical Bulletin, 134(2):207–222.

Simon, H. A. (1956). Rational choice and the structure

of the environment. Psychological Review, 63(2):129–

138.

Simon, H. A. (1996). The Sciences of the Artificial.

MIT Press, 3rd edition.

Svenson, O. (1979). Process descriptions of decision

making. Organizational Behavior and Humand Per-

formance, 23:86–112.

Tak, S., Plaisier, M., and van Rooij, I. (2008). Some

tours are more equal than others: The convex-hull

model revisited with lessons for testing models of the

traveling salesperson problem. The Journal of Prob-

lem Solving, 2(1).

Tenbrink, T. and Wiener, J. (2009). The verbalization

of multiple strategies in a variant of the traveling

salesperson problem. Cognitive Processing, 10:143–

161.

Wolter, D. and Kirsch, A. (2015). Leveraging qual-

itative reasoning to learning manipulation tasks.

Robotics, 4(3):253–283.

Wood, W. and Neal, D. (2007). A new look at habits

and the habit-goal interface. Psychological Review,

114(4):843.

Zwicker, W. S. (2016). Intoruction to the Theory of

Voting, chapter 2. Cambridge University Press.

