Ivo Chichkov
email: ivo.chichkov@student.uni-tuebingen.de

Alexandra Kirsch
email: alexandra.kirsch@uni-tuebingen.de

A Short-Term Memory for Deliberative Agents in Everyday Environments

Humans have the impressive capability to efficiently find near-optimal solutions to complex, multistep problems. AI planning can model such problems well, but is inefficient for realistic problems. We propose to use AI planning in combination with a short-term memory, inspired by models of human short-term memory, to structure real-world problem domains and make the planning process more efficient, while still producing satisficing solutions. We evaluate the method in the domain of a household robot.

Introduction

Machines still lack the ability to generate solutions for everyday problems that fulfill the standard of human problem solving, be it personal schedule organizers, route guidance systems or autonomous robots. All of these applications need some degree of goal-directed reasoning as it is available in existing reasoning frameworks such as AI planning. But in a typical household we find hundreds of objects like shoes, toothbrushes, pots, plants, etc., allowing for a large number of actions. While current AI planners can solve problems to a certain size (near-)optimally, the state space implied by a realistic household is beyond anything that is possible today or in the near future.

Yet humans are well capable of dealing with household tasks, even though their computational resources are restricted, possibly more than those of computers, for example in terms of working memory capacity.

In the environments humans usually work and live in, the goal is not optimality, but rather efficiency and flexibility. One striking restriction in human computational resources is the limited capacity of working memory. We conjecture that this phenomenon is not just a curse, but may (partly) be a blessing. Assuming that humans can only access the knowledge in working memory, any search they may perform is naturally restricted to a small search space.

In this paper we explore how available, well-developed methods of AI planning can be combined with the concept of short-term (or working) memory from cognitive science to reduce the search space while keeping an acceptable level of plan quality. This goal is fundamentally different from the goal of developing optimal or provably near-optimal planning algorithms. While for some domains, optimality is a crucial factor, in everyday domains such as a household, it is not (as we can see in humans). We show in the example of a household robot domain how planning times can be significantly reduced with a short-term memory module, while still producing adequate solutions to planning problems, even with a simple memory management strategy.

Memory Models

Memory has always been a widely discussed topic in the study of human cognition. Experimental results have stimulated the formulation of different models of memory. The following is a a brief overview of the most influential ideas from psychology.

Organization of Memory

Some models regard memory organization as a collection of separate storage components. In the Multi-Store Model of Atkinson and Shiffrin [START_REF] Atkinson | Human memory: A proposed system and its control processes[END_REF], [12, p.6] memory consists of the sensory register, the short-term store and the long-term store. Information first enters memory through the sensory register. Attentional processes determine which information will enter the shortterm store. Rehearsal processes are responsible for maintaining information in the short-term store. Finally, some of the information maintained in the short-term store gets transferred to the long-term store.

The idea of multiple stores has been further developed by Baddeley and Hitch [START_REF] Baddeley | Working memory[END_REF]. In their Multicomponent Model the short-term store (or short-term memory) is replaced with a more complex component called working memory. The term working memory was introduced in order to emphasize the fact that this part of memory is not merely a passive storage component. Baddeley and Hitch's working memory consists of additional components such as the phonological loop and the visuo-spatial sketchpad. These are responsible for the temporary storage and processing of auditory and visual information.

The models presented so far assume a strict separation between the different parts of memory; memory items are transferred from one component to another.

A different type of memory organization assumes a fuzzy boundary between the different components like short-term or long-term memory. The Embedded-Processing-Model [START_REF] Cowan | An embedded-processes model of working memory[END_REF] divides memory into three layers: the long-term store, the activated memory and the focus of attention. The items are not transferred between different parts of memory. Instead, a part of long-term memory resides in an activated state. In contrast to Multi-Store models there is no limitation on the amount of items that can be activated simultaneously. However, activated memory is subject to time limitations -if activation is not maintained, items reside in activated memory for about 10-30 seconds. The innermost layer of the model is the focus of attention. In Cowan's model the focus of attention is limited to three to four items that can be attended to simultaneously.

Retrieval and Forgetting

Retrieval can be described as the process by which represented information from the inactive portion of memory (i.e. the long-term store) becomes activated. Incoming stimuli play the role of cues. These are pieces of information that are associated with knowledge in the inactive part of memory, also called targets. As soon as the cue stimulus is observed, retrieval processes are initiated that lead to the activation of the associated targets. Every stimulus that we are exposed to may lead to the conscious or subconscious activation of inactive memories [START_REF] Cowan | An embedded-processes model of working memory[END_REF].

Forgetting can be understood as a time-based or as an event-based mechanism [START_REF] Oberauer | Forgetting in immediate serial recall: Decay, temporal distinctiveness, or interference?[END_REF]. Another explanation for the lost access to memories is the displacement or overshadowing of items by other items in memory [11, p. 271].

Units of Memory and Memory Capacity

The units of information stored in memory are sometimes called memory items.

Miller [START_REF] Miller | The magical number seven, plus or minus two: some limits on our capacity for processing information[END_REF] suggested that there is a limit on the amount of items that can be stored in short-term memory and that this limit is 7 ± 2 items. Related information can be combined to bigger information units (chunks), allowing for the storage of larger amounts of information.

More recent approaches [START_REF] Alvarez | The capacity of visual short-term memory is set both by visual information load and by number of objects[END_REF] have suggested that there is no fixed limit on the number of items, but there is an "information limit on working memory, which would predict a trade-off between the number of items stored and the fidelity with which each item is stored". Basically, this means that more items can be stored if some of them are encoded in less detail.

Computational Models of Memory

Computational models of memory have been studied in the context of cognitive architectures [START_REF] Langley | Cognitive architectures: Research issues and challenges[END_REF]. These architectures are motivated by modeling human cognitive abilities and thus contain very detailed memory models.

For example, ACT-R [START_REF] Anderson | ACT: A simple theory of complex cognition[END_REF] has different (long-term) memory stores for visual processing, goals and declarative knowledge. Short-term memory is modeled by buffers for each of these longterm stores [START_REF] Langley | Cognitive architectures: Research issues and challenges[END_REF]. Similar to our model, ACT-R reduces the space of possible actions by matching production rules to the content in the short-term memory buffers.

Soar [START_REF] Derbinsky | Effective and Efficient Forgetting of Learned Knowledge in Soar's Working and Procedural Memories[END_REF] differentiates between episodic and semantic memory. It comprises a working memory, where (de-)activation of items is driven by the Soar decision process and includes different cognitive mechanisms such as temporal decay [START_REF] Derbinsky | Effective and Efficient Management of Soar's Working Memory via Base-Level Activation[END_REF].

Icarus [START_REF] Langley | A Design for the ICARUS Architecture[END_REF] uses a hierarchical, ontology-like long-term memory structure, where the assignment of objects to classes is probabilistic. Whereas ACT-R and Soar use production rules as the basic decision-making process, Icarus works with goals and plans. It uses a hierarchical plan structure with transformational planning. Thus, it comes closest to the decision-making method of PDDLMemory, but does not fit directly into standard AI planning based on PDDL. Icarus stores the agent's beliefs in short-term memory, which trigger concepts in the long-term memory structure. The reasoning can thus use any object in long-term memory if it is accessible via the activation of a currently held belief.

All these architectures support sophisticated models of long-and short-term memory, closely modeling human cognitive processes. In contrast, PDDLMemory is a lightweight extension of AI planning, making use of existing tools. In this context we can specifically examine the effect of a short-term memory without considering interactions with other cognitive modules.

The Planning Domain Definition Language

In general, a planning problem is defined by a transition system S, O, γ with states S, operators O and a state transition function γ : S × O → S. Given a start state s 0 and a specification of a set of goal states S g , the task is to find a plan Π

= (o 1 , o 2 , . . . , o n), o i ∈ O, so that the successive application of o 1 , . . . o n starting from s 0 results in a state s f ∈ S g .
The Planning Domain Definition Language PDDL [START_REF]McDermott and the AIPS-98 Planning Competition Committee. PDDL -the planning domain definition language[END_REF] is the standard language for stateof-the-art planners. It has been developed along with the International Planning Competition and has been extended to incorporate sophisticated representations beyond classical planning such as time and uncertainty. We only use the basic deterministic version of PDDL in this paper.

In PDDL states are represented by predicates P over typed object variables V. Operators are defined abstractly as actions A with a type signature and state transition function γ. Actions ; Own Location (is -at ? l -Location ? o -Object)

;

Location of Object (is -in ? r -Room ? l -Location) ; Location is in Room (is -dirty -loc ? l -Location) ; Location is dirty (is -dirty -mobj ? mo -MovableObject) ; Object is dirty (is -attached ? mo -MovableObject) ; Object is not movable (is -intact ? lb -Lightbulb) ; Lightbulb is intact (is -working ? l -Lamp))
; Lamp is working ...) are patterns of operators that are instantiated by the planner. PDDL differentiates between domain definitions, containing the specification of types, predicates and actions, and problem definitions, defined by a list of available objects, the start state and a set of goal predicates.

The following example of a household environment serves to illustrate the components of PDDL and will be used throughout the paper.

Figure 1 shows the definition of types and predicates from our PDDL domain definition file. We further define the following actions:

• go (to location in room)

• move (object to location in room)

• clean (location with cleaning product)

• change-lightbulb (in lamp with lightbulb)

For the planning problem we define an apartment with different rooms as shown in Figure 2(a). Each room has a set of distinctive locations and objects. Table 2(b) gives an overview of the size of this problem definition.

In this domain, the robot has a set of goals such as preparing tea utensils, putting away shoes or cleaning the bathroom. In our trials, we assume that the robot has a given list of chores it has to fulfill over the day, modeled as a conjunction of the individual goals. But the system is designed with the possibility in mind that a user could add or remove goals at any time.

Approach

We first sketch the mechanisms that differentiate planning with PDDLMemory from classical AI planning, matching the goals described in Section 1. First, we transform the PDDL problem description to basic units of PDDLMemory -items and chunks. The initial decomposition into chunks is similar to the decomposition of a problem into subproblems [START_REF] Sebastia | Decomposition of planning problems[END_REF] in the sense that both approaches aim for a problem representation that corresponds to a partition of the original problem. However, the subproblems defined by chunks are not necessarily independent. In our implementation, solving a subproblem may involve accessing information from different chunks.

Second, planning with PDDLMemory proceeds in iterations, each solving a different simplified version of the overall problem, depending on the activated items in memory. The fact that some of the simplified problems cannot be solved, is taken into account by the iterative procedure and the assumption that the environment is dynamic, so that changes are rather beneficial to this approach, enabling the agent to use new information to fulfill its goals.

The PDDLMemory Module

PDDLMemory follows roughly the embedded processing model of Cowan, but with only two layers of active and inactive memory. We chose this model, because we embrace the idea that the items in short-term store are pointers (and not copies) to items in long-term store and that the model imposes no general restriction on the size of the activated portion of memory (whereas multi-component models rely on the 7 ± 2 rule), leaving the capacity as an open parameter. Even though we work with a fixed memory size in this paper, the model allows further research into the optimal capacity of the active memory.

Following the literature [START_REF] Chase | Perception in chess[END_REF], we call basic units of knowledge that can be stored in memory items. Several items may be combined into a chunk. The basic units of information in PDDL are facts and goal predicates, thus they are considered as items. A set of facts (PDDL predicates) and and a set of goals may constitute a chunk c = P c , G c . Actions are currently assumed to be known universally, but they could be modeled as memory items as well.

The PDDL domain definition is considered as background knowledge, independent from the knowledge in active memory, whereas the initial state and goal state of a problem are represented by the current content of active memory. Knowledge can be activated or deactivated on the level of chunks.

Implementation of Chunks as Place Nodes

In our household domain we chose to model chunks according to places. Psychological studies of human memory show that environmental context plays an important role for storage and retrieval [12, p.176]. Places do not necessarily have to represent a geographical entity. They can include geographical information such as landmarks and directions, but can also be associated with other sensory cues or actions that may be carried out at that place [START_REF] Hanspeter | Embodied spatial cognition: Biological and artificial systems[END_REF].

We have modeled places corresponding to the rooms in our environment. By defining connections between those places, we derive a topological map, a representation that has also been assumed to be used by humans and animals [START_REF] Hanspeter | Embodied spatial cognition: Biological and artificial systems[END_REF]. We define a PlaceNode as a subclass of a Chunk, representing a specific room in the modeled apartment. It contains all the facts relevant in this room as well as a set of goals that affect primarily this specific room.

The PDDLMemory Iteration Loop

Planning with PDDLMemory proceeds in three phases: a retrieval phase, a planning phase and a plan integration phase (Figure 3).

As input, PDDLMemory needs a domain and problem description V, P, A, s 0 , S g . The domain definition is universally known, independent from the current content of the activated memory. The same holds for some parts of the problem, e.g. the layout of the apartment, which we model by a universally known chunk c. All chunks are stored a priori in the inactive memory M i .

PDDLMemory is a Python program that parses the fact and goal definition files and combines them internally into chunk objects (mapping the directory structure to chunks). A chunk object has a state -active or inactive. For the retrieval phase, all chunks are first reset to an inactive state, and then a number of chunks corresponding to the capacity of short-term memory are marked as active. Thus, the activated memory of capacity n can be represented by a set of chunks M a = {c 1 , . . . , c n } by applying a function Ψ to the set of available chunks in inactive memory, thus M a ← Ψ(M i), M i ← M i \ M a . The strategy for activating chunks is described in Section 4.4.

In the planning phase, PDDLMemory transforms the activation pattern back to PDDL files by copying the facts and goal predicates of all activated chunks into the default problem definition file, generating a new planning problem V, P, A, s 0 , S g , where s 0 = P ci , c i = P ci , G ci , c i ∈ M a ∪ {c} is a subset of s 0 and S g = G ci is a subset of S g . Since the initial state s 0 must be a complete assignment of truth values to variables, the set of variables V ⊆ V and predicates P ⊆ P is reduced accordingly. This problem definition is passed to an AI planner, thus only providing globally known information and the knowledge in active memory.

If the planning is successful, the resulting plan π could directly be executed. However, in our experiments, where we compare PDDLMemory to planning with complete knowledge, we store the plan as a partial plan. When k partial plans have been found to fulfill all goals, the partial plans π i are combined into a complete plan by concatenation, thus Π = π 1 • π 2 • • • • π k (plan integration phase).

Memory Management

Memory management in our model favors the integration with deliberative architectures in realistic everyday environments.

In a realistic environment, a robot moves through the world when trying to achieve its goals. By moving through the environment, a robot senses its world and can use the newly acquired sensor information to activate memory items. Recall that items in our model are clustered into chunks, where each chunk is a PlaceNode representing a room in the appartment.

Every time a robot enters a room, the corresponding PlaceNode, i.e. the robot's knowledge of that room, is activated. The robot can use this knowledge during the planning phase to solve a task in that room. There are, however, more complex multi-chunk goals, which need knowledge from several chunks. For example, when the robot has to clean the bathroom, but has no knowledge about where to find the cleaning products, it can either pursue some other task or randomly explore its environment until at some point it enters the closet. This would activate its knowledge about cleaning products and remind it of the previously suspended goal.

Due to short-term memory constraints mentioned in Section 4.1 the number of chunks that can be activated simultaneously is limited. Thus the contents of short-term memory has to be managed by processes of forgetting and activation.

The forgetting process in PDDLMemory is binary -chunks are either activated or they become part of the inactive portion of the long-term store. Unlike some cognitive architectures, we do not implement a time-based decay mechanism. It should be noted that as a rule of thumb we forget everything at the end of every main iteration. As a consequence, the process of activation plays an important role in our model.

To activate chunks we apply a function Ψ to the set of available chunks M i stored in inactive memory. Thus the activated memory of capacity n can be represented by a set of chunks

M a = {c 1 , • • • , c n }, where M a ← Ψ(M i), M i ← M i \ M a .
In our current implementation we use the most generic option for Ψ, randomly selecting chunks for activation. We show in Section 5 that it suffices to obtain efficient and satisficing planning results, but that domainspecific associations can improve efficiency significantly.

A simple way of improving Ψ is by introducing a weighting factor α, α > 1. With n chunks, m of which are reinforced, a non-reinforced chunk has probability p = 1 n+(α-1)m of being selected as the first chunk, while a reinforced chunk is selected with probability p r = α n+(α-1)m . The chunks are selected sequentially (without replacement) until the memory capacity is exhausted. We have tested the applicability of the weighting factor by reinforcing chunks that contain unfulfilled goals.

The interplay between forgetting chunks immediately and reactivating chunks based on the weighting factor results in a rehearsal-like process that resembles the rehearsal processes found in different models of human memory (see Section 2).

For now, we have not integrated our PDDLMemory module with an autonomous robot, in order to better be able to compare the planning abilities with and without the memory module. Therefore, we simulate the dynamic exploration of the environment by randomly activating chunks using a generic Ψ function. Another possibility to select new chunks to be activated is by association, which would require the knowledge base to contain some structure of associations between chunks. We want to explore this possibility in future work and also integrate our module with an autonomous robot making use of actual sensory information.

Evaluation

We compared PDDLMemory with planning without memory restrictions, measuring efficiency by planning time and plan quality by plan length. We also investigated the number of iterations needed to fulfill all goals with the simple probabilistic choice of chunks. For all experiments we used the Fast-Forward planner1 [START_REF] Hoffmann | The FF Planning System: Fast Plan Generation Through Heuristic Search[END_REF] and a memory capacity of four.

For the following experiments, we used problem sizes of one to five randomly selected goals, generating 20 instances per problem size. Figure 4(a) compares the planning times required by the Fast-Forward planner with and without PDDLMemory. In both cases, the planning time increases with the number of goals, but PDDLMemory significantly flattens the gradient, even though it requires more iterations with an increasing number of goals. For five goals, a plan is found about three times faster with PDDLMemory.

Figure 4(b) compares the lengths of the resulting plans. As PDDLMemory solves the goals in isolation, we had expected an increase in plan length. However, this increase turned out to be very slight. This may be due to our specific domain where the goals are rather independent and the only possible synergies are the movements between places. This phenomenon seems to be characteristic of everyday environments, so that there is practically no loss of plan quality. But this depends on the domain and needs to be confirmed for other domains and problem sizes.

Figure 4(b) also shows the portion of problems that were solved. For this experiment, PDDLMemory was given a maximum of 100 iterations to solve all the goals. In some cases, this was not sufficient and one or more goals remained unsolved.

We then examined the necessary number of iterations to fulfill all five test goals. Figure 4(c) visualizes the remaining goals against the PDDLMemory iterations. To achieve five goals, about 100 iterations were needed. This number looks quite high, but as the single planning problems are small, the overall run time is only affected slightly (cp. Figure 4(a)).

In our domain, the chunk corresponding to the corridor (Fig. 2(a) on page 5) is necessary for many goals, because the robot has to pass through the corridor in order to get utensils from other rooms. To see how much this affects the needed iterations, we ran the same experiment, but with the corridor chunk having a probability of 1 to be activated (reducing the memory capacity for other chunks to three). Now the five goals are achieved with 30-40 iterations.

This alteration of always keeping the corridor chunk in memory is very specific to our domain. But it shows that it may be beneficial to make some knowledge universally known. An association structure between chunks could have a similar effect, because the corridor is adjacent to all other rooms and would thus have a high probability of being activated by association.

Related Work

The efficiency gain of PDDLMemory is achieved by reducing the state space, an idea that has been used in different methods in AI planning. Hoffmann et al. [START_REF] Hoffmann | Ordered landmarks in planning[END_REF] suggested to use landmarks as a strategy for problem decomposition. A landmark generation graph decomposes a planning task into smaller subgoals and iteratively determining those landmarks that are achievable in the next step, passing them as a disjunctive goal to a base planner. The landmark approach provides good results for some tasks, nevertheless it often generates very long plans and sometimes finds no solution for solvable tasks [START_REF] Richter | The LAMA planner: Guiding cost-based anytime planning with landmarks[END_REF]. Sebastia et al. [START_REF] Sebastia | Decomposition of planning problems[END_REF] suggest an improved problem decomposition technique, STeLLa, which is also based on landmarks. They obtain plans with similar or even better quality than plans obtained when solving the problem without decomposition. A preprocessing step, however, introduces additional overhead, which for some problems takes more time than solving the original problem.

PDDLMemory is a specific, cognitively inspired case of automatic domain transformation. For instance, Areces et al. [START_REF] Eduardo Areces | Optimizing Planning Domains by Automatic Action Schema Splitting[END_REF] introduce a method for splitting large action definitions. In PDDLMemory, actions are currently regarded as monolithic items that are always known. But the knowledge representation could be extended to include actions in chunks and possibly use different versions of an action in different chunks to mirror the demands of each place and at the same time accelerate the planning process.

Open-world planning assumes that goals and facts get known during the plan execution. Talamadupula et al. [START_REF] Kartik Talamadupula | Planning for Human-robot Teaming in Open Worlds[END_REF] propose open world quantified goals as a means to use standard AI planners in open worlds. In contrast, PDDLMemory supports open-world planning by modularizing goals. When new goals or facts become known, they are added to the inactive memory M i and may be activated in the next iteration cycles. Thus, new or changed knowledge is smoothly integrated into the iterative solution process. also the execution is supposed to be more reactive by executing subplans as soon as they are known. We only combined the plans into one overall plan in this paper as a basis for comparison.

Related to open-world planning is contingent planning, in which some information has to be actively acquired by the agent as part of the planning process [START_REF] Maliah | Partially Observable Online Contingent Planning Using Landmark Heuristics[END_REF]. PDDLMemory follows an optimistic approach, in which the robot will sooner or later sense the necessary information and we have shown that even a simple randomized activation scheme leads to acceptable solutions in our apartment domain.

The Switching Planner [START_REF] Hanheide | Exploiting Probabilistic Knowledge under Uncertain Sensing for Efficient Robot Behaviour[END_REF][START_REF] Göbelbecker | A switching planner for combined task and observation planning[END_REF] combines AI planning with a decision-theoretic planner. In this case, the AI planner is the fast processing step, abstracting from the underlying uncertainties in the world. In critical situations, the decision-theoretic planner takes over to plan with probabilistic states for a limited number of steps into the future. The size of the state space given to the decision-theoretic planner is carefully chosen based on entropy. Here, the problem size is actively controlled for, while in PDDLMemory the problem size is indirectly limited by the number of available chunks and the knowledge modeled into the individual chunks.

Discussion and Future Work

The work presented here is a first step to better understand how the notion of a short term memory can be used in combination with AI techniques such as planning to enable autonomous agents to make useful, timely decisions in everyday situations.

We have shown in a specific household domain that a cognitively inspired memory model significantly accelerates planning without compromising plan quality. The method is aimed at dynamic, open-world environments, where planning efficiency is important and the piecewise fulfillment of small goals is an additional advantage. However, the domain definition requires additional workload to structure the available knowledge into chunks. The generalizability of our results can only be demonstrated when used with different environments, which we plan to do in future work.

In addition, we will use PDDLMemory in a more realistic setup with a household robot that can execute the plans in an uncertain, dynamic world and receive new goals from a user while performing its chores.

With more experience in different domains, a more theoretical basis and analysis of the method should be another future step. Such an analysis could contribute to a better understanding of the types of problems that can profit from this approach, as opposed to more formalized problems that need optimal solutions. A deeper analysis is also necessary to determine adequate sizes and other requirements for chunks. Putting all knowledge into a single chunk would lead to the original large planning problem, whereas disregarding chunks completely and working on the level of single predicates as independent items would increase the number of necessary iterations. Also the definition of chunks can fulfill other roles in a system. For example, a chunked knowledge structure could make the interaction with a user more intuitive.

In our example domain, most of the goals were single-chunk goals. The multi-chunk goal for cleaning the bathroom could also be handled, even with the randomized method for memory management. But we cannot claim that this method scales to intricate domains with many and large multi-chunk goals. However, for our purposes of acting in everyday dynamic worlds, this seems to be acceptable. On the one hand, most everyday activities are indeed rather simple when viewed from an AI planning perspective. For example, in a diary study about routine actions [START_REF] Karg | Low Cost Activity Recognition Using Depth Cameras and Context Dependent Spatial Regions[END_REF], the test person performed only 6 activities (such as preparing food or cleaning the table) in the kitchen every morning over 14 workdays and all activities were done sequentially. On the other hand, errors in everyday activity are usually not disastrous. So in order to achieve human-level intelligence, interference between partial plans can lead to inefficiency, even to errors. But this is acceptable in some domains as long as the errors have no disastrous consequences and the agent can recognize and correct them.

Studies in psychology point to a positive correlation between working memory capacity and general fluid intelligence [START_REF] Conway | A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence[END_REF]. However, working memory capacity is very limited for all human beings, thus a generalization to even higher capacities (let's say, ten) could never be tested in humans. For PDDLMemory we chose a short-term memory capacity of four, but our domain was also rather small compared to real everyday environments. For other environments, a higher memory capacity may be more adequate, it does not have to be in the range of human memory capacity. But we suggest that some limitation of short-term/ working memory capacity has benefits for cognitive agents. For cognitive science this means that in addition to the available evidence, computational models may help to better understand the role of memory capacity and possibly find indications for reasonable boundaries of it.

(

 define (domain apartment) (: requirements : strips : typing) (: types Location MovableObject Person Room -Object Window Floor Door Lightswitch Lamp -Location Lightbulb CleaningProducts -MovableObject) (: predicates (own -location ? l -Location)

Figure 1 :

 1 Figure 1: Type and predicate definitions of the household domain.

 Number of defined locations and objects per room.

Figure 2 :

 2 Figure 2: The household domain.

Figure 3 :

 3 Figure 3: Overview of planning approach with PDDLMemory.

 (a) Planning times with the FF planner with and without PDDLMemory. (b) Plan lengths with the FF planner with and without PDDLMemory. The numbers above the bars show the portion of fully solved problems. (c) Number of necessary iterations to fulfill five goals with PDDLMemory. The nodes show the average values from 10 runs.

Figure 4 :

 4 Figure 4: Experimental results. The error bars show the standard error. For PDDLMemory we compare only plan lenghts of fully solved problems.2

http://fai.cs.uni-saarland.de/hoffmann/2002.html

In cases in which PDDLMemory fails to solve the complete problem, it still generates partial plans for some of the subproblems. These are usually shorter, so they are excluded from comparison.