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Abstract 

A luminous stimulus which penetrates in a retina is converted to a nerve message. Ganglion 

cells give a response that may be approximated by a wavelet.  

We determine a function  which is associated with the propagation of nerve impulses along 

an axon. Each kind of channel (inward and outward) may be open or closed, depending on the 

transmembrane potential. The transition between these states is a random event. Using quantum 

relations, we estimate the number of channels susceptible to switch between the closed and 

open states. Our quantum approach was first to calculate the energy level distribution in a 

channel. We obtain, for each kind of channel, the empty level density and the filled level density 

of the open and closed conformations. The joint density of levels provides the transition number 

between the closed and open conformations. The algebraic sum of inward and outward open 

channels is a function  of the normalized energy E. The function  verifies the major 

properties of a wavelet. We calculate the functional dependence of the axon membrane 

conductance with the transmembrane energy. 

 

1. Introduction 

The human vision possesses numerous specificities and the visual analysis of an image is 

achieved through a substantial efficiency. At first sight, the visual system shows a complex 

structure. A light stimulus which arrives on the eye passes through the eyeball. At the back of 

the eyeball the light beam arrives on the retina. Inside the retina the luminous stimulus is 

completely transformed. First the phototransduction of the stimulus into a nerve impulse is 

occurred and then the nerve message is coded by several layers of neuronal cells. Previous 

studies give one theory per visual mechanism. We investigated a unique theoretical model 

which is susceptible to take into account all the visual mechanisms, as color, contrasts, 

binocular vision. To model the visual mechanisms, we have considered the energy as basis 

variable. 
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The retinal circuitry is organized in a precise manner (Lee 1996; Lee and Dacey 1997; Kolb 

1991). The retina is composed of three layers of nerve cells and synapses. The first layer 

contains the photoreceptor cells: rods and cones. These cells transduce the luminous energy 

into an electrical energy. The second layer is the outer plexiform layer and contains the 

horizontal cells. Some of coding begins within this layer. The third layer is the inner plexiform 

layer and contains the bipolar cells (diffuse-, midget-, S cone-bipolar cells…), the amacrine 

cells, and the ganglion cell terminals (parasol-, midget-, bistratified-cell terminations…). A 

more elaborate processing is occurred within this layer. The nerve message contains all the 

major characteristics of the light stimulus. The set of the ganglion axons constitutes the optical 

nerve which transmits the nervous message to the lateral geniculate nucleus, where a new 

coding is occurred and the binocular vision processing takes place. Similar occurrences are 

found at the cortical level with, for example, new receptive fields (Ts'o 1989; Ts'o and Gilbert 

1988). 

The color processing is a very complex processing (De Valois 1978; De Valois and De Valois 

1993; De Valois and De Valois 1996). For a photopic vision and a normal subject, three 

wavelength intervals are isolated by three cone classes. The S-cone sensitivity is located in the 

short wavelengths, the M-cone sensitivity is located in the middle wavelengths, and the L-cone 

sensitivity is located in the long wavelengths. Two possibilities can be considered. The stimulus 

is either a small spot moving in direction or a larger stimulus having a fixed position, while its 

luminance is a function of time. The shape of the response is shown in figure 1. 
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Fig. 1.  Diagram model used to understand how a wavelet can be constructed. The direct 

pathways are constituted by the photoreceptors (M- and L-cone), the bipolar cells, and the 

ganglion cells. These pathways transmit the information without change (plus sign). The 

lateral pathways are constituted by the horizontal cells (2) and the amacrines cells (3). These 

pathways transmit the information with change in the sign (minus sign). 

 

The influence of the horizontal and amacrines cells on the synapses of the bipolar and ganglion 

cells is complicated and not fully known (Wu et al. 2000; Pang et al. 2002). To establish a 

theoretical model, we have simplified the visual system, taking into account the main direct and 

lateral pathways. Two pathways are used to reach the optical nerve. There is a direct pathway 

including photoreceptor cells, bipolar cells, and ganglion cells. This pathway transmits the 

visual information without change in the shape of the theoretical curve. The lateral bindings 

between two or more cones of different types provide lateral transmissions and coding. Thus, a 

L-cone response can be associated with a M-cone response using horizontal cells (outer 



5 
 

plexiform layer: Fig. 1, layer 2) or amacrines cells (inner plexiform layer: Fig. 1, layer 3). The 

lateral pathways transmit the visual information with a change in the shape of the theoretical 

curve, the sign of the response changes. At the ganglion axon, a direct pathway gives an "ON"-

response, whereas an association of direct and lateral pathways gives an "OFF"-response. Thus, 

a receptive field having opponent centre-surround and spectrally-opponent information is 

obtained. 

It is particularly interesting to note that some of the curves obtained inside the retina exhibit a 

wavelet shape. The role of a wavelet analysis in the human vision is an open question and a 

multiresolution decomposition seems a particularly interesting view. We attempt to investigate 

a simple and unique mother wavelet, which could be used as a basis to study all the visual 

mechanisms and eventually to study other physiological processes. 

In a physiological system the information is transmitted along nerves with an "ON-OFF" signal. 

The simplest function to model an "ON-OFF" signal is the Haar function, defined by the 

following relations (Meyer 1994): 
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The Haar function possesses the most properties of a wavelet. A wavelet family is built from a 

mother wavelet by including a dilation parameter "a" and a translation parameter. These 

parameters are of high interest to model the human vision. Indeed, the vision can view either 

large images or details. Movements of the eyeball produce movements of the vision axis and a 

translation of the retinal image. A wavelet analysis can reflect these properties.  
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From a physiological standpoint, the Haar wavelet is not an adequate model to reflect the visual 

system response. Indeed, this wavelet is not continuous, whereas the responses of the 

physiological systems are continuous, as the transmission of a signal by a neuron or by a 

receptive field (Fig. 1). A more appropriate wavelet should be determined. 

We establish a function which can be a mother wavelet, from nervous impulse transmission and 

voltage-dependent channel properties. This function verifies the main properties of a wavelet, 

leading to a wavelet family definition. We propose to use this wavelet family to model the 

whole visual system, from retina to cortical level. 

 

2. Theory 

In this section we try to answer the question: Is it possible to establish a wavelet function from 

the physiological properties of the nervous message? 

 

Transmission of the nervous message 

To build a function  associated with the transmission of the nervous message along an axon, 

let us first outline the main mechanisms of the transmission. The nervous message is an action 

potential propagating along an axon. There are local changes of the membrane that let Na+ or 

K+ ions pass through (Pichon et al. 2004). Others ions, as Ca2+ or Cl, can move too, but their 

action can be considered as negligible. The membrane contains voltage-dependent channels 

which may be open or closed, depending on local voltage value. The resulting ion current which 

passes through the membrane depends on the number of open inward and outward channels. 

To provide a generalized description we have replaced the transmembrane potential (measured 

in volt) by the equivalent energy  (measured in electron-volt). 

During the transmission there are ion exchanges between the inside and outside of the axon. An 

action potential is a temporary change of the plasma membrane permeability of the axon related 
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to the amount of Na+ and K+ ions. An action potential transmission is an energy transmission. 

At a given point of an axon this energy changes the local permeability of the membrane. The 

change in the permeability is due to the change in the open channel number. Inward and outward 

channel openings play a major role in the nerve impulse transmission (Varshney and Mathew 

2003). The main role of the energy variation is to open -or close- the voltage-dependent 

channels. The resulting ion current will be toward inside if the number of the open inward 

channels is larger than the number of the open outward channels. It will be toward outside if 

otherwise. This number is a function of the transmembrane potential and consequently of the 

corresponding energy . To switch between the closed and open states, the voltage-dependent 

channels should receive an energy. We study the probability of a channel opening at a given 

energy . The opening of a channel is a random event (Endresen et al. 2000). This means that 

we can use a quantum approach to calculate the probability of this event (Beck 1996). 

 

We are particularly interested by two types of voltage-dependent channels: the inward channels 

Ci (Na channels, for example) and the outward channels CO (K channels, for example). The 

conduction of ions through a channel is susceptible to be affected by the occurrence of others 

ions (Ca2+, for example; Horigan et al. 1999a; Horigan et al. 1999b). Moreover, Na channels 

allow a few numbers of K ions to pass (Immke et al. 1998, Kiss et al. 1998). To take into account 

the complex interactions between the various ions and channels, Ci and CO are not exactly the 

same as the actual channels. We define Ci and CO channels as equivalent to both actual channels 

and interactions. Each channel is regarded as having an individual equivalent charge. The 

equivalent channels Ci and CO contain all the mechanisms that occur in an actual channel. 

Consequently, the following relations can be used, if need be, in the case of other type of 

voltage-dependent channels. 
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A channel is made of charged molecules (Bashford 2004; Chung and Kuyucak 2002). The 

voltage across the membrane has an influence on these charges. When a channel switches 

between the closed and open states, the charges move. The energy configuration of the channel 

is modified. Each type of channels has two main energy configurations: a closed and open 

configuration. The energy configuration depends on the transmembrane potential, namely the 

transmembrane energy. Recent physiological studies exhibit several intermediate states. 

Intermediate states are induced by movements of specific charges located on the channel 

molecules (Elinder et al. 2001). To establish a quantum model we consider an initial state, the 

closed state, and a final state, the open state. The energy variations between these states take 

into account all the intermediate states. A channel opening is induced by specific charge 

movements (Horn 1997). These charges are called gating charges. The charge movements 

constitute the gating current (Sigg and Bezanilla 1997). The movements of the gating charges 

are random events and it is beneficial to use a quantum approach. The charge movements are 

induced by energy transfers that modify the state of the voltage-dependent channel. We define 

one equivalent theoretical charge per channel. An equivalent theoretical charge is constituted 

by the set of the actual charges required during a channel opening. Thus, an equivalent charge 

could be constituted by various charges: effective charges, essential charges, peripheral charges 

and latent charges (Bezanilla 2000). The equivalent charge is a convenient theoretical model to 

calculate the closed-open transition probability. We study the probability of the equivalent 

charge configuration changes i.e. the probability of a voltage-dependent channel opening. 

Each configuration, closed or open, possesses filled energy levels (bottom of the energy 

diagram) and above empty energy levels (Fig. 2). The energy level distribution is continuous. 

These two configurations are separated by an energy barrier and are stable (Liebovitch and 

Todorov 1996). An equivalent charge has a probability () to locate on a filled level having 

an energy . In the open state the distribution is similar, with filled energy levels and empty 
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energy levels. If there are no empty levels that can be filled, then, there is no transition possible 

between the closed state and the open one. Moreover, the channel transition from the closed 

state to the open state can occur only if the upper filled level 1 of the closed state is above the 

upper filled level 2 of the open state. 

 

 

Fig. 2.  Closed-open transitions. An energy  arriving in a closed channel causes energy 

barrier decay. F1: energy levels of an equivalent charge of a closed inward channel Ci. O1: 

energy levels of an equivalent charge of an open inward channel Ci. F2: energy levels of an 

equivalent charge of a closed outward channel Co. F2 is the same that O1. O2: energy levels 

of an equivalent charge of an open outward channel Co. 
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Schematically we have: 

A local energy  arrives 


The energy barrier decreases 


The upper filled levels of the closed state empty 


Some of empty levels of the open state fill 



The channel opens and  is emitted 



The energy  is transmitted to a neighboring closed channel 

 

The switching between the closed and open state is a random event (Liebovitch and Todorov 

1996). The switching probability between the states can be calculated. Thus the mean number 

of closed-open transitions can be determined at a given energy . This number depends on both 

the distribution of the filled levels that can empty and distribution of the empty levels that can 

fill. 

The channels are made up of similar proteins. The distribution of the empty and filled levels is 

the same in the inward and outward channels but the upper filled level is not the same. To 

establish a theoretical model, we consider two major features of the channel openings. First, Ci 

channels open and Na ions pass inside the membrane. The transmembrane energy increases and 

reaches a maximal value. Second, the Co channels open and K ions flow out the membrane. 

These steps are described in Fig. 2. The arrival of energy  causes a barrier potential decrease. 

The filled levels of the closed inward channel empty and the empty levels of the open state fill, 

until an intermediate value 2. The inward channel opens. Filled levels of the closed outward 

channel empty and empty levels of the open outward channel fill.  
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The various steps of an action potential are the same that the energy variation of our model. 

1  2 : inward channel Ci opening 

2 = 3  4 : outward channel Co opening 

(1), (2), (4) probability of an equivalent charge to have an energy  

e(1), e(2), e(4) probability of an empty level. 

 

The relative position of the upper levels is important, and the mechanism of the nervous 

message transmission is based on this position.  

 

Probability of closed-open transitions 

The probability of a channel opening is given by both the filled level distribution and empty 

level distribution. The probability (co) of a closed-open transition is given by the joint 

density of the quantum levels. In each state, closed or open, the equivalent charge has a 

probability () to be on an energy level . 

The probability of a closed inward channel (upper level 1) having a filled level at energy  

(Fig. 3) is: 
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The probability of an open inward channel (upper level 2) having a filled level at energy  is: 
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B is the Boltzmann constant; T is the absolute temperature. 

If T  0 K the distribution is continuous with a probability () to find an equivalent charge 

above the energy 1 or 2.  
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Fig. 3.  Energy level distribution. At the temperature T = 0 K, the energy 1 is the border 

between the filled levels and the empty ones. Then the level density curve exhibits a step at 

1. If the temperature is T  0 K, there are some filled levels above this energy. 

 

A voltage-dependent channel can switch between a closed and open state if the following 

condition is verified:  1 > 2  

In the case of an open state we need an empty level distribution, not a filled level distribution. 

The empty level distribution oie of an inward channel having an open configuration is given 

by: 
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A transition needs to have a filled level ((-1)  0) associated with an empty level  

(e(-2)  0). The probability to switch between a closed state (Fig. 4, F1 or F2) and an open 

state (O1 or O2) depends on both filled levels of F1 (or F2) and empty levels of O1 (or O2). 

With high values of energy  we have (-1) = 0 (Fig. 4, state F1, filled levels, upper curve) 

and there is no filled level. Consequently, no transition is possible. With small values of energy 
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, e(-2) = 0 (Fig. 4, state O1, empty levels, dashed curve), there is no empty level. In this 

case the energy  is located in the filled band of the open state. No transition can occur toward 

these levels that are already filled. 

 

 

Fig. 4.  Continuous distribution of the energy levels at T  0 K. Ci: inward channel; Co: 

outward channel. The abscissa values represent the energy . The ordinate values represent 

the energy level distribution. 1, 2 and 4 is the energy of the upper filled level (at T = 0 K) of 

the closed inward channel, open inward channel (or closed outward channel) and open 

outward channel, respectively. F1: closed inward channel. O1: open inward channel. F2: 

closed outward channel. The energy distribution of O1 and F2 is the same. O2: open outward 

channel. The vertical arrows indicate closed-open transitions between two levels. 

 

 

 



14 
 

An equivalent charge located of one filled level of the closed state (probability ci(-1)) can 

fall down all the empty levels of the open state (probability: e(-2)). From one filled energy 

 the transition probability is: e(-2). If we take into account the total filled levels of the closed 

state and the total empty levels of the open states, then all the possible transitions are obtained. 

Closed-open transition of an inward channel Ci: 

F1(1)                      O1(2); energy variation: 2  1 

Closed-open transition of an outward channel Co: 

F2(3 = 2)                  O2(4); energy variation: 4  2 

 

The transition probability is the product of the filled level distribution of the closed state times 

the empty level distribution of the open state. The product is the joint density of the quantum 

states. The joint density of the quantum states of an inward channel is given by: 

 )(1)()()()( 2121   ei oc                             (4) 

The joint density of the quantum states of an outward channel is given by: 

 )(1)()()()( 4242   eo oc                           (5) 

These equations give the closed-open transition probability of a voltage-dependent channel, 

namely the probability of a voltage-dependent channel to be open at an energy . If the voltage-

dependent channel number per unit surface of membrane is known, then these equations give 

the number of open channel. In the following, we will consider  as a normalized number of 

open voltage-dependent channel. 
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An action of an inward channel on the ion current is opposed by an action of an outward 

channel. The resulting amount of open channels that let ions pass inside the membrane is: 

)()()(  oi  

i() is the normalized number of open inward channels. 

o() is the normalized number of open outward channels. 

If   () > 0   then the number of open inward channels is greater than the number of open 

outward channels. The ion flux passes inside the membrane. 

If   () < 0   then the number of open inward channels is less than the number of open 

outward channels. The ion flux moves outward through the membrane. 

 

3. Results 

Calculations of the function 

The basis of the relationship between the normalized number  of open channels and the energy 
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To simplify, let us introduce: 
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The channels are made up of similar proteins. The difference between the upper level of the 

closed state and the upper level of the open state is similar in both inward and outward channel. 

Consequently, we have: 
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Then we obtain: 

(Eq. 6)          
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To simplify the relation and exhibit symmetry we use hyperbolic functions. 
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We define: 
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The constants A and E2 depend on the energy difference that allows a voltage-dependent 

channel opens. The function  depends on energy differences. Consequently, it is not necessary 

to know the absolute value of the energy. The variable E is a normalized energy. 
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The following relation is obtained: 
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The function (E) is associated with the nervous message transmission. It represents the 

normalized difference between the open inward channel number and open outward channel 

number, namely the resulting number of open channels. It also indicates the direction of the 

global ion flux. 

We have determined A and E2 from the existing data. 
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Fig. 5.  Mean number of open equivalent channels  as a function of normalized 

transmembrane energy E. As  is positive (part "b"), then the open inward channel number is 

larger than the open outward channel number. The total ion flux is inwardly. As  is negative 

(part "c"), the total ion flux moves outward through the membrane. 
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Several main energy intervals can occur (Fig. 5). 

   is very large:   4 < 2 < 1 <  ;    E < 0 

 is located in empty levels of F1 (Fig. 4). There is no transition (Fig. 5, part « a »). 

  4 < 2 <  < 1                                 E < 0 

 is located in filled levels of F1 and the corresponding levels of O1 are empty (Fig. 4). There 

is a transition. The number of open channels depends on the position of  between 1 and 2. 

The inward channels can open (Fig. 5, part "b"). The decaying phase of  indicates that the 

outward channel openings start. 

  4 <  < 2 < 1                                 E > 0 

 is located in filled levels of F1 and the corresponding levels of O1 is filled too (Fig. 4). The 

inward channel cannot open. However, since  is larger than 4 the corresponding levels of F2 

are filled and the corresponding levels of O2 are empty. The outward channels can open (Fig. 

5, part "c"). The number of open outward channels is larger than the number of open inward 

channels. 

   is very small:      < 4 < 2 < 1            E > 0 

 is located in filled levels of both F1 and O1, F2 and O2 (Fig. 4). No transition can occur (Fig. 

5, part "d"). 

The shape of the curve is similar to the response of the retina cells (Fig. 1). 

Usually, the probability or the mean number of open voltage-dependent channels is given as a 

function of time (Horn et al. 1981). In this study we have made an energy balance. It is important 

to use energy as fundamental variable to provide a full description of the transmission of a 

stimulus that is susceptible to be transduced and coded. 
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Properties of the function : is the function  a wavelet function? 

In this study we consider the action potential as a signal which is transmitted inside the nervous 

system. Consequently, we hope to benefit from this to consider the wavelet theory. A function 

is a basic wavelet if it verifies several main conditions (Daubechies 1992; Meyer 1994; 

Holschneider 1995).  

The function  verifies the following conditions. 

          a)  The function integral converges: 





 dEE)(  

          b)  The function integral is null and the condition for zero mean is: 





 0)( dEE  

The curve exhibits oscillations with negative part and positive one. The curve is a small wave. 

          c)  The Fourier transform of a wavelet is null when  = 0. 

          If  = 0 then:    




  0)( dEeE Ei  

          d)  The function has a higher number of vanishing moments. 

          1 order moment          



 0)( dEEE  

          2 order moment          



 0)(2 dEEE  

          All the even moments are null. 

          e)  functionHaar
E




)(lim
2
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The normalization condition is given by: 





 1)(

2
dEEN

         N is a normalized wavelet. 

The normalized mother wavelet is: 

)(
1

E
N

N           the normalization factor is: 



 dEEN

2
)(  

Consequently, the function  is a wavelet. 

The wavelet function contains a parameter E2 which denotes a physiological condition (Fig. 6). 

It depends on characteristics of voltage-dependent channels. 

 

 

Fig. 6.  Variation in wavelet with parameter value E2. Curve 1: E2 = 1.5; curve 2: E2 = 3; 

curve 3: E2 = 4.5; curve 4: E2 = 6; curve 5: Haar function. 

 

4. Discussion 

The transmembrane conductance is given by the number of open inward channels. One test of 

the theoretical model is to deduce the conductance curves. If the theoretical model is adequate, 

then the theoretical conductance curves should be similar to the experimental curves. The 

validity of the model will be confirmed. 
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At an energy  the electrical conductance of the membrane is given by the number of all open 

channels in an interval less than  eV. The local conduction C() of an axon membrane is given 

by: 

             




 dC i )()(                                                                                       (10) 

Corresponding curves are plotted Fig. 7. The curves are similar to those obtained by several 

authors (Bezanilla 2000; Clay 2000; Sigg and Bezanilla 1997; Varshney and Mathew 2003). 

 

 

Fig. 7.  Transmembrane energy dependence of conductance. T = 300 K. 

Curve 1: E2 = 1; curve 2: E2 = 1.2; curve 3: E2 = 1.5; curve 4: E2 = 16. 

 

Let us outline that three major physiological results correspond to three wavelet properties. 

First, an opening of channel is a random event. The constant field model (Goldman-Hodkin-

Katz approximations) is not appropriate at the microscopic level (Syganow and von Kitzing 

1999). We use a quantum approach to determine the probability of this event.  

Second, the wavelet function is the result of two channel openings, inward channel and outward 

channel open successively. The energy  involved in the closed-open transition is always the 

same. It is equal to a difference between two energy levels and consequently independent of 

the incident stimulus. The energy which propagates along an axon is equal to the energy 
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difference  which is constant. This theoretical result is similar to the physiological data at 

which the height of an action potential is induced by an energy difference and it is a constant 

for a given nervous cell. 

Third, schematically, information is transmitted along an axon using an ON-OFF mechanism. 

A wavelet (function integral is null) is an adequate function to model this basis property. 

 

A wavelet function is especially attractive in the signal theory mainly because a wavelet 

transform can be constructed (Mallat 1989a; Mallat 1989b). This transform gives the response 

of a system that receives an incident signal. 

If the nervous fibre receives an outer stimulus, then the basic nervous message is modified. Let 

us consider an outer stimulus S(E). The S(E) transform by the wavelet (E) is: 

  



 dEEESESTW )()()(.  

The stimulus modifies the voltage-dependent channel energy and then modifies the probability 

to have a channel opening. This change is given by W.T[S(E)]. 

The present wavelet analysis can be used to study the process of a luminous stimulus by the 

nervous system (Antoine et al. 1992). The shape of the wavelet is similar to the response of the 

retina cells (Fig. 1). This wavelet has been already used to model contrast sensitivity functions 

(Gaudart et al. 1993). Moreover, the wavelet constitutes a unique theoretical model which is 

able to models all visual mechanisms such as color, contrast, or binocular vision. 
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