
HAL Id: hal-01693652
https://hal.science/hal-01693652

Submitted on 26 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Leveraging Qualitative Reasoning to Learning
Manipulation Tasks

Diedrich Wolter, Alexandra Kirsch

To cite this version:
Diedrich Wolter, Alexandra Kirsch. Leveraging Qualitative Reasoning to Learning Manipulation
Tasks. Robotics, 2015, 4(3), pp.253-283. �10.3390/robotics4030253�. �hal-01693652�

https://hal.science/hal-01693652
https://hal.archives-ouvertes.fr

Robotics 2014, xx, 1-x; doi:10.3390/——
OPEN ACCESS

robotics
ISSN 2218-6581

www.mdpi.com/journal/robotics

Article

Leveraging Qualitative Reasoning to Learning Manipulation
Tasks
Diedrich Wolter1,*, Alexandra Kirsch2

1 Department of Computer Science, University of Bamberg, Germany
2 Department of Computer Science, University of Tübingen, Germany

* Author to whom correspondence should be addressed; diedrich.wolter@uni-bamberg.de, +49 951
8632897

Received: xx / Accepted: xx / Published: xx

Abstract: Learning and planning are powerful AI methods that exhibit complementary
strengths. While planning allows goal-directed actions to be computed when a reliable
forward model is known, learning allows such models to be obtained autonomously. In
this paper we describe how both methods can be combined using an expressive qualitative
knowledge representation. We argue that the crucial step in this integration is to employ
a representation based on a well-defined semantics. This article proposes the qualitative
spatial logic QSL, a representation that combines qualitative abstraction with linear temporal
logic, allowing us to represent relevant information about the learning task, possible actions,
and their consequences. Doing so, we empower reasoning processes to enhance learning
performance beyond the positive effects of learning in abstract state spaces. Proof-of-concept
experiments in two simulation environments show that this approach can help to improve
learning-based robotics by quicker convergence and leads to more reliable action planning.

Keywords: qualitative spatial reasoning; robot learning; AI robotics

(Please consult diff.pdf in supplementary files to view the changes applied with respect to the first submission)

1. Motivation

Robotic applications have evolved considerably, yet they still lack the efficiency, flexibility and
adaptability that is needed to improve our everyday life as versatile service robots. Planning and learning

Robotics 2014, xx 2

Figure 1. Simulated PR2 robot gathering data on the effect of throwing objects.

are the two major paradigms employed to make a robot act intelligently. Planning is a form of symbolic
reasoning applied on various levels of abstraction. Planning is effective whenever reliable forward
models of the robot and its environment are available. Learning is a powerful method to generate such
models from data. However, it requires carefully handcrafted state space representations to converge to
high-quality models in reasonable time. Neither planning nor learning on their own suffice to meet the
demands of versatile service robots. By integrating both paradigms one can benefit from their respective
strengths. So far, a true integration of learning and planning has not been achieved that allows a robot to
acquire new skills efficiently in a truly autonomous way.

Our work is motivated by this basic question of how to integrate learning and planning, leveraging
their individual strengths to produce reliable and versatile robot behavior. We propose a qualitative
reasoning framework as the glue between those two paradigms. Qualitative reasoning lifts information,
e.g., obtained by perception, to a knowledge level, enabling us to integrate it with common sense
knowledge and to use available reasoning techniques [1–3]. The qualitative representation serves two
purposes: 1) to make a planning or action selection process with learned models more efficient, and
2) to control selection of learning samples in order to make a learning process more reliable and to
obtain high-quality models with little manual design effort. We present two experimental studies in
simulation for a specific robot task: to throw an object to a specific destination. The results indicate that
qualitative reasoning can serve the intended purposes and thus serve as an interface to integrate planning
and learning. This exemplified study is intended to show the feasibility and promising characteristics of
the approach as a whole, paving the way for in-depth investigations on individual aspects.

1.1. Scenario

In this study we consider a household robot learning how to throw objects, for example to throw
waste into a dustbin (see Figure 1). We have chosen this instance as a representative of a wide range
of manipulation tasks for which no reliable kinematic forward models are available due to unobservable
physical parameters such as inertia.

We use two simulated setups: a physics simulation that gives access to a direct manipulation of
the velocity and direction of the throw, and a more realistic simulation of a complete robot where the
parameters of the throw result indirectly from the movement of the robot arm.

Robotics 2014, xx 3

Abstract common sense knowledge is readily available for this scenario, for example in form of a
description of the positive correlation of initial impulse and throwing distance achieved. This knowledge
is specific to the throwing scenario and has to be adapted to other applications as needed – developing
such background models of everyday tasks is subject to research in the area of qualitative reasoning.

Ideally, our approach will help to shift the workload from tweaking state space representations and
finding search heuristics to a clean knowledge representation of a particular task. Along this idea,
our main goal is to demonstrate the principle of combining planning and learning with qualitative
representations rather than providing a particularly polished solution to the throwing task.

The term “planning” is used in different contexts in AI, from symbolic action planning to motion
planning. In all cases it denotes a search procedure in a specified state space. The most simple form
of search is sampling, i.e., considering random states until one with the desired properties is found. As
in other lower-level robotics tasks [4] we use sampling here as a simple form of planning. As we will
show, our qualitative models reduce the set of states to be considered in the sampling process. The same
technique can be applied to other search techniques. In this paper we use the term “sampling” as a
specific (albeit simple) instantiation of “planning”.

1.2. Approach and Contribution

Figure 2 shows an overview of our approach. The control strategy of both learning and action planning
is jointly based on a qualitative task description. Additionally, the planning component exploits common
sense rules about the problem domain. Task descriptions on the qualitative level characterize classes of
concrete tasks. In this paper we are concerned with the class of throwing any object to any position
in front of the robot. Technically, we develop a qualitative spatio-temporal logic with well-defined
semantics to link the quantitative level of observation and control values with an abstract symbolic
representation. Qualitative representations of space as studied in the field of qualitative spatial and
temporal reasoning (QSTR) are partially motivated by the aim to grasp the semantics of the catalog of
human cognitive concepts [5] and should thus contribute to making specifications intuitive.

The aim of the learning component is to generate the initially unknown forward model of the
manipulation task from the robot’s own observations. We use the Robot Learning Language (RoLL)
[6] to specify all aspects of learning tasks declaratively: how to gather training data, which learning
algorithm to use and the specification of the function to be learned. This declarative framework allows
us to smoothly integrate the qualitative concepts. To gather data, we use the idea of motor babbling
by randomly choosing robot actions and observing the effect. In contrast to classical motor babbling,
observations are matched against the task description in order to identify whether the observation
matches the task at hand. For learning the forward model of throwing an object to the front we thus
only collect robot control values that lead to throwing the object forward.

Once sufficient training data has been collected, a forward model is learned and automatically
integrated into the control program by RoLL. As learning algorithm we use the model tree learner M5’
from the WEKA learning toolbox [7]. The resulting model is then used for planning, given a concrete
goal (e.g. the coordinates of a dust bin to throw into). A common technique in robotics for exploiting
such models is unbiased sampling in the space of parameters. The knowledge representation language

Robotics 2014, xx 4

Figure 2. Integrating learning and planning with qualitative task knowledge.

simulated robot platform

QSL: qualitative task description,
common sense rules

learning
element
(RoLL)

planning with
qualitative

background knowledge
controller

forward
model

training
data

control

goal

control,
observations

learning

described in this paper allows the programmer to augment a task specification with coarse commonsense
rules, which are then exploited to guide and accelerate the sampling process.

The contribution of this work is to demonstrate how qualitative knowledge representations can be used
to integrate learning and planning based on a declarative problem description. To this end, we introduce
qualitative spatial logic (QSL). We further identify two beneficial characteristics of this approach. First,
we show how QSL-based task specifications help to identify those observations of a robot that are useful
for a given learning problem. Second, we show how the general idea of exploiting abstract common
sense rules to solve everyday tasks – which is a basic motivation of the qualitative reasoning community
(see [3]) – can be implemented in context learning manipulation tasks using QSL. Both characteristics
are demonstrated by empirical evaluation in simulations, ranging from pure physical computations with
the Bullet physics engine1 to a realistic simulation of a PR2 robot in a household environment (Figures 1,
16) with the MORSE2 [8,9] simulator.

2. Qualitative Representation of Manipulation Tasks with Qualitative Spatial Logic (QSL)

We propose a spatial logic based on qualitative relations to represent knowledge for manipulation
tasks. Defining a representation with clear semantics that builds on components developed in the area of
symbolic knowledge representation and reasoning, we obtain a representation that we can reason about
using methods developed in the artificial intelligence community.

State spaces in manipulation tasks are essentially characterized by the spatial structure of the
environment, developing a qualitative representation for manipulation is thus tightly related to qualitative
spatial representation and reasoning (see [10] for a recent overview). Moreover, manipulation is
dynamic and thus the spatial representation needs to be augmented to capture change over time. While
there exist purely qualitative approaches addressing dynamic aspects, these approaches are specialized
to a single aspect of dynamics, for example the change of distance between objects over time. By
contrast, we require a more universal approach that allows us to represent changes with respect to the
entire spatial representation. For example, we dare to represent a learning task declaratively by saying

1 http://bulletphysics.org
2 https://www.openrobots.org

Robotics 2014, xx 5

that a start configuration (e.g., can on desk) should be changed to obtain some desired end configuration
(e.g., can in dustbin). Sequences of such statements are also called snapshot-based spatio-temporal
models [11]. In its generality, the question of combining a qualitative spatial representation with a
temporal representation is tackled in the contemporary field of spatial logics [11] which comprises
several demanding research questions. As our approach does not depend on specific reasoning properties,
we opt for a straightforward combination of linear temporal logic (LTL) with a qualitative spatial
representation. This enables us to compose declarative statements about actions and their effects on
a coarse level of abstraction.

QSL can be seen as a toolbox which enables us to flexibly combine the qualitative representations
deemed helpful for representing a learning task at hand. We use QSL for two purposes: 1) to guide
the planning process (Section 3, 4), and 2) to control selection of learning samples in order to make the
learning process more reliable (Section 5).

2.1. Qualitative Representation of Space

Qualitative spatial representations stand out from general qualitative representations, as space exhibits
rich structures. In contrast to space, ordinary physical dimensions like, for example, weight or
temperature, give rise to few meaningful distinctions only, for example heavier vs. lighter, colder vs.
warmer. Such concepts can be captured by comparing values using the usual ordering relations <,=, >,
which in qualitative reasoning are referred to as the point calculus [12], illustrated in Figure 3(a). In case
of comparing intervals rather than points, Allen [13] describes a representation and reasoning technique
based on 13 interval relations. Seven relations are shown in Figure 3(b), the remaining six are obtained by
considering the inverses of all relations shown except for equality. By contrast, already two-dimensional
space can be described in a multitude of ways. A straightforward generalization of the one-dimensional
case is based on projecting connected regions onto the two coordinate axes. The projections are intervals
and their relation can be described using Allen’s interval relations. This approach is known as the block
algebra [14] and illustrated in Figure 4. Moreover, there are several useful binary relations to describe
point locations in two-dimensional space. For example, binary relations can describe relative positions
with respect to a global coordinate system using the STAR relations [15], relative position with respect
to points augmented with an orientation using STARVARS relations [16], or ternary relations that jointly
capture distance and direction information using TPCC relations [17]. See Figure 5 for an illustration of
these relations.

Although the representations mentioned so far address two-dimensional space only, their respective
partition scheme can be extended to three dimensions in a straightforward manner. In case of the block
algebra, the generalization is obtained by projecting objects on X, Y, and Z axis and describing the
three interval relations obtained. Three-dimensional block algebra relations are thus 3-tuples of Allen’s
interval relations. By combining two independent cone-like relations shown in Figure 5, one applied to
the X/Y plane and the other to the Y/Z plane, a three-dimensional cone with rectangular cross-section is
obtained.

Due to the complex interdependencies occurring in qualitative spatial relations, defining relations is
only the first step in designing a qualitative representation. The difficult step is then to identify reasoning

Robotics 2014, xx 6

Figure 3. Qualitative calculi capturing basic ordering knowledge for comparing values and
constructing spatial relations

A B

(a) Point calculus [12] with
relations <,=, >, it holds
A < B

A B
B before
M meets

O overlaps

EQ equal

S starts

D during

E ends

(b) Allen’s interval relations [13], for every
relation except EQ there exists an inverse
relation suffixed by ‘i’, e.g., O(A,B) ↔
OI(B,A)

Figure 4. Spatial relations in the block algebra [14] constructed from Allen’s interval
relations shown in Figure 3(b), it holds (B,OI)(A,B).

B

A

algorithms that can process these relations symbolically, most importantly to identify relations only given
implicitly and to recognize potential conflicts. For example, in the context of Allen’s interval relations
consider the two facts that intervals X and Y stand in relation O (overlaps) and intervals Y and Z stand
in the relation O too. From these facts it follows that X and Z either stand in relation B, M, or O as
can be verified graphically. This knowledge is captured in the so-called qualitative calculus [18,19],
an algebraic construct that is induced by a set of qualitative relations. We note that qualitative spatial
representations are always constructed in a way such that there are finitely many relations that are jointly
exhaustive and pairwise disjoint [19] as this eases technicalities of the representation. For example,
this allows negation of a fact (e.g., the can is not on the desk) to be rewritten as disjunction over all
alternatives. Disjunction can be understood as set union in a relation-based representation: relations are
sets of domain values and set operations are thus applicable. Clearly, the statement r(x, y) or s(x, y)

holds if and only if q(x, y) with q := r ∪ s holds. We adopt the usual notion in qualitative spatial
reasoning to write disjunctions as sets, i.e., instead of writing (r ∪ s) we write {r, s}. In this paper we
are primarily concerned with representation, but we point out that analysis of the underlying qualitative
calculus is necessary to reveal applicable rules for symbolic manipulation of knowledge and reasoning
algorithms. To this end, we only employ relations that have previously been investigated.

Robotics 2014, xx 7

Figure 5. Qualitative spatial calculi for representing and reasoning about point locations in
two-dimensional space.

A
B
s6

s7s0

s1

s2

s3 s4

s5

(a) Cardinal relations
in STAR4[15], it holds
s6(A,B).

A
B

v5

v6
v6

v0

v1
v2

v3

v4

(b) Directional relations
in STARVARS[16], arrows
represent orientation. It
holds v5(A,B).

OR

P

(c) Ternary TPCC[17] relations,
P is in relation ‘close back left’
with respect to origin O and
reference R.

Qualitative relations can be regarded as constraints over variables, for example the relation
ON(can, desk) restricts the position of ‘can’ and ‘desk’ such that ‘can’ is atop the ‘desk’ and in contact.
Qualitative reasoning is thus widely considered as a form of constraint-based reasoning. In this case, the
elements of a qualitative representation are constraints:

Definition 1. Let r be a (binary) qualitative relation and X, Y be either variables representing spatial
entities or constants. A formula r(X, Y) is then called a qualitative constraint. We say that a qualitative
constraint is satisfiable if values for all variables involved can be chosen such that they stand in relation
r. Similarly, we say that a constraint is satisfied for concrete entities (constants) o1 and o2, if r(o1, o2)
holds. The mapping (also called interpretation) X 7→ o1, Y 7→ o2 is then called a model of the formula
r(X, Y).

Since it is intuitive, we use r to describe the relation of domain values as well as a symbolic label to
write down statements. Hence, ON represents a spatial relationship between objects in a scene and ON

is used to compose declarative statements too. Given a spatial scene, we describe the scene by the set
of qualitative constraints satisfied by the domain objects. For a fixed repertoire of relations, we use the
conjunctive formula of all satisfied constraints to describe a spatial configuration.

Example 1. Consider the scene shown in Figure 6 and the block-algebra relations shown in Figure 4.
For readability we introduce shorthand notations of important block-algebra relations, recalling that
{r, s} stands for r ∪ s and thus captures disjunction with qualitative relations:

ABOVE := {(α, B)|α ∈ {B, M, O, EQ, S, D, E, SI, DI, EI, OI, MI, BI}}
BELOW := {(α, BI)|α ∈ {B, M, O, EQ, S, D, E, SI, DI, EI, OI, MI, BI}}

LEFTOF := {(B, α)|α ∈ {B, M, O, EQ, S, D, E, SI, DI, EI, OI, MI, BI}}
RIGHTOF := {(BI, α)|α ∈ {B, M, O, EQ, S, D, E, SI, DI, EI, OI, MI, BI}}

Robotics 2014, xx 8

Figure 6. Example task configuration with partitioning of qualitative relations according to
the block algebra

ground g

desk d
can c

trash t

The semantics of relation ABOVE is thus that in a projection of objects to the Y axis one object occurs
before the other, whereas there are no constrains with respect to the X axis. Then, the scene depicted in
Figure 6 can be described as follows:

ABOVE(c, d) ∧ ABOVE(d, g) ∧ ABOVE(t, g) ∧ ABOVE(c, g) ∧ LEFTOF(c, t) ∧ LEFTOF(d, t) (1)

Not all constraints given in Equation 1 are necessary to describe the scene unequivocally to the level
of abstraction of the block algebra, for example the fact ABOVE(c, g) is derivable from knowing the
can to be positioned above the table and the table to be positioned above ground. Qualitative reasoning
techniques allow such inferences to be performed by identifying that a statement logically follows from
another.

In our work we assume that any qualitative description provided during programming is automatically
supplemented to include all derivable facts by means of qualitative reasoning. For the relations described
here except for the ternary TPCC relations, qualitative reasoning can be realized by efficient Linear
Programming techniques as described in [20]. This is due to the fact that these relations represent regions
which can be described as linear inequalities, for example the block algebra relation LEFTOF(d, t) can
be described by the inequality dx+ < tx−, where dx+ stands for the maximum value of the bounding box
of desk d and tx− for the respective minimum value.

2.2. Spatial Logic of Manipulation Tasks

Our approach of representing the development of qualitative spatial knowledge over time is based on
linear temporal logic (LTL) [21]. LTL extends propositional logic by interpreting propositional formulas
not only with respect to one assignment of symbols to truth values, but with respect to an infinite linear
sequence of assignments, called worlds. A statement may hold in one world, and it may be false in
another. LTL is widely used in software engineering and program verification, but it has also received
attention from the autonomous robotics community since the 1990ies – see [22]. So far, LTL has been

Robotics 2014, xx 9

Figure 7. Two snapshots of a scene

ground g

ball b

ground g
ball b

...
world at t = 0 world at t = 1 world at t = 2 ...

applied to declarative specification and synthesis of controllers from a high-level specification [23] and it
is also applied for motion planning [24–26]. Similar to the approach described in this paper, Kreutzmann
et al. [27] apply LTL to specify processes in logistics declaratively.

In the following we describe the spatial logic underlying our approach as a straightforward
combination of LTL and qualitative constraints as introduced in Definition 1. In short, we use plain
LTL but replace all propositional symbols with qualitative constraints. Details of LTL are not important
for this paper, so we only give a rather intuitive account of the logic – a comprehensive introduction to
LTL may be found in [28].

2.2.1. Syntax and Semantics of Qualitative Spatial Logic (QSL)

A well-formed formula φ in QSL is defined by the following grammar rule:

φ := C | ¬φ | φ1 ∧ φ2 | ◦ φ | φ1Uφ2 (2)

Here, C denotes a qualitative constraint as defined in Definition 1. For brevity, we only define a
minimal set of operations. Other Boolean operations can easily be expressed by term rewriting, e.g.,
φ ∨ ψ :⇔ ¬(¬φ ∧ ¬ψ). In the following we assume such rewriting to be performed whenever required
and make use of all usual operators and conjuncts. Semantics of LTL can be defined using a Kripke
structure 〈N, I〉: The interpretation function I assigns truth values to the constraints independently for
all time points t ∈ N. Technically, I : C → 2N maps a constraint to the set of time points at which it is
satisfied.

Example 2. Consider the two snapshots shown in Figure 7. At time t = 0, the constraint TOUCHES(b,
g) is not satisfied, at time t = 1 it is. A Kripke model representing this development of the world
would interpret TOUCHES(b, g) to be false at time t = 0, so we have 0 6∈ I(TOUCHES(b, g)),
but 1 ∈ I(TOUCHES(b, g)). If we imagine the ball to be bouncing off three times, we would have
I(TOUCHES(b, g)) = {1, 4, 6, 8, 9, 10, . . .}.

Using Nt = {n+ t|n ∈ N} to refer to a subsequence of N, the semantics are defined as follows.

Robotics 2014, xx 10

〈Nt, I〉 |= C iff t ∈ I(C)

〈Nt, I〉 |= ¬φ iff not 〈Nt, I〉 |= φ

〈Nt, I〉 |= φ1 ∧ φ2 iff 〈Nt, I〉 |= φ1 and 〈Nt, I〉 |= φ2

〈Nt, I〉 |= ◦φ iff 〈Nt+1, I〉 |= φ

〈Nt, I〉 |= φ1Uφ2 iff exists i ∈ N0 such that

〈Nt+i, I〉 |= φ2 and

〈Nt+k, I〉 |= φ1 for 0 ≤ k < i

With this definition, some frequently used and useful temporal operators can be defined. Table 1
summarizes the common temporal operators.

Table 1. Temporal operators in LTL and QSL

◦ next holds in next world
� eventually �φ :⇔ true U φ

� always �φ :⇔ ¬ � ¬φ
φ U ψ until φ holds until ψ holds at some point in future
φ R ψ release φ released ψ, if ψ stops to hold at some future point, φ will hold, φ R ψ :⇔

¬(¬φ U ¬ψ)

2.3. Reasoning with QSL

Given an interpretation of spatial constraints for all worlds, the task of deciding whether a
sub-sequence of the world is a satisfying assignment of a given formula is called model checking. In
our application we apply model checking for instance to identify whether an observed process suits
a declarative description of the task to be performed. The interpretation of the constraints is thus
determined by the observation. A constraint is r(X, Y) is considered to be true, if the relation r between
the objects referred to by variables X and Y is observed.

Beyond knowing that a sequence of observations constitutes a model for a formula, we are also
interested in identifying when the formula gets true. For example, by model checking the formula
ABOVE(ball, ground) ∧ ◦ON(ball, ground) we seek to identify the first time point at which ball and
ground get into contact. To this end, we adapt the notion of model checking to our needs:

Definition 2. The model checking problem in qualitative spatial logic is the task to compute t ∈ N for a
given formula φ and a Kripke model 〈N, I〉 such that t is the smallest number such that 〈Nt, I〉 |= φ. If
no such time point exists, the value∞ is returned.

Example 3. Suppose, S is the formula given in Equation 1 on page 8 from Example 1 and G is
constructed the same way, but saying that the can is inside the trash. Then we can describe the task
of getting the can from start configuration S to goal configuration G simply as S ∧ �G. We may be

Robotics 2014, xx 11

interested to analyze an action sequence performed by the robot in order to identify whether it matches
the task S ∧ �G. Similarly, we may be interested in model checking the action performed against the
formula ¬ON(can, ground)∧◦ON(can, ground)∧ LEFTOF(can, trash) in order to identify whether the
robot has been throwing too short since the can is still left of the trash at the first time it touches the
ground.

Model checking with LTL is due to its PSPACE-completeness computationally demanding, even in
case of bounded models. Several approaches explore the computational properties of model checking
and several algorithmic subclasses have been identified that are characterized by which (modal) operators
are employed [29]. Model checking of manipulation tasks specified in the LTL-like logic QSL benefits
from two characteristics:

1. Task specifications gain their expressivity from the rich set of spatial primitives that can be
employed, not from the complex temporal interrelationships which makes model checking hard.

2. Tasks are of short duration and models derived from observing the process are thus small. For
example, throwing a ball takes few seconds only, which if observed at 100Hz rate only leads to a
few thousand worlds.

In our application a simple search turns out to be sufficient – in a more complex setting an optimized
implementation may be advantageous, which can be obtained automatically as described by Gebser et
al. [30]. Alternatively, a potential computational bottleneck in practical applications could be tackled
with efficient randomized approaches such as Monte Carlo model checking [31]. For illustration we
determine computation times of model checking with variations of the formula ¬ON(o, g) U ON(o, g)

from the example above, using nested until-terms to represent hitting the ground i times and bouncing
off it in-between:

H1 := ¬ON(o, g) U ON(o, g)

H i+1 := ¬ON(o, g) U (ON(o, g) U H i)

We apply model checking for several H i, using states grounded in the physical simulation of a ball
hitting the ground and bouncing off again repeatedly. Additionally, we vary the size of the model
by changing the sample rate. For evaluation we used a single core on an Intel i7 processor running
at 2.3 Ghz, yet we are only concerned with a qualitative analysis here. In Figure 8 we present the
computing times of a naive model checking implementation that recursively checks whether the input
formula is satisfied in a world using linear iterative search. Figure 8(a) shows a 3d plot of computing
time against model size (100 . . . 10000) and formula complexity (H1 . . . H20), capping computing time
at 400s. The combinatorial explosion occurring with model checking can be nicely seen, but it occurs
even in our naive implementation after a nesting depth of 10 existentially quantified modal operators
which is significantly more complex than typical task specifications of a single learning task. To provide
a closer look at the times, Figure 8(b) presents the computing time of model checking H10 against the
total model size. As can be seen, for model sizes below 6000 data points (which would correspond to 60s
of real time if data points are collected at 100Hz), computing time is significantly below 1s. The sudden

Robotics 2014, xx 12

Figure 8. Computing time of model checking H i against a model of size m.

0.2 0.4 0.6 0.8 1

·104

0

10

20
0

200

400

m
i

tim
e

[s
]

(a) Computing time by model size and formula
complexity, capped at 400s

0 0.2 0.4 0.6 0.8 1

·104

0

5

10

15

20

m

tim
e

[s
]

(b) Computing time for H10 by model size

rise in computing time at around 8000 may be due to poor memory handling in our implementation. This
exemplifies that computing times of model checking a typical task specification against observation is
indeed feasible.

3. Qualitative Spatial Logic in Learning and Planning

We use QSL to represent tasks and common sense rules representing background knowledge. By
reasoning about observations using QSL we provide control to learning and planning.

3.1. Determining and Classifying Instances for Learning

In order to generate training data we generate random control parameters and observe their effects
using the robot simulator. We assume that observations grant access to object parameters referred
to in the task description such as position in space, direction of movement, etc. This is usually
accomplished by interpreting sensor data and not in the scope of this work. We regard observations
as time-stamped sequences of mappings from object properties to concrete values. These mappings
induce an interpretation function and thus Kripke model in the sense of QSL. We define the interpretation
function I to assign truth to a qualitative constraint r(o1, o2) with relation r holding between between
objects o1, o2 at time point t, mathematically t ∈ I(r(o1, o2)), if the constraint is satisfied by the
observation at the respective time point.

In order to specify which data from the sequence of observations is to be used as training data
alongside the control parameters, we perform model checking. We write a logic formula to specify
the time step from which data is to be obtained and denote the respective object properties. Since the
model of a formula may cover several time points in the observation we mark the part of the sub-formula
which designates the time point we are interested in.

Robotics 2014, xx 13

Example 4. As training data we seek to collect the position ox, oy of an object o thrown by the robot at
the first time o hits the ground g. We represent this objective as a pair (φ, P) where φ is formula with a
marked sub-formula that describes ‘hitting the ground for the first time’ and P the set of properties to
retrieve. In our example we would have

(¬ON(o, g) U ON(o, g), {ox, oy}). (3)

Here, ON := (D,MI) is a qualitative relation from the block algebra that describes contact in the
dimension ‘height’ (object is ‘met by’ the ground, see Figure 3(b)). Model checking the entire formula
would identify a model that covers all time points 0, 1, . . . until finally ON(o, g) holds. Therefore, ON(o, g)

gets marked (denoted here by an underline) to say that we are interested in the time point of the model
at which ON(o, g) becomes true.

The RobotLearningLanguage supports a generative and an analytical mode to use these models. For
the generative mode, RoLL checks for an observed data point whether the specification is satisfied and
only if it is, the data is stored in a database to be potentially used for learning later. In the analytical
mode, the data in the database is later analyzed by model checking. In this way, different specifications
can be applied to the same data, generating different sets of learning data, leading to different forward
models. This flexibility in the language principally opens up the possibility to generate constraint
sets automatically and test them in a meta-learning cycle, i.e., RoLL could employ several alternative
specifications of the task for learning in parallel, automatically selecting the specification which leads to
the best learning performance.

3.2. Enhancing Efficiency of Action Planning by Reasoning

The aim of planning is to determine a control action that makes the robot achieve a concrete goal.
Planning relies on the forward model determined by the learning element. Mathematically speaking, we
aim to minimize |f(a)− g| where f is the forward model, a a control action, and g the goal to achieve.
A common approach to solve this problem is to sample the space of control actions until a parameter
is found that is sufficiently close to the goal. Sampling-based methods have the advantage of being
independent of the characteristics of the forward model. For instance, they are not susceptible to local
minima as approaches relying on local search. The disadvantage of sampling is, however, that it may
require many iterations until a suitable parameter is sampled, in particular if only a small fraction of the
parameter space is mapped by the forward model sufficiently close to the goal.

In our approach we adopt the general schema of sampling the space of control actions, but we employ
reasoning to steer sampling towards the areas of the search space that are more likely to contain the
desired solution. At this point, background knowledge comes into play. Due to its nature, background
knowledge may oversimplify and thus may lead to wrong consequences for a problem at hand if it gets
applied in a strict manner. A sampling-based approach counter-acts this problem as it only leads to
avoiding parts of the search space – it will never ignore a part of the search space completely.

Technically we proceed as follows. At the start of planning, a function d : A → [0, 1], d(a) :=

1 is initialized that ranges over the space of control actions A. The idea is that d captures the
probability P (robot achieves goal g|robot performs action a), d is not a probability density function in

Robotics 2014, xx 14

the mathematical sense as we do not require
∫
A
d = 1. But there exists a bijective mapping d 7→ d′ to a

probability density function d′ with d′(a) = αd(a) with an appropriate scaling factor α. Therefore we
say that d represents a probability distribution. We do not require

∫
A
d = 1 to be satisfied, simply for the

benefit of easing presentation and implementation.
In order to determine a random action a ∈ A we sample according to the distribution represented

by d. To this end we discretize A, which may be a high-dimensional space, into discrete cells and
perform for each cell numerical integration over d, obtaining values c1, . . . , ck. In our implementation
we fix k = 1024. The sum c =

∑
i=1,...,k ci of all cells gives the area of the graph d, i.e.,

∫
A
d(a)da.

By uniformly sampling x from [0, c] we identity cell cj with j = arg minj=0,...,k x <
∑

i=0,...,j ci and
then sample uniformly from the parameter space represented by cell cj . This approximates sampling
according to arbitrary distribution d.

Key of our approach is to modify d given knowledge about previous control action a and the resulting
effect f(a) according to the forward model. In a way we learn a suitable distribution by reasoning. To
this end, we represent inference rules from which we can derive a suitable update of d.

Definition 3. We call Φ Ψ an inference rule if Φ, called the premises, and Ψ, called the conclusion,
are QSL formulas without temporal modal operators, i.e., both are Boolean constraint formulas.
Additionally, Ψ contains free variables a+1 , a

+
2 , . . . that represent action parameters.

The idea underlying this definition is that a premises describes a specific class of outcomes f(a) as
predicted by the forward model if action a = (a1, . . . , an) is performed. Typically, a premises captures
a class of failed attempts to solve the task at hand. Since we are only concerned with achieving a
static goal situation, no temporal modal operators are involved. The corresponding conclusion then
describes how a future attempt a+ = (a+1 , . . . , a

+
n) to solve the task should relate to a. In other words,

conclusions describe where in the space of control actions a suitable action parameter can be found, given
the premises was satisfied. A premises is said to be satisfied if the formula evaluates to true, interpreting
truth values of the qualitative constraints according to f(a) and goal g. Mathematically speaking, goal
g and f(a) constitute a model of the premises and we can thus employ our standard model checking
procedure with goal g and f(a) defining the interpretation I of the only one world in this model.

Example 5. Suppose we have trained a forward model to predict the position (ox, oy) at which object
o will hit the ground if it is thrown with single control action a ∈ [0, 10], where a gives the impulse
delivered to the object. For simplicity, we only consider a one-dimensional space of control actions in
this example. The description of the goal identifies the target position p ∈ R2 and the position of the
robot r ∈ R2. A suitable common sense rule is the following, expressed using a relation from the STAR

calculus (see Section 2.1 and Figure 5(a)):

s0(r, p) ∧ s0(p, (ox, oy)) a+ < a (4)

Given a ∈ [0, 10], the expected landing position (ox, oy) can be determined by the forward model.
The premise says that if the robot has to throw in direction s0, but the object will land in s0 with respect
to the goal, it has thrown too far. Therefore, the conclusion constrains the impulse of future attempts to
values smaller than a.

Robotics 2014, xx 15

Figure 9. Updating the representation of a distribution based on sampled actions and
qualitative inference leads to a concentration around the desired but unknown action a∗.
(a) after evaluating action a = 5, (b) after evaluating actions a = 5,1, and 7

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

a

m
(a

)

(a) distribution after one update

distribution
optimal action a∗

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

a
d
(a

)

(b) distribution after three updates

distribution
optimal action a∗

We apply conclusions by modifying distribution d according to the qualitative relation described by
the conclusion. It is a task of qualitative reasoning to identify the parts of the control space A that satisfy
the solution, we writeA+ to refer to the region ofA in which a+ ∈ A+ satisfies the conclusion. Since our
qualitative relations are expressible using linear inequalities, this task is simply a matter of hyper-plane
intersections. We then determine a modifier m : A → [0, 1] to update d. This function decreases from
the border of A+ if moving farther outside A+:

m(a) =

{
1 if a ∈ A+

e− infb∈A\A+ ||b−a|| otherwise
(5)

Finally, we update d by setting d := d ·m. Re-using the discretization of A employed for sampling,
this task can easily be solved in a discrete manner.

Example 6. Continuing the previous example, assume we are confronted with an action a ∈ A that
satisfies the premises, i.e., the robot was throwing too far. In the case of a = 5 we would conclude
a+ < 5 and obtain the modification function shown in Figure 9 (a). The desired action a∗ = 2.5 is
of course unknown to the robot but is marked in the graph for illustration too. After three attempts
of throwing either too far and not far enough (assuming a corresponding rule analogous to the one
described before given), the function shown in Figure 9 (b) is obtained. It can be seen that the graph of
this function concentrates around the desired action a∗, steering sampling towards retrieving a suitable
action.

4. Evaluation of QSL-based Reasoning for Planning

We implemented knowledge representation and reasoning with QSL in LISP as an extension of the
Robot Learning Language (RoLL) [6] which provides integration with a robotic platform or simulation
thereof as well as with the WEKA library [32] for machine learning.

For this part of the analysis we focus on the effect of QSL-based reasoning. We thus need to eliminate
effects caused by the learning element and a potential bias of the forward models learned. To this end,

Robotics 2014, xx 16

Figure 10. Landing positions in simulation with added noise, the position obtained with no
noise is marked blue.

0 20 40 60
0

20

40

60

80

x[m]

y
[m

]

we isolate the physical simulation from the robot simulation environment. We compare the performance
of our QSL-based approach to planning with pure sampling, varying between idealized and realistic
conditions for the learning component.

4.1. Experimental setup

Physical simulation in MORSE is based on the popular Bullet physics engine3 and we have written
a simple simulator in C++ using Bullet to simulate ball throwing, linking it directly with our RoLL
program. Our environment contains a ball of 10cm diameter and 1kg mass in an empty world with
an infinite ground plane and natural gravity. Since a robot arm essentially controls where an object is
released and at which direction and speed, we directly utilize these parameters as control actions. The
robot is positioned at the origin.

• height of release over ground between 0.5m and 1.5m

• vertical velocity between -1.0m and 3.0m/s

• horizontal velocity between 0.0m and 3.0m/s (negative values would be symmetrical)

Additionally, the simulation can be configured to apply random forces to the ball. If enabled, we apply
a force drawn from a normal distribution N (0, 5) with unit size Newton every cycle of the simulation,
leading to scattered landing positions as shown in Figure 10.

4.2. Learning the Forward Model

We determine four distinct forward models from training data sets of different characteristics.
Training data is computed by systematically varying the possible input parameters, and invoking the

3 http://bulletphysics.org

Robotics 2014, xx 17

Table 2. Overview of learned models with their underlying data and the obtained errors
reported by WEKA for cross-validation. MAE: mean absolute error, RMSE: root mean
squared error

noise in number of observed distances learning errors
environment training instances max min MAE RMSE

no noise 924 0.0149 2.57376 0.0 0.0205
no noise 73 0.0594 1.88315 0.0 0.079

noise 924 0.1466 3.01778 -0.32156 0.1939
noise 89 0.1943 2.8557 -0.32156 0.258

physical simulation to determine the throwing distance achieved. To this end, we discretize heights
with step size of 0.2m, vertical and horizontal velocities with 0.3m/s each. In total this results in
6(heights) × 14(vert. vel.) × 11(hor. vel.) = 924 possible data points and their respective throwing
distances achieved. These 924 data points are determined once with noise added and once without.
The idea of considering noise-free data is to enable comparison with an idealized input to learning. In
the same spirit, the 924 data point evenly distribute over the parameter space to provide an idealized
unbiased input to the learning module. For the realistic use case, we create another data set by randomly
choosing about 10% of the full data set. We draw a random number between 0 and 1 for each data point,
only including it when the random number was below 0.1. Because of this procedure, the resulting data
sets do not have exactly the same size.

For each data set we learned a model tree using the M5’ algorithm from the WEKA toolbox [7].
Table 2 lists the four data sets and shows the respective error ratings obtained in the cross validation by
WEKA. We observe similar absolute errors in the following experiments (cmp. Figure 12). The table also
shows the minimum and maximum throwing distances from each data set to provide a rough overview
of the learning data.

4.3. QSL-based Reasoning for Planning

We use the method described in Section 3.2 to plan by sampling from a distribution over possible
actions, updating the distribution after some attempts. The common sense rule we use in the experiments
is simple: increase velocity in horizontal and vertical direction if you wish to throw farther, reduce to
throw less far. This is captured by the following two rules that are similar to Equation 4 in Example 5,
but exploit the fact that only parameters to achieve distance d are to be determined:

d > g v+h < vh ∧ v+v < vv (6)

d < g v+h > vh ∧ v+v > vv (7)

Here, g stands for the desired goal distance and d for the distance achieved by the attempt using vh and
vv as action parameter for horizontal and vertical velocity. The variables v+h and v+v represent parameter
values to be used in future attempts as described in Section 3.2.

Robotics 2014, xx 18

Figure 11. Accuracy of search procedures with model no-noise, all data

20 40 60 80 100

0

0.02

0.04

0.06

0.08

0.1

Iterations

D
ev

ia
tio

n
fr

om
go

al
[m

]

Sampling
Reasoning

These rules are applied every four steps in the sampling procedure, updating the distribution according
to the rules applied to the best action sampled with the last 4 steps as input to the reasoner. The motivation
of only updating every fourth step is that sampling regularly generates outliers that if used with reasoning
do not lead to significant change of the distribution.

4.4. Determining the Iteration Cutoff

In a first experiment we wish to identify a suitable limit of the number of iterations necessary for
planning. By fixing a reasonable limit we can eliminate this parameter from further experiments. To this
end we vary the maximum number of iterations from 10 to 100. For each value we randomly generate
100 goal distances within the range of observed distances in the full-sized noise-free data set and run the
pure sampling as well as the QSL-based method, recording the average deviation from the desired goal
distance. This result is shown in Figure 11.

Figure 11 shows that the QSL-based method finds parameters that – according to the learned
forward model – would produce better parameters for the throw than with uninformed sampling. Most
importantly at this point, the deviation from a desired goal value does not significantly improve with more
than 50 iterations. For the following experiments, we therefore set the number of maximum iterations
for the planning process to 50.

4.5. Planning Quality

Next, we ran 100 trials with random goal distances for each combination of the four forward models
listed in Table 2 and the two planning options. The trials were always performed in the same environment
(no-noise vs. noise) as in the environment, in which the learning data was observed.

Figure 12 confirms the training error from Table 2 on the test sets. The box plots depict the median
error values as a line, the box boundaries show the upper and lower quartiles. Because the data shows
a long tail towards high error values, we chose the whiskers to extend twice as long as is usually done

Robotics 2014, xx 19

Figure 12. Prediction error measured in 200 test tasks, depending on the data used in the
learning process. Values outside of 3 inter-quartile ranges are considered outliers.

no noise,
all data

no noise,
reduced data

noise,
all data

noise,
reduced data

0

0.5

1

1.5
le

ar
ni

ng
er

ro
r

Figure 13. Planning error measured in 400 test tasks, depending on method. Values outside
of 30 inter-quartile ranges are considered outliers, not all outliers are shown.

Sampling Reasoning

0

0.02

0.04

0.06

0.08

0.1

de
vi

at
io

n
fr

om
go

al
[m

]

max = 0.698 max = 0.336

in boxplots. Even with this adjustment, there are many outlier points towards higher errors. A Student’s
t-test shows that the loss in prediction quality from the reduction in data is statistically significant both
for the no-noise data (p = 0.0045) and even more pronounced for the noisy data (p = 0.00001). The
effect size after Cohen shows a small effect (d = 0.26) for the artificial data without noise, and a medium
effect (d = 0.43) for the more realistic noisy data.

Figure 13 shows the deviation from the goal, i.e., the resulting difference of the predicted throwing
distance and the target distance. As in Figure 11, the QSL-based method exploiting qualitative reasoning
lowers the error on average (x̄Sampling = 0.028, x̄Reasoning = 0.011), but also reduces the spread of the
results (σ̂Sampling = 0.083, σ̂Reasoning = 0.040). The difference is statistically significant (p = 0.0001).
The results thus confirm the first experiment and also generalizes it to all data sets considered. Still, in
all cases, the computed actions are predicted to be very close to the target distance.

Figure 14 shows the total error of our learning-and-planning approach. The resulting error is mostly
due to the learning inaccuracies. As shown before, the reduction of data usually results in significantly

Robotics 2014, xx 20

Figure 14. Total error measured in 100 test tasks with different models and search models.
Values outside of 1.5 inter-quartile ranges are considered outliers. All models are tested in
the environment in which they were learned.

0

0.2

0.4

0.6

0.8

1

de
vi

at
io

n
fr

om
go

al
[m

]

no noise, all data
no noise, reduced data

noise, all data
noise, reduced data

Sampling Reasoning

worse results (except for the data of the no-noise condition with sampling with p = 0.198, for all other
pairs of all-data/reduced-data p < 0.01.). Reasoning lowers the average error significantly with all data
sets (p < 0.01) except the no-noise, reduced-data set (p = 0.20) Also reasoning results generally in a
lower spread of the results, thus making the process more reliable.

4.6. Transfer of Planning

It is generally a lot easier to gather learning data in simplified simulations than in realistic simulations,
let alone with real robots. This is why we were interested, if models learned in a simplified environment
might still be useful in more complex, noisy environments. We therefore use the models learned from
no-noise training sets with planning in the noisy environment. Again, we randomly generated 100 test
tasks. Figure 15 shows the results of the overall learning-and-planning procedure. The values for the
noise-models are identical to those in Figure 14, we only included them for a better comparison.

Interestingly, the model learned from the reduced data set is even slightly better when used with
reasoning than the one with the full data, but the effect is not statistically significant (p = 0.19). This may
be due to the different complexities of the learned models in context of a simple physical relationship.
While the model tree learned with the full data set has a depth of 6 and contains 52 leaf nodes, the
model learned from the reduced data set only has depth 2 with 3 leaf nodes. Assuming that in real-world
settings it is only possible to gather small data sets (which corresponds to the noise, all data condition),
the use of possibly larger data sets gathered in a simulation without noise is a promising approach. The
improvement of using the full data set gathered under idealized conditions over the reduced noisy data
set is statistically significant for the sampling approach (p = 0.014), but not for the reasoning approach

Robotics 2014, xx 21

Figure 15. Total error measured in 100 test tasks. All models noise are applied in the
environment with noise (the results for models that were learned with noisy data are identical
to the ones in Figure 14, they are marked ∗ and shown here for better comparison). Values
outside of 1.5 inter-quartile ranges are considered outliers.

0

0.2

0.4

0.6

0.8

1

E
rr

or

learned without noise, all data
learned without noise, reduced data
∗ learned with noise, all data

∗ learned with noise, reduced data

Sampling Reasoning

(p = 0.13). In the latter case, the improvement of using the reduced idealized data set as compared to
the noisy reduced data set is statistically significant (p = 0.033) with a significance level of 0.05. So
a reduction in data may be beneficial, especially when this reduction is not random, as we will see in
Section 5.

Robotics 2014, xx 22

4.7. Discussion of the Results

Already the first experiment on the number of iterations necessary for planning shows that QSL-based
reasoning outperforms pure sampling in terms of deviation and in terms of the number of iterations
necessary to determine a control action of specific quality (see Figure 11).

Figure 13 shows the deviation from the goal, i.e., the resulting difference of the predicted throwing
distance and the target distance. As in Figure 11, the QSL-based method exploiting qualitative reasoning
lowers the error on average, but also the spread of the results. The results thus confirm the first experiment
and also generalizes it to all data sets considered. Still, in all cases, the computed actions are predicted
to be very close to the target distance.

The experiment on transferability from simplified simulation to realistic conditions is particular
interesting as it addresses a typical use case in robot software engineering: learning in simulation but
application on the real platform. The results show that the proposed method can handle this situation,
the QSL-based approach degrading less than the sampling-based method.

In summary, the evaluation of planning shows that employing the QSL-based method outperforms
in all cases a pure sampling-based planning method. The results on transferability indicate further that
models from a simplified environment can well be applied to more complex environments using the
proposed method.

5. Evaluation of Reasoning for Learning

In the previous section we generated data with the Bullet simulation engine by specifying the velocity
and direction of the ball at the moment of throwing. Neither humans nor robots can throw objects
in this way, directly controlling launch parameters: they have to move joints in a specific order with
specific timing. Another simplification of the Bullet simulation is that it happens in an open space with
no objects around other than the ground and without any embodiment of an agent. In a real throwing
situation, the object can bounce off other objects or the robot itself. Because of the indirect control of
the throwing parameters and obstacles in the world, the data in a more realistic setup gets much more
noisy. In particular, objects may not fly in the intended direction, but may land behind the robot (for
example, if the arm is moved to vigorously) or at any place by bouncing off. In the following we show
in a more realistic setup, how a QSL-based specification of the task can be used to remove outliers from
the observed data and how this helps to improve the learning result. In the previous section we saw that a
random reduction of data leads to poorer predictions. Here we want to show that a goal-directed filtering
of the data is necessary in more realistic setups.

In the following we first present the more complex experimental setup with a realistic robot
simulation. Then we describe the qualitative models used in this experiment to remove outliers from
the gathered data. Finally we show the results of learning the prediction models with data sets filtered
with different qualitative models.

Robotics 2014, xx 23

5.1. Experimental Setup

For overall simulation of a sophisticated platform we employ MORSE [8,9], a versatile simulator for
complex robot interaction scenarios, to simulate a Willow Garage PR2 robot in a kitchen environment
shown in Figure 1. We chose MORSE because it uses the Bullet physics engine and because it provided
a realistic household environment and a fully modeled state-of-the art robot in the PR2. For throwing
objects in outdoor scenarios, additional parameters such as air drag and turbulence could be important.
But in this paper we are not concerned with finding the perfect throwing algorithm, but rather use this
task to demonstrate our reasoning-and-learning approach.

MORSE is configured to connect to the robot operating system ROS4 [33] as middleware. The
learning and planning procedures implemented in RoLL then connect to ROS in order to control the robot
or to retrieve observations. Neither the PR2 robot nor its control architecture with the ROS middleware
are designed for throwing objects. To make the robot throw an object (in our case an empty jar), we first
move the elbow and wrist joints of the right arm to a low position. Then the robot moves the two joints
to a new position, with a specified time to perform the movement. After half the time that the movement
should last, the robot lets go of the object. In this way, our throw can be determined by five variables:

• elbow joint at start/end configuration

• wrist joint at start/end configuration

• time in which the action is to be performed

In order to avoid problems related to gripping and releasing objects, the simulator is extended to attach
and release objects to the manipulator (see Figure 1 left).

A full trial consists of the robot 1) moving to a specified relative position in front of the object,
2) grasping the object with a predefined arm movement, 3) turning 90 degrees to the left, 4) throwing
the object with the given parameters of lower and upper position and the total throw duration. With this
procedure, uncertainties in realistic manipulation tasks are captured to some degree, like the orientation
of the robot. But there are still parameters in real situations that are not modeled, for example the exact
grasping point or the possibility of losing the object while turning to the throwing position. This choice
was a compromise between a realistic setup and the efficiency of gathering data.

For the task of throwing an object into the trash, it would be most convenient to throw in a frontal
direction, as we did in the Bullet simulation of Section 4. As a direct measure to achieve this, we only use
the elbow and wrist joints of the PR2 robot, which move along the robot’s orientation axis. Depending on
the specific throwing parameters, the robot can thus be expected to throw an object along its orientation
axis, either in a frontal or backward position. But due to nondeterminism in the simulation (caused by
small delays in the middleware and slightly different initial positions) and the presence of objects from
which the thrown object can bounce off, the landing positions divert to other directions. Figure 16 gives
an impression of typical outcomes in the data gathering process. To model this additional variation, we
now learned two forward models: one that returns the expected throwing distance given the five input

4 http://www.ros.org

Robotics 2014, xx 24

Figure 16. Result from a data gathering run, showing highlighted landing positions on the
floor behind the robot, on the robot, and the desired samples on the floor in front of the robot.
Objects cannot bounce off the simulated human as he is modeled as a non-solid object. Its
presence just simplified the positioning of the camera in the scene.

variables above (comparable to the model learned in Section 4) and one that returns the angular 2D
deviation from a straight throw, also given the five input variables.

For gathering the data, random values of the input variables were generated. As with a real robot, data
acquisition in the MORSE simulator is more painful than in the Bullet simulation. On the one hand, each
throw needs a lot more time, because the robot first has to grasp an object, turn into a position without
too many obstacles in front of it, and perform the arm movements. On the other hand, having several
ROS nodes and the complex simulator running can lead to deadlocks and inexplicable crashes.

In total we collected 158 data points. They include runs, where the object landed behind or on top of
the robot.

5.2. QSL-Based Task Specification for Filtering

The qualitative models in Section 4 served for guiding the reasoning process with the learned models.
In the more realistic experimental setup with the MORSE simulator, we now have the additional problem
that the observed data contains many outliers. Learning algorithms can deal with outliers to some extent,
but a preprocessing step of the data to make it fit the goals of the learning task is often necessary when
using real-world data [34]. To make this step explicit and based on explicit reasoning mechanisms, we
define two qualitative formulas that describe our expectations of a frontal throw, and then use model
checking for filtering the learning data. The StarVars formalisms is especially well-suited for this
example, as it is primarily concerned with modeling directions.

Proper throw We specify that throwing is the process of the robot r holding an object o (body of the
robot and body of the object are touching) until it is released once and forever. Finally the object lands
on the ground g. Additionally, we demand that the object was thrown at least 0.5m away from the robot’s
center as otherwise it would have landed on the robot’s body. To this end, we introduce a point fr directly
in front the robot’s base, 0.5m off its center position. This yields the following formula:

Robotics 2014, xx 25

Table 3. Learning performance of distance model. MAE: mean absolute error, RMSE: root
mean squared error

used number of learning errors
filter training instances MAE RMSE

none 158 0.2092 0.2565
radius (Eq. 8) 88 0.1021 0.1457
frontal (Eq. 9) 125 0.2217 0.2677
radius+frontal 80 0.0939 0.136

¬TOUCH(r, o) U (�¬TOUCH(r, o) ∧ �(TOUCH(o, g) ∧ OVERLAPS(r, cr, o)) (8)

Relation TOUCH is written as disjunction of block-algebra relations in 3D, requiring the objects
involved to overlap or meet in any dimension, i.e., B, BI are not allowed as relation (cp. Figure 3(b)).

TOUCH := {(α, β, γ)|α, β, γ ∈ {M, MI, O, OI, EQ, S, SI, D, DI, E, EI}} (9)

Relation OVERLAPS can be modeled with TPCC relations (cp. Figure 5 on page 7) by using the
combination of all relations representing sectors within the circular close sector. In the labeling of
Figure 5, the robot’s position r would be used as origin O, the front point fr would serve as reference
point R. An object landing at the position marked with P in Figure 5 (close back left) would be regarded
overlapping with the robot. In our implementation, however, we directly determine the distance to the
robot and compare it against a constant value of 0.5 using point calculus relation ‘<’. Doing so we only
have to deal with linear inequalities.

Throwing to the front We specify that a successful throw makes an object land in a 60◦ degree angle
in front of the robot. This can be accomplished using STARVARS relations (see Figure 5(b) on page 7)
to describe positions in the X/Y plane (abstracting from height over ground). We use the variant of this
calculus that uses 10 sectors in total, the constraint is captured by the following formula in QSL where r
refers to the robot and o to the object thrown:

�v0(r, o) (10)

In fact, Formula 10 does not even allow the object to leave the front-sector temporarily, but this does not
make a difference in our setup.

5.3. Learning Performance

We apply filtering by model checking the observations from an attempt against the task description
as explained in Section 3.1. The remaining training instances are used to learn the forward model for
distance and direction respectively. Tables 3 and 4 show the sizes of the resulting data sets and the
learning performance.

Robotics 2014, xx 26

Table 4. Learning performance of direction model. MAE: mean absolute error, RMSE: root
mean squared error

used number of learning errors
filter training instances MAE RMSE

none 158 0.8058 1.431
radius (Eq. 8) 88 0.4164 1.1046
frontal (Eq. 9) 125 0.0156 0.0279
radius+frontal 80 0.0103 0.0178

The radius filter removes such samples where the object bounced off the robot body. Because of
the non-determinism we get from slightly varying initial throwing positions (resulting from the robot’s
own grasping and movement to the throw-off position), even the same throwing action can result in very
different landing positions, depending on whether the object dropped directly or bounced off the robot’s
arm. In many cases the object landed on top of the robot, getting stuck on the upper arm or between the
arms (as shown in Figure 16). This constraint, however, does not filter for collisions with other objects,
for example the refrigerator in front of the robot (see Figure 1). These bounces could be filtered with
another rule, but as they happened rarely, we chose to leave them in the training set.

The frontal filter removes all instances with landing positions next to or behind the robot, the latter
constituting the vast majority of cases. Only in the rare cases when the object bounced off pieces of
furniture did the object land next to the robot.

For both forward models, the two filters improve learning performance, the order with respect to
learning errors being identical for mean absolute error and root mean squared error. For the distance
model the radius filter is most effective, while for the angular deviation model, the reduction to frontal
throws shows the largest effect. This is not surprising since reduction to the front sector simplifies this
prediction problem. The combination of both filters leads to the best results in both cases, reducing the
mean absolute learning error for the distance model by -55.1% (-47.0% for the root mean squared error)
and for the direction model by -98.7% (-98.8% for the root mean squared error).

6. Discussion

The experiments have shown that the overall performance of a robot employing the basic architecture
of learning and planning can be improved in two regards. First, learning of forward models can be
improved with respect to the resulting learning error by matching observations during training against a
declarative task description of the task that shall be learned. In principle this approach allows a complex
task to be decomposed into several subtasks which are easier to learn. A robot can then decide by
qualitative reasoning which ob the subtasks learned matches a concrete task at hand. This approach
is however counteracted by the problem that filtering out too much training data for achieving many
subtasks may also worsen the learning performance, because every filter removes data and a mere
reduction of data without a limitation of the state space is usually harmful.

Second, planning with the learned forward models can be improved by reasoning about failed
attempts. In our experiments the reasoning-based approach to planning either requires less iterations

Robotics 2014, xx 27

to achieve the same performance with respect to deviation from the desired goal or better performance
in the same number of iterations (see Figure 11, 13). While the median only improves modestly, the
considerable long error tail in sampling-based planning is reduced significantly (see Figure 14), thereby
improving robustness of planning. The small improvement in the median is likely caused by the rather
simple problem to be solved in combination with only one common sense rule as background knowledge.

6.1. Discussion of Related Approaches

The idea of exploiting a symbolic representation to improve robot architectures based on learning and
planning has been considered previously.

In context of learning robot navigation, Frommberger [35] shows that a qualitative state space
representation leads to quicker learning and better performance of the learned strategy. While
Frommberger’s contribution to task representation is to identify suitable qualitative spatial relations
for learning collision-free navigation, we propose a general approach that can be used with different
qualitative relations, but which also captures temporal relationships and thus allows tasks to be described.
Current approaches to learning show that symbol semantics useful for robot manipulation like the
qualitative relations used in our representation can also be acquired by means of learning [36]. So
far, most systems rely on hand-coded symbols [37, e.g.,] though. On the level of basic spatial relations
we also use predefined relations in order to be informed of qualitative reasoning techniques applicable.
In context of QSL we can then combine these basic relations with logic composition to specify important
relations declaratively.

High-level task descriptions related to our approach are also considered in the RoboEarth framework
[38] to represent manipulation tasks. However, their approach assumes a suitable grounding of concepts
such as “handle” or “opening a door” to be given. By contrast, our approach using QSL exactly aims at
defining such complex motion primitives declaratively in order to allow the robot to learn them. Tenorth
et al. [39] use (primarily numeric) constraints to describe movements of robots and manipulators to
determine action sequences in a pancake cooking scenario. This has the disadvantage over a logic with
clear semantics like QSL that no standard reasoning procedures like model checking are applicable, but
all inference mechanisms have to be hand-coded.

Previously, logics in robotics have mostly used on a high level of abstraction, not aiming to connect
high-level task knowledge all the way to observations and actions in a uniform framework. For example,
approaches based on the popular family of Golog languages [40,41] provide a logic-based, universal
declarative programming environment that seamlessly integrates with symbolic planning, but relies on
the basic actions to be preprogrammed. Thus, our work can be regarded to extend existing logic-based
approaches in robotics down to less abstract, task-specific knowledge, enabling learning and action
planning to be integrated with a knowledge representation that can be used like a programming language.

Achieving this integration of programming and learning has been identified by Mitchell as one of
the central long-term research questions for machine learning [42]. While our approach is realized in
the context of the Robot Learning Language (RoLL) [43], there have been other approaches to integrate
learning into robot control programs. Thrun [44] has proposed the language CES offering the possibility
to leave “gaps” in the code that can be closed by learned functions. CES only uses one specific gradient

Robotics 2014, xx 28

descent algorithm and doesn’t offer explicit possibilities to integrate other learning algorithms. Besides,
the training examples have to be provided by the programmer, experience acquisition is not supported
on the language level [45]. Andre and Russell [46,47] propose a language with the same idea as CES
of leaving some parts of the program open to be filled in through learning, in this case reinforcement
learning.

7. Conclusion

We propose qualitative spatial logic QSL as a qualitative knowledge representation to represent
knowledge about manipulation tasks. Our representation is essentially based on qualitative relations
among domain level entities or control parameters, employing representations developed in the
qualitative spatial reasoning community, a sub-field of artificial intelligence in general and knowledge
representation in particular. Since background knowledge available to programmers is on an abstract
level, a qualitative representation is well-suited. However, not until we embed these concepts in a
temporal logic we gain the ability to describe some general patterns and principles underlying a learning
tasks. Doing so, our approach also presents another use case of linear temporal logic LTL in robotics. The
logic framework we describe allows us to tackle tasks in learning and planning with standard reasoning
tasks, in particular model checking. This is an important step towards automating the application of
learning in robot software engineering as our approach mainly requires a declarative description of the
task to be solved, possibly augmented with background knowledge. By exploiting artificial intelligence
(AI) techniques to improve robot performance this work contributes to the field of AI robotics that seeks
to exploit AI techniques in robotics.

While this study serves to demonstrate the principal utility of QSL as a representation and reasoning
mechanism for learning-based robotics in a fully controllable evaluation environment, future work aims
at demonstrating the ability to push ahead the state of the art of tasks that can be mastered with learning.
In more challenging manipulation settings we propose to also study the computational cost of employing
logic-level reasoning that was not noticeable in the study described here. Also, we propose to integrate
the learning and planning component in a bootstrapping fashion in order to investigate whether this
allows the learning performance to be improved further. After learning a first forward model from a
small amount of data, the planning component can be used in conjunction with the qualitative partitioning
of the problem space to generate further training instances that more evenly distribute over the whole
problem space.

References

1. Williams, B.C.; de Kleer, J. Qualitative Reasoning About Physical Systems—a Return to Roots.
Artificial Intelligence 1991, 51, 1–9. Editorial introduction to special issue on qualitative
reasoning about physical systems II.

2. Bredeweg, B.; Struss, P. Current topics in qualitative reasoning. AI Magazine 2003, 24, 13–16.
Editorial introduction to special issue on qualitative reasoning.

3. Davis, E. Representations of Commonsense Knowledge; Morgan Kaufmann series in
representation and reasoning, Morgan Kaufmann Publishers, 1990.

Robotics 2014, xx 29

4. Mösenlechner, L.; Beetz, M. Parameterizing Actions to have the Appropriate Effects. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS); , 2011.

5. Knauff, M.; Strube, G.; Jola, C.; Rauh, R.; Schlieder, C. The Psychological Validity of Qualitative
Spatial Reasoning in One Dimension. Spatial Cognition & Computation 2004, 4, 167–188.

6. Kirsch, A. Robot Learning Language — Integrating Programming and Learning for Cognitive
Systems. Robotics and Autonomous Systems Journal 2009, 57, 943–954.

7. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data
Mining Software: An Update. SIGKDD Explorations 2009, 11.

8. Echeverria, G.; Lassabe, N.; Degroote, A.; Lemaignan, S. Modular openrobots simulation
engine: MORSE. Proceedings of the IEEE ICRA, 2011.

9. Lemaignan, S.; G., E.; Karg, M.; Mainprice, M.; Kirsch, A.; Alami, R. Human-Robot Interaction
in the MORSE Simulator. Proceedings of the 2012 Human-Robot Interaction Conference (late
breaking report), 2012.

10. Cohn, A.G.; Renz, J. Qualitative Spatial Representation and Reasoning. In Handbook of
Knowledge Representation; van Harmelen, F.; Lifschitz, V.; Porter, B., Eds.; Elsevier, 2008;
Vol. 3, Foundations of Artificial Intelligence, chapter 13, pp. 551–596.

11. Kontchakov, R.; Kurucz, A.; Wolter, F.; Zakharyaschev, M. Spatial Logic + Temporal Logic
= ? In Handbook of Spatial Logics; Aiello, M.; Pratt-Hartmann, I.E.; van Benthem, J.F., Eds.;
Springer, 2007; pp. 497–564.

12. Vilain, M.B.; Kautz, H.A. Constraint propagation algorithms for temporal reasoning.
Proceedings of the 5th National Conference of the 13 American Association for Artificial
Intelligence (AAAI-86), 1986, pp. 377—382.

13. Allen, J.F. Maintaining knowledge about temporal intervals. Communications of the ACM 1983,
26, 832–843.

14. Balbiani, P.; Condotta, J.; Fariñas del Cerro, L. Tractability Results in the Block Algebra. Journal
of Logic and Computation 2002, 12, 885–909.

15. Renz, J.; Mitra, D. Qualitative Direction Calculi with Arbitrary Granularity. Proceedings of
PRICAI-04. Springer, 2004, Vol. 3157, LNAI, pp. 65–74.

16. Lee, J.H.; Renz, J.; Wolter, D. StarVars—Effective Reasoning about Relative Directions.
Proceedings of the Internatoinal Joint Conference on Artificial Intelligence (IJCAI); Rossi, F.,
Ed. AAAI Press/ International Joint Conferences on Artificial Intelligence, 2013, pp. 976–982.

17. Moratz, R.; Ragni, M. Qualitative spatial reasoning about relative point position. Journal of
Visual Languages & Computing 2008, 19, 75–98.

18. Ligozat, G.; Renz, J. What Is a Qualitative Calculus? A General Framework. Proceedings of
PRICAI-04; Zhang, C.; Guesgen, H.; Yeap, W., Eds. Springer, 2004, Vol. 3157, LNCS, pp.
53–64.

19. Dylla, F.; Mossakowski, T.; Schneider, T.; Wolter, D. Algebraic Properties of Qualitative
Spatio-temporal Calculi. COSIT. Springer, 2013, Vol. 8116, LNCS, pp. 516–536.

20. Kreutzmann, A.; Wolter, D. Qualitative Spatial and Temporal Reasoning with AND/OR Linear
Programming. Proceedings of 21st European Conference on Artificial Intelligence (ECAI), 2014.

Robotics 2014, xx 30

21. Pnueli, A. The temporal logic of programs. Proceedings of the 18th annual symposium on
foundations of computer science (FOCS), 1977, pp. 46–57.

22. Antoniotti, M.; Mishra, B. Discrete event models + temporal logic = supervisory controller:
Automatic synthesis of locomotion controllers. Proceedings of the IEEE Conference on Robotics
and Automation (ICRA), 1995, Vol. 2, pp. 1441–1446.

23. Kress-Gazit, H.; Wongpiromsarn, T.; Topcu, U. Correct, Reactive Robot Control from
Abstraction and Temporal Logic Specifications. Special Issue of the IEEE Robotics and
Automation Magazine on Formal Methods for Robotics and Automation 2011, 18, 65–74.

24. Kloetzer, M.; Belta, C. LTL planning for groups of robots. Proceedings of the IEEE International
Conference on Networking, Sensing and Control (ICNSC), 2006, pp. 578–583.

25. Smith, S.L.; Tůmová, J.; Belta, C.; Rus, D. Optimal path planning under temporal logic
constraints. Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS); , 2010; pp. 3288–3293.

26. Kloetzer, M.; Belta, C. Automatic deployment of distributed teams of robots from temporal logic
motion specifications. IEEE Transactions on Robotics 2010, 26, 48–61.

27. Kreutzmann, A.; Colonius, I.; Wolter, D.; Dylla, F.; Frommberger, L.; Freksa, C. Temporal logic
for process specification and recognition. Intelligent Service Robotics 2013, 6, 5–18.

28. Kröger, F.; Merz, S. Temporal Logic and State Systems; Texts in Theoretical Computer Science,
Springer, 2008.

29. Bauland, M.; Mundhenk, M.; Schneider, T.; Schnoor, H.; Schnoor, I.; Vollmer, H. The tractability
of model checking for LTL: The good, the bad, and the ugly fragments. ACM Transactions on
Computational Logic (TOCL) 2011, 12. Article 13.

30. Gebser, M.; Grote, T.; Schaub, T. Coala: A Compiler from Action Languages to ASP. Logics in
Artificial Intelligence, 12th European Conference (JELIA). Springer, 2010, Vol. 6341, Lecture
Notes in Computer Science, pp. 360–364.

31. Grosu, R.; Smolka, S.A. Monte Carlo Model Checking. In Tools and Algorithms for the
Construction and Analysis of Systems; Springer, 2005; Vol. 3440, LNCS, pp. 271–286.

32. Witten, I.H.; Frank, E. Data Mining: Practical machine learning tools and techniques, 2nd ed.;
Morgan Kaufmann: San Francisco, 2005.

33. Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: an
open-source Robot Operating System. Proceedings of ICRA workshop on open source software,
2009.

34. Kirsch, A.; Schweitzer, M.; Beetz, M. Making Robot Learning Controllable: A Case Study in
Robot Navigation. Proceedings of the ICAPS Workshop on Plan Execution: A Reality Check,
2005.

35. Frommberger, L. Learning to Behave in Space: A Qualitative Spatial Representation for Robot
Navigation with Reinforcement Learning. International Journal on Artificial Intelligence Tools
(IJAIT) 2008, 17, 465 – 482.

36. Kulick, J.; Toussaint, M.; Lang, T.; Lopes, M. Active Learning for Teaching a Robot Grounded
Relational Symbols. Proceedings of IJCAI, 2013.

Robotics 2014, xx 31

37. Beetz, M.; Mösenlechner, L.; Tenorth, M. CRAM—A Cognitive Robot Abstract Machine for
Everyday Manipulation in Human Environments. Proc. of the Int. Conf. on Intelligent Robots
and Systems, 2010, pp. 1012–1017.

38. Tenorth, M.; Perzylo, A.C.; Lafrenz, R.; Beetz, M. Representation and Exchange of Knowledge
about Actions, Objects, and Environments in the RoboEarth Framework. IEEE Transactions on
Automation Science and Engineering (T-ASE) 2013, 10, 643–651.

39. Tenorth, M.; Bartels, G.; Beetz, M. Knowledge-based Specification of Robot Motions.
Proceedings of the 21st European Conference on Artificial Intelligence (ECAI 2014), 2014.

40. Levesque, H.J.; Reiter, R.; Lespérance, Y.; Lin, F.; Scherl, R.B. Golog: A logic programming
language for dynamic domains. Journal of Logic Programming 1997, 31, 59–83.

41. Levesque, H.; Lakemeyer, G. Cognitive robotics. In Handbook of Knowledge Representation;
Lifschitz, V.; van Harmelen, F.; Porter, F., Eds.; Elsevier, 2007.

42. Mitchell, T. The Discipline of Machine Learning. Technical Report CMU-ML-06-108, Carnegie
Mellon University, 2006.

43. Kirsch, A. Integration of Programming and Learning in a Control Language for Autonomous
Robots Performing Everyday Activities. PhD thesis, Technische Universität München, 2008.

44. Thrun, S. Towards programming tools for robots that integrate probabilistic computation and
learning. Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA); IEEE: San Francisco, CA, 2000.

45. Thrun, S. A Framework for Programming Embedded Systems: Initial Design and Results.
Technical Report CMU-CS-98-142, Carnegie Mellon University, Computer Science Department,
Pittsburgh, PA, 1998.

46. Andre, D.; Russell, S. Programmable Reinforcement Learning Agents. Proceedings of the 13th
Conference on Neural Information Processing Systems; MIT Press: Cambridge, MA, 2001; pp.
1019–1025.

47. Andre, D. Programmable Reinforcement Learning Agents. PhD thesis, University of California
at Berkeley, 2003.

c© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).

	Motivation
	Scenario
	Approach and Contribution

	Qualitative Representation of Manipulation Tasks with Qualitative Spatial Logic (QSL)
	Qualitative Representation of Space
	Spatial Logic of Manipulation Tasks
	Syntax and Semantics of Qualitative Spatial Logic (QSL)

	Reasoning with QSL

	Qualitative Spatial Logic in Learning and Planning
	Determining and Classifying Instances for Learning
	Enhancing Efficiency of Action Planning by Reasoning

	Evaluation of QSL-based Reasoning for Planning
	Experimental setup
	Learning the Forward Model
	QSL-based Reasoning for Planning
	Determining the Iteration Cutoff
	Planning Quality
	Transfer of Planning
	Discussion of the Results
	Evaluation of Reasoning for Learning
	Experimental Setup
	QSL-Based Task Specification for Filtering
	Learning Performance

	Discussion
	Discussion of Related Approaches

	Conclusion

