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Abstract —The energy management of a fuel cell system 
coupled to a supercapacitor energy storage system is studied, 
both in simulation and on a same-scale test bench. This system 
can be used to power an urban electric scooter. To obtain a low 
real-time hydrogen consumption, an online energy management 
strategy needs to be embedded. This paper assesses the best 
energy performance of two promising real-time energy 
management strategies for fuel cell electric vehicle applications: 
adaptive equivalent consumption minimization strategy and 
stochastic dynamic programming. For this purpose, a specific 
certification driving cycle is considered while an off-line 
algorithm is used as benchmark. Simulation experimental results 
show that SDP has a higher potential than A-ECMS, making 
SDP complexity worth handling.   

Keywords—fuel cell electric vehicle; energy management; 
optimal control; adaptative equivalent consumption minimization 
strategy; Stochastic dynamic programming 

I.  INTRODUCTION 

Fuel cell electric vehicles (FCEVs) are considered as a 
promising technology to build long range environment friendly 
vehicles [1]. FCEVs possess an electrochemical power source 
(the FC) and an energy storage system such as a supercapacitor 
(SC). This combination of two power sources is needed 
because the FC is too slow to fulfill the instantaneous need of 
traction power. In addition it improves the global system 
efficiency due to braking energy recovery and the opportunity 
to operate the FC around its best efficiency working points 
whatever the instantaneous power needed by the vehicle [2]. 
To achieve these two functionalities, a supervisor is needed in 
order to split the instantaneous power between the FC and the 
SC and minimize the total H2 consumption over a given driving 
cycle, while strictly meeting the driver’s power demand and 
satisfying operating constraints.  

Off-line optimization is used when the driving cycle is 
known, typically to perform system design, sizing and test in 
perfectly controlled conditions. Pontryagin’s minimum 
principle (PMP) [3][4] and dynamic programming (DP) [5][6] 
are then widely used. They are hence very helpful for 
benchmarking studies. 

In contrast, in real life conditions, the oncoming driving 
cycle cannot be foreseen and online methods are needed. The 
present paper focuses on two methods and applies them to a 
FC/SC system suitable for urban electric scooters. The system 

and its related real-time energy management strategies are 
evaluated both in simulation and on an experimental set-up. 
The first method, called adaptative equivalent consumption 
minimization strategy (A-ECMS) [7] is based on PMP. This 
approach is popular because of its simplicity, but it is also 
known for its possible unstable behavior. Hence, more complex 
approaches should be investigated. The second method under 
study is stochastic dynamic programming (SDP) [3], which 
generalizes DP in the case where random processes are 
involved, which is typically the case for real-life driving cycles. 
SDP is appealing because it has a clear theoretical background 
and allows to take into account statistical information about the 
driving cycle.  

The paper objective is to assess the best potential of both 
online methods using a specific certification driving cycle. For 
this purpose, an off-line method is used as a reference, showing 
the minimum consumption achievable. The idea is to find out 
whether SDP complexity is worth handling with energy 
performance close to optimum. In this context, the paper is 
organized as follows. The FC/SC system and its model are 
described in Sections II. Off-line and online EMS are presented 
in Section III. In Section IV the model and test bench are first 
validated, then A-ECMS and SDP performances are compared 
to DP's. SDP appears to have a better potential.  

II. FC/SC SYSTEM DESCRIPTION AND MODELING 

This study deals with the hybrid FC/SC powertrain of a 
scooter. Fig. 1 shows the system architecture: the FC and the 
SC are connected via DC/DC converters to the DC bus which 
feeds the electric motor. The main power source of the system 
is a 1.2 kW proton exchange membrane FC, with a maximum 
efficiency for an output power around 300 W. A bi-directional 
load allows to simulate the traction power needed by the 
scooter: during braking, power is sent back to the FC/SC 
system. The supervisor inputs are the SC voltage, used to 
estimate the SC state of charge, and the load power. These 
informations are used by the EMS to determine the 
instantaneous FC output power. Low level controlers manage 
the voltage and current in the different parts of the system. 

The energy management algoritms require the system to be 
precisely modeled. The FC is modeled by its static V-I 
characteristic and its ܪଶ consumption curve ሶ݉ ுమሺ ிܲ஼ሻ. The SC 
stack is modeled as a RC circuit in parallel with an internal 
leakage current source with a quadratic dependence with 



respect to the external voltage. In a similar way, both DC/DC 
converters are modeled as ideal converters in parallel with 
leakage current sources to account for internal losses. The 
model parameters are identified by fitting experimental data. 

 
Fig. 1. FC/SC hybrid system under study and its supervisor 

The power demand ௪ܲ௛௘௘௟ depends on the speed profile and 
is calculated using the motion equation (1):  

௪ܲ௛௘௘௟ ൌ ሾ0.5	ߩ௔௜௥ܥܣௗݒଶ ൅ ௥݉݃ߤ ൅݉ܽሿ.  (1) ݒ

where ߩ௔௜௥  is density of air; ܣ is the reference area; ܥௗ  is 
the drag coefficient; ߤ௥ is the rolling resistance coefficient; ݉ 
is the vehicle mass; ݃ is the  gravitational acceleration; ݒ and ܽ 
are the vehicle velocity and acceleration respectively . 

The present study is based on the World Motorcycle Test 
Cycle (WMTC), dedicated to low power motorcycles [10], and 
shown in Fig. 2. 

 
Fig. 2. WMTC driving cycle profile and corresponding traction power 

III. ENERGY MANAGEMENT STRATEGIES 

Optimal energy management is intended to determine the 
best instantaneous power split between the FC and the SC in 
order to minimize the fuel consumption for a given driving 
cycle. This can be handled as an optimal control problem, in 
which the control variable, denoted ݑ, is the output FC power, 
the state variable, denoted ݔ, is the energy stored in the SC, and 
the traction power is an external disturbance, denoted ݓ. 

The problem is defined by the set of equations (2) - (5), 
where ܬ is the total ܪଶ consumption over the considered time 
interval. Equation (3) models the dynamic behavior of the SC 
state of charge ݔ as a function of ݑ and ݓ. Since the energy is 
provided solely by ܪଶ , the consumption is calculated with 

equal initial and final state for comparison sake. Finally, (5), (6) 
and (7) model the system operational constraints.  

݁ݖ݅݉݅݊݅ܯ ܬ ൌ ׬ ሶ݉ ுమ൫ݑሺݐሻ൯. ݐ݀
௧೑
௧బ

  (2)

ሻݐሶሺݔ ൌ ݂൫ݑሺݐሻ, ,ሻݐሺݔ ሻ൯ (3)ݐሺݓ

௙൯ݐ൫ݔ ൌ ଴ሻݐሺݔ ൌ ௥௘௙ (4)ݔ

௠௜௡ݔ ൑ ሻݐሺݔ ൑ ௠௔௫ (5)ݔ

ሶ௠௜௡ݔ ൑ ሻݐሶሺݔ ൑ ሶ௠௔௫ (6)ݔ

௠௜௡ݑ ൑ ሻݐሺݑ ൑ ௠௔௫ (7)ݑ
 

In this work, two approaches proposed in literature are 
tested and compared. The first one is the adaptive equivalent 
consumption minimization strategy (A-ECMS) [7], whose 
main advantage is simplicity and low computation cost. The 
second one is stochastic dynamic programming (SDP) [8][9], 
which provides a clear mathematical background and a 
framework to include statistical information about the driving 
cycle. Online methods are sub-optimal and their results have to 
be compared to the off-line methods answers in order to rate 
their performance. In the present work, dynamic programming 
(DP) is used as benchmark, because it naturally accounts for 
the different operational constraints.  

A. A-ECMS 

A-ECMS is based on the concept of equivalence between 
the electric power provided by the storage unit ݔሶ  and some 
fuel consumption, obtained by applying an equivalent cost 
factor denoted ݌ hereafter. At all times, the optimal control 
should minimize a fuel consumption which includes the actual 
instantaneous hydrogen flow and the equivalent hydrogen 
consumption of the SC, as stated by (8).  

,ݐ∀ ,ݔሺ∗ݑ ሻݓ ൌ arg min
௨

ൣ ሶ݉ ுమሺݑሻ ൅ .݌ ሶݔ ሺݑ, ,ݔ ሻ൧ݓ (8)

The difficult point is to evaluate the equivalent cost ݌. In 
the case of off-line optimization, the problem is rigorously 
handled in the framework of variation calculus and 
Pontryaguin's minimum principle applies [3]. For online 
control, approaches are often empirical and are based on the 
fact that a small value of ݌ favors the use of the SC energy and 
tends to deplete it, whereas a large value favors the use of the 
SC energy and tends to charge the SC. Hence, ݌ can be used to 
control the SC state of charge ݔ  in order to fulfill the 
constraints (4) and (5). In the present paper, the algorithm 
proposed in [7] is used, as interesting results are reported. The 
value of the equivalent cost is adjusted at regular intervals of 
time ܶ, with a correction proportional to the difference between 
the current and reference ݔ. A new value of ݌ is calculated for 
each period ሾ݇ܶ, ሺ݇ ൅ 1ሻܶሿ by using (9). This control tries to 
keep ݔ around the reference value. 

௞ାଵ݌ ൌ
௞ିଵ݌ ൅ ௞݌

2
൅ .௣ܭ ቀݔ௥௘௙ െ ሺ݇ܶሻቁݔ (9)

The parameters of the algorithm are the refreshment period 
ܶ, the gain ܭ௣ and the initial guesses ݌଴ and ݌ଵ. 



As formulated by (8) and (9), the A-ECMS cannot 
guarantee the respect of the operational state constraints (5). 
Therefore two additional heuristic rules are added to the 
original A-ECMS method. They are temporarily active when 
the instantaneous state gets close to its limits. 

B. Stochastic dynamic programing 

Stochastic dynamic programing (SDP) is a generalization of 
DP which provides a mathematical framework to account for 
random disturbances of the system. In the present case, the 
instantaneous traction power can be modeled as a random 
process, using statistical information about the forthcoming 
itinerary, available for example thanks to the navigation aid 
system.  

Like DP, SDP requires the problem to be discretized in 
time and state. Let us denote respectively 0 , ݇  and ܰ  the 
indexes of the initial, intermediate and final time steps. Let us 
also denote ݔ௞ 	ൌ ௞ሻݐሺݔ	 ௞ݑ , 	ൌ ௞ሻݐሺݑ  and ݓ௞ ൌ ௞ሻݐሺݓ . At 
each time ݐ௞ ௞ݓ ,  is a random variable characterized by a 
certain probability law. An average cost ܬ is defined by (10), 
where ܧ௪ೖሾ∙ሿ  represents the mathematical expectation with 
respect to ݓ௞ probability law. The discretized problem is given 
by (10)-(15). 

Minimize  ܬ ൌ ∑ ௪ೖൣܧ ሶ݉ ுమሺݑ௞ሻ൧. ݐ∆
ேିଵ
௞ୀ଴   (10)

௞ାଵݔ ൌ ௞ݔ ൅ ݂ሺݑ௞, ,௞ݔ .௞ሻݓ (11) ݐ∆

଴ݔ ൌ ேݔ ൌ ௥௘௙ (12)ݔ

௠௜௡ݔ ൑ ௞ݔ ൑ ௠௔௫ (13)ݔ

ሶ௠௜௡ݔ ൑ ሶ௞ݔ ൑ ሶ௠௔௫ (14)ݔ

௠௜௡ݑ ൑ ௞ݑ ൑ ௠௔௫ (15)ݑ
 

As in DP, a so-called cost-to-go function, denoted 	ܬ௞ሺݔሻ, is 
defined at each time step ݐ௞. It corresponds to the minimum 
average cost from a given state at time ݐ௞ (ݔ௞ ൌ  to the final (ݔ
state ݔே. This cost is calculated backwards, starting from the 
final step ܰ  where an empirical penalty function favors ݔே 
close to ݔ௥௘௙ , and applying the recursive process (16)-(17) 
where ݑ௞∗ሺݔሻ  denotes the optimal control at time ݐ௞   as a 
function of the current system state ݔ௞ ൌ   .ݔ

ሻݔ௞ሺܬ ൌ min
	௨
൛	ܧ௪ೖൣ ௙ܲ௨௘௟ሺݑሻ

൅ ݔ௞ାଵሺܬ ൅ ݂ሺݓ,ݑ௞ሻ. Δݐሻሿൟ		
(16)

௞ݑ	
∗ ሺݔሻ ൌ argmin

	௨
൛	ܧ௪ೖൣ ௙ܲ௨௘௟ሺݑሻ

൅ ݔ௞ାଵሺܬ ൅ ݂ሺݓ,ݑ௞ሻ. Δݐሻሿൟ	
(17)

At the end of the backward process, ܬ଴ሺݔሻ represents the 
minimum fuel consumption which can be obtained starting 
from the initial state ݔ଴ ൌ ݔ . The optimal control policy 
∗ݑ ൌ 	 ሼݑ௞∗, 0 ൑ ݇ ൑ ܰ െ 1ሽ is then built by a forward process 
using the optimal control matrix calculated backwards ݑ௞

∗ሺݔሻ. 
This forward process is applied to the online driving cycle, that 
is to say a given realization of the random process. The cost of 
a specific cycle may not be the lowest one, but the average cost 
of many cycles will be. DP corresponds to the particular case 
when ݓ௞ is certain.  

Accounting for the random nature of the driving cycle adds 
complexity and computational load, but this affects only the 
backward part of the algorithm, which is done off-line and only 
once. During the online process, only the forward part of the 
algorithm is applied to the actual driving cycle, and it basically 
consists in searching the command in the look-up table ݑ௞∗ሺݔሻ, 
like in DP. 

SDP provides an interesting framework, but the quality of 
the results relies on the quality of the random process model. In 
the present work, the driving cycle is modeled by a random 
speed characterized by a normal distribution ܰሺߤ, ሻߪ , as 
proposed in [9]. The parameters ߤ and ߪ are calculated using 
all the points of the WMTC cycle. 

IV. SIMULATION CALIBRATION AND ASSESSMENT RESULTS 

The two real-time EMS are evaluated in simulation. DP is 
used to provide reference results on the WMTC certification 
driving profile. Then, A-ECMS and SDP performances are 
evaluated, and their robustness is tested by changing the initial 
and final storage state of charge.  

A. Experimental calibration of the model and DP results 

The different EMS under study all rely on the system model 
to calculate at all times the best power split and minimize the 
ଶܪ  global consumption. Hence, it is crucial to first calibrate 
and validate this model and its setting parameters. In addition, 
the control part (low level and supervisor) also need to be 
validated. This is done using the test bench available at GeePs 
laboratory. After some simple tests not reported here, DP is 
used both to validate the model and control suitability, and to 
provide reference results, with respect to which the online EMS 
performances will be assessed. 

The optimal FC power profile corresponding to WMTC is 
computed off-line by DP algorithm. This 10-min computed 
power profile is then used as the FC set point, while the load 
profile corresponds to WMTC. The resulting SC voltage 
trajectory is measured and converted into a SC energy profile. 
Fig 3 depicts the experiments and simulation behaviors, which 
are very close despite the large duration of the trial. This very 
good correlation between simulation and experiments results 
supports the model relevancy and validates the DP algorithm 
implementation.  

In addition, Table I reports the average fuel consumption J 
[g.km-1], and the relative difference between the initial and 
final SC state Δx [%]. The difference between the measured 
and calculated values is lower than 2% for the fuel 
consumption and 3% for the final state-difference. The 
similarity between these two overall performance indexes 
validates the accuracy of the FC/SC system model and the 
correctness of the EMS implementation. 

TABLE I.  OFF-LINE EMS : WMTC CYCLE RESULTS USING DP  

Strategy 
J (10-1 g/km) x (%) 

sim exp sim exp 

DP 3.70 3.74 0 -2.5 

 

 



 
Fig. 3. Off-line EMS (DP): Comparison of system behaviour (instantaneous 
fuel consumption and SC energy profile)  

B. A-ECMS and SDP assessment under medium energy 
reference 

The aim of an EMS is to minimize the energy consumption, 
but also to ensure a desired final storage state of charge (SOC). 
Indeed, this latter point is crucial because, at the end of a first 
driving cycle, the EMS should ensure the possibility to start 
another mission under the best possible conditions: in this 
context, the initial state of charge is a key point. Therefore the 
present study adopts two evaluation criteria: first the global 
consumption J and second the final state of charge error Δݔ 
expressed as a percentage of the maximum SOC variation.  

The first test to assess the online EMS performances is to 
determine their setting parameters using a given cycle (WMTC 
in the present case) and to compare their two evaluation criteria 
to DP. A significant element is the reference state of charge, 
which is settled at xref = 27 kJ which means a 44.1% relative 
state of charge. This value gives the EMS a great degree of 
freedom, possibly enabling deep SC state variations. Fig. 4 
compares the SC state evolution ݔሺݐሻ  associated to the two 
real-time control strategies (A-ECMS and SDP) to the optimal 
one (DP). 

 
Fig. 4. Online EMS and DP simulation  results : SC energy profile  

A-ECMS tries to adjust online the equivalent cost factor p 
to bring the system state back to its reference value xref = 27 kJ. 
This behavior is consistent with this algorithm principle and it 
helps to explain why A-ECMS evolves around the state 

reference and is hence distant from the benchmark trajectory. 
Conversely, the SDP SC state behavior is much closer to DP’s.  

Table II reports the performance indexes of A-ECMS and 
SDP algorithms. Both obtain an overall fuel consumption close 
to the optimal one, but SDP brings the final state much closer 
to the reference value than A-ECMS does.  

TABLE II.  ONLINE EMS: WMTC CYCLE RESULTS 

Strategy 
J (10-1 g/km) x (%) 

sim sim 

A-ECMS 3.76 2.6 

SDP 3.72 0.2 

 
The control profiles found by the two online EMS are 

plotted in Fig.5. In both cases, the FC is operated mostly 
around 250 W, which is its best efficiency.  

 

 
 

 
Fig. 5. Control profile comparaison of online strategies 

C. Sensitivity to the energy reference level 

The previous results are obtained for a medium reference 
state of 44.1% state of charge. In order to evaluate the impact 
of the reference state on the strategy performances, two 
different state reference values are tested: a low one of 20.6% 
( ௥௘௙,௜௡௙ݔ ൌ 	ܬ݇	19 ) and a high one of 73.5% ( ௥௘௙,௦௨௣ݔ ൌ
 To make data comparable, the driving cycle and the .(	ܬ݇	37
setting parameters of the EMS remain unchanged.  

TABLE III.  ONLINE EMS: WMTC CYCLE RESULTS 

Strategy 
ࢌࢋ࢘࢞ ൌ  ࢌ࢔࢏,ࢌࢋ࢘࢞ ࢖࢛࢙,ࢌࢋ࢘࢞

J (10-1 g/km) Δx (%) J (10-1 g/km) Δx (%) 

A-ECMS 3.76 3.4 4.35 6.0 

SDP 3.68 -1.5 3.77 1.9 

DP 3.67 0 3.73 0 

 

Table III reports the fuel consumption J and the difference 
between the reference and final SC state Δx for the two given 
energy references. It permits to assess that this parameter has a 
great impact on the A-ECMS consumption. For instance, in the 
low reference state, the consumption is 16.6% above the 



benchmark consumption. Similarly, the final state accuracy is 
also affected by the reference change.  

Conversely, SDP results show a good consumption 
performance, very close from the benchmark one. Moreover, 
the final state is also quite close to the reference one. From 
those results, it can be concluded that the reference state value 
has little effect on SDP performances. 

Fig. 6 and Fig. 7 show the SC energy profiles obtained 
respectively with the low and high reference state. It can be 
seen that the operational constraint on the SC state of charge 
operates. DP and SDP naturally account for it, whereas A-
ECMS rely on heuristics which probably degrades the method 
performance. Furthermore, the very principle of A-ECMS 
consists in maintaining the storage energy level close to the 
reference one, which may be far from the optimal trajectory .  

 

Fig. 6. SC energy profiles using online EMS with low reference state 

 

Fig. 7. SC energy profiles using online EMS with high reference state 

V. CONCLUSION 

Powering an electric scooter with a FC is an attractive 
alternative to battery supply in terms of autonomy and speed 
of refueling. This solution requires the use of an additional 
storage element such as a SC. This gives the possibility to 
implement an effective and robust EMS which achieves at any 
time an instantaneous power split as close as possible to the 
optimal one. This study is carried out by simulation.     

For this purpose, the system under study is carefully 
modeled and its behavior is successfully validated using a 
laboratory test bench. In addition a standard online EMS, 
namely DP, is considered as a benchmark; its proper 
functioning is also positively tested. 

In this research, the aim is to evaluate the potential of two 
promising online energy management methods using a single 
driving profile on which the setting parameters of both 
approaches are tuned. Simulation and experiments results 
show that SDP has a higher potential than A-ECMS. Indeed, 
using a standard medium storage reference, A-ECMS 
performs somewhat less well than the target DP: its 
dihydrogen consumption is slightly higher and its final state is 
a little away from the reference state. Moreover, A-ECMS is 
very sensitive to the storage reference state. Its performance is 
severely degraded when the reference value moves away from 
the mid-point of the state of charge range. For instance, and 
compared to the benchmark, the dihydrogen consumption can 
grow by more than 16% in a case of low reference state. 
Conversely, SDP sub-optimal behavior remains close to the 
benchmark answer; in the global study, its consumption does 
not exceed 1% of the DP’s one. In conclusion, it makes SDP 
complexity worth handling.      

This study should be continued and extended. The base line 
for further work is to validate the good simulation results on 
the test bench and to consider a set of random driving cycles 
so as to assess the in line EMS real-time performances.  
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