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I. INTRODUCTION

ybrid electric vehicles (HEVs) are widely considered as a potential alternative to the world's dependence on conventional vehicles. Thanks to fuel economy and emission control, HEVs contribute to the construction of an environment friendly transportation sector. HEVs possess an internal combustion engine (ICE) and at least one electric machine (EM) and a battery. The wheels can be powered either by the ICE or the EM or by both simultaneously. The addition of a battery-powered EM increases the total efficiency of HEVs. It allows the ICE to be more efficiently operated and the vehicle's kinetic energy to be recovered. However, the fuel saving and CO 2 emissions reduction strongly depend on the embedded Manuscript received July xx, 2016; revised xxxx xx, xxxx; accepted xxxx All three authors are with the Group of Electrical Engineering -Paris, 3, 11 rue Joliot-Curie, Plateau de Moulon F-91192 Gif-sur-Yvette, France (e-mail: qi.jiang@geeps.centralesupelec.fr; florence.ossart@geeps.centralesupelec.fr; claude.marchand@geeps.centralesupelec.fr)
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Digital Object Identifier xxxx energy management strategy that defines the contribution of the two power sources (ICE and EM) in fulfilling a given power demand. The design of robust real-time optimization algorithms remains a challenge.

There is a very rich literature on the subject and many energy management strategies have been developed since the 90s. They can be divided into four approaches: rule-based strategies that are generally used on today's marketed HEVs [START_REF] Odeim | Power management optimization of fuel cell/battery hybrid vehicles with experimental validation[END_REF], instantaneous optimization of an equivalent fuel consumption accounting for electricity flux [START_REF] Musardo | A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management[END_REF][3][4] [START_REF] Kermani | PHIL Implementation of Energy Management Optimization for a Parallel HEV on a Predefined Route[END_REF][6] [START_REF] Karbowski | Route-Based Online Energy Management of a PHEV and Sensitivity to Trip Prediction[END_REF], global optimization based on the dynamic programming [START_REF] Lin | A stochastic control strategy for hybrid electric vehicles[END_REF] [START_REF] Johannesson | Assessing the Potential of Predictive Control for Hybrid Vehicle Powertrains Using Stochastic Dynamic Programming[END_REF][10] [START_REF] Liu | Modeling and Control of a Power-Split Hybrid Vehicle[END_REF][12] [START_REF] Moura | A Stochastic Optimal Control Approach for Power Management in Plug-In Hybrid Electric Vehicles[END_REF][14] [START_REF] Jiao | SDP Policy Iteration-Based Energy Management Strategy Using Traffic Information for Commuter Hybrid Electric Vehicles[END_REF] and convex optimization that was recently developed by modeling each component of the powertrain as convex equations [START_REF] Pourabdollah | Optimal Sizing of a Parallel PHEV Powertrain[END_REF]. Each strategy is shown to allow a significant reduction of fuel consumption and claimed to have better performances than others. However, the different studies are performed in their own specific context, making it difficult to evaluate the results.

The present paper proposes a comparative analysis between three promising real-time strategies, in order to evaluate their pro and cons. We focus exclusively on real-time energy management strategies and not on the underlying hardware or architectures. Thus, all strategies are applied to the same parallel HEV, in the same context. The interest of the paper is that we not only implement real-time strategies using published material, but also develop them in order to improve their performance in real-world driving conditions. The implementation issues are also described in the present paper, followed by a statistical analysis in which the three real-time strategies are evaluated over a family of stochastic driving cycles generated by Morkov process. To the best of our knowledge, this is the first time that such analysis is applied to real-time strategies in order to evaluate their real-world performance. We hope that it will encourage more researchers in the field to integrate this step into their strategy validation phase.

The paper is organized as follows: the HEV model and the principle of optimal energy management are described in Section II. The chosen strategiesthree real-time strategies along with two off-line algorithmsare introduced in Section III. Section IV presents the driving cycles and the evaluation criteria which are used for comparison. The strategy implementation issues are developed in Section V. It begins with the discretization influence on the performances of the two off-line methods, which are generally considered as reference benchmark. The real-time strategies parameter determination Comparative study of real-time HEV energy management strategies Qi JIANG, Florence OSSART, Claude MARCHAND H phase is then presented in details, while highlighting its importance regarding the resulting fuel efficiency. Section VI discusses the simulation results. After being calibrated on one certification driving cycle, the real-time strategies are then evaluated over different road-type cycles, followed by a statistical analysis using automatically generated random cycles. Finally, the paper is concluded in Section VII.

II. HEV MODELING AND OPTIMAL ENERGY MANAGEMENT

The present comparison is performed in the case of a full hybrid HEV, with parallel powertrain architecture (Fig. 1). It was studied in a previous work and deemed to have a very good potential for fuel consumption reduction [START_REF] Roy | An Optimal Energetic Approach for Systemic Design of Hybrid Powertrain[END_REF]. 

A. Power components modeling

The system corresponds to a B-segment vehicle. The ICE is a 50-kW 1.0-liter 3-cylinder in-line gasoline engine modeled by a stationary brake specific fuel consumption map ( 𝐵𝑆𝐹𝐶 in g/kWh) The instantaneous fuel consumption 𝑃 𝑓𝑢𝑒𝑙 is then determined by [START_REF] Odeim | Power management optimization of fuel cell/battery hybrid vehicles with experimental validation[END_REF], where 𝑄 𝐿𝐻𝑉 is the lower heating value in kJ/kg. Fig. 2 shows the resulting efficiency map.

𝑃 𝑓𝑢𝑒𝑙 = 3.6 × 10 6 𝑄 𝐿𝐻𝑉 𝑃 𝐼𝐶𝐸 𝐵𝑆𝐹𝐶 (1) 
A continuous speed ratio system (CSR) is used for transmission: for given ICE power 𝑃 𝐼𝐶𝐸 and wheel speed 𝑣 𝑤𝑒𝑒𝑙 , the transmission ratio is adjusted to as to operate the ICE at its best efficiency, along the black line shown in Fig. 2.

The EM is a 50-kW synchronous electric machine modeled by its efficiency map 𝜂 𝐸𝑀 = 𝜔 𝐸𝑀 , 𝑇 𝐸𝑀 .

A constant power demand 𝑃 𝑎𝑢𝑥 is considered for auxiliary systems.

The battery is a Li-ion one modeled by a Thevenin equivalent circuit with internal resistance 𝑅 𝑏𝑎𝑡𝑡 and open circuit voltage 𝑉 𝑜𝑐 _𝑏𝑎𝑡𝑡 .

For a given battery power 𝑃 𝑏𝑎𝑡𝑡 , the battery current 𝐼 𝑏𝑎𝑡𝑡 is obtained by [START_REF] Musardo | A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management[END_REF], where 𝐸 𝑏𝑎𝑡𝑡 is the battery energy capacity, related to the battery charge capacity 𝑄 𝑏𝑎𝑡𝑡 according to [START_REF] Onori | Adaptive equivalent consumption minimization strategy for hybrid electric vehicles[END_REF]. The resulting state of charge (SOC) variation is given by [START_REF] Kim | Optimal Control of Hybrid Electric Vehicles Based on Pontryagin's Minimum Principle[END_REF].

𝐼 𝑏𝑎𝑡𝑡 = 𝑉 𝑜𝑐 _𝑏𝑎𝑡𝑡 -V 𝑜𝑐 _𝑏𝑎𝑡𝑡 2 -4𝑅 𝑏𝑎𝑡𝑡 𝑃 𝑏𝑎𝑡𝑡 2𝑅 𝑏𝑎𝑡𝑡 (2) 𝐸 𝑏𝑎𝑡𝑡 = 𝑄 𝑏𝑎𝑡𝑡 𝑉 𝑜𝑐 _𝑏𝑎𝑡 𝑡 (3) 𝑆𝑂𝐶 = - 𝐼 𝑏𝑎𝑡𝑡 𝑄 𝑏𝑎𝑡𝑡 (4) 
In the case of charge-sustaining problems like the one considered here, the 𝑆𝑂𝐶 dependence of the battery parameters can be neglected [START_REF] Kim | Optimal Control of Hybrid Electric Vehicles Based on Pontryagin's Minimum Principle[END_REF].

The battery power itself depends both on the wheel power required by the driver and the ICE power which supplies part of or more than this requested power. Ignoring the efficiencies of the different transmission devices for the sake of writing simplicity, this relation is approximated by [START_REF] Kermani | PHIL Implementation of Energy Management Optimization for a Parallel HEV on a Predefined Route[END_REF]. 

𝑃 𝑏𝑎𝑡𝑡 = 𝑃 𝑎𝑢𝑥 + 𝑃 𝑤𝑒𝑒𝑙 -𝑃 𝐼𝐶𝐸 𝜂 𝐸𝑀 (5) 

B. Optimal energy management

The purpose of optimal power management is to search for the best power split between the ICE and the EM, in order to minimize the fuel consumption over a given driving cycle, while meeting the driver's power demand 𝑃 𝑤𝑒𝑒𝑙 and maintaining the battery state of charge 𝑆𝑂𝐶.

The control and state variables are 𝑃 𝐼𝐶𝐸 and 𝑆𝑂𝐶 respectively. For a less clustered writing, they will be denoted 𝑢 and 𝑥 in the rest of the paper, and 𝑃 𝑤𝑒𝑒𝑙 will be denoted 𝑤.

The problem is defined by ( 6), ( 7) and [START_REF] Lin | A stochastic control strategy for hybrid electric vehicles[END_REF]. 𝐽 is the total fuel consumption over the considered time interval, while 𝑓 is the function which models the dynamic evolution of the system. Since the energy is provided solely by the fuel, the battery state of charge should be the same at the beginning and at the end of the trip [START_REF] Lin | A stochastic control strategy for hybrid electric vehicles[END_REF]. In between, the 𝑥 variations show how the battery is used to control the ICE working point and to recover braking energy.

Minimize 𝐽 = 𝑃 𝑓𝑢𝑒𝑙 𝑢 𝑡 . 𝑑𝑡 𝑡 𝑓 𝑡 0 [START_REF] Sampathnarayanan | An optimal regulation strategy with disturbance rejection for energy management of hybrid electric vehicles[END_REF] subject to 𝑥 𝑡 = 𝑓 𝑢 𝑡 , 𝑤 𝑡 [START_REF] Karbowski | Route-Based Online Energy Management of a PHEV and Sensitivity to Trip Prediction[END_REF] and 𝑥 𝑡 0 = 𝑥 𝑡 𝑓 = 𝑥 𝑟𝑒𝑓 [START_REF] Lin | A stochastic control strategy for hybrid electric vehicles[END_REF] In the case of off-line optimization, the driving cycle is fully known in advance and two mathematical approaches exist for solving the problem: Pontryagin's minimum principle (PMP) and dynamic programming (DP) [START_REF] Kim | Optimal Control of Hybrid Electric Vehicles Based on Pontryagin's Minimum Principle[END_REF]. PMP is very easy to implement and fast, but does not allow to easily account for constraint on the state variable. It may also fail to exactly respect the constraint on the final state of charge, as we will discuss it in Section V. On the other hand, DP is a much more cumbersome method, but has better robustness and can handle 𝑥 limitations when needed.

In real world, however, the driving cycle cannot be known in advance and so-called "real-time" or "on-line" energy management methods are needed. The optimal consumption and 𝑥-sustaining constraint cannot be guaranteed because the information required for that is not available, but one can aim at a near-optimal strategy that decreases the fuel consumption while taking the final battery state of charge 𝑥 𝑓 = 𝑥(𝑡 𝑓 ) close to its reference value 𝑥 𝑟𝑒𝑓 .

III. REAL-TIME CONTROL METHODS

Many real-time energy management strategies have been developed in literature. In this paper, we focus on three of them, all recently published, whose authors reported excellent performances compared to previous work. The first one, called adaptive equivalent consumption minimization strategy (A-ECMS) [START_REF] Onori | Adaptive equivalent consumption minimization strategy for hybrid electric vehicles[END_REF] is derived from PMP. The second, called optimal control law (OCL) [START_REF] Kermani | PHIL Implementation of Energy Management Optimization for a Parallel HEV on a Predefined Route[END_REF], applies the theory of non linear optimal control theory to the considered system. Last, stochastic dynamic programming (SDP) generalizes DP in the case where the driving cycle to come can be characterized from a statistical point of view [START_REF] Liu | Modeling and Control of a Power-Split Hybrid Vehicle[END_REF]. The two off-line methods, namely PMP and DP, were used to provide reference results in order to evaluate the performances of the in-line methods. The principles of the different methods are presented in this section.

A. Pontryagin's minimum principle (PMP) and adaptive equivalent consumption minimization strategy (A-ECMS)

As the A-ECMS derives from PMP, this method is first presented [START_REF] Kirk | The variational approach to optimal control problems[END_REF]. Let us introduce the Hamiltonian function related to (6) and [START_REF] Karbowski | Route-Based Online Energy Management of a PHEV and Sensitivity to Trip Prediction[END_REF] and defined by [START_REF] Johannesson | Assessing the Potential of Predictive Control for Hybrid Vehicle Powertrains Using Stochastic Dynamic Programming[END_REF], where 𝑝(𝑡) is the co-state linked to the state equation of the system. 𝐻 𝑝, 𝑢, 𝑥, 𝑤 = 𝑃 𝑓𝑢𝑒𝑙 𝑢 + 𝑝 𝑡 . 𝑓(𝑥, 𝑢, 𝑤)

PMP states that if 𝑢 * is the solution of problem ( 6) -( 8), there exists a co-state 𝑝(𝑡), whose dynamics is governed by [START_REF] Sciarretta | Control of hybrid electric vehicles[END_REF] and such that [START_REF] Liu | Modeling and Control of a Power-Split Hybrid Vehicle[END_REF] 

In the present problem, the 𝑆𝑂𝐶 dependence on the battery parameters is negligible; hence the functions 𝑓 and 𝐻 have no 𝑥 -dependence, which reported in [START_REF] Sciarretta | Control of hybrid electric vehicles[END_REF] leads to a constant co-state over time: 𝑝 𝑡 = 𝑝. Assuming that 𝐻 is a convex function, ( 9) -( 11) can be rewritten as [START_REF] Moura | A Stochastic Optimal Control Approach for Power Management in Plug-In Hybrid Electric Vehicles[END_REF].

∀𝑡, 𝑢 * 𝑡 = arg min 𝑢 𝑃 𝑓𝑢𝑒𝑙 𝑢 + 𝑝. 𝑓(𝑢, 𝑤)

The co-state 𝑝 is interpreted as the equivalent fuel cost of the battery power. 𝑃 𝑓𝑢𝑒𝑙 is an increasing function of 𝑢, whereas 𝑓 is a decreasing one (for a given wheel power 𝑤, the more power comes from the ICE, the less from the battery). Hence the global shape and the position of the minimum are governed by the co-state 𝑝 . Solving [START_REF] Moura | A Stochastic Optimal Control Approach for Power Management in Plug-In Hybrid Electric Vehicles[END_REF] gives the optimal command corresponding to any given value of 𝑝. A low value of the co-state 𝑝 favors the use of electric power and depletes the battery (low final battery state of charge 𝑥 𝑓 ), whereas on the contrary a high value saves electric energy and leads to a high 𝑥 𝑓 . PMP method consists in finding an intermediate value which respects the charge sustaining constraint [START_REF] Bashash | Plug-in hybrid electric vehicle charge pattern optimization for energy cost and battery longevity[END_REF]. The 𝑥 𝑓 being an increasing function of 𝑝, the intermediate value is easily determined by a binary search algorithm [START_REF] Odeim | Power management optimization of fuel cell/battery hybrid vehicles with experimental validation[END_REF].

This method is also referred to as "equivalent consumption minimization strategy" (ECMS) and was intuitively proposed before establishing its mathematical background through the PMP [START_REF] Paganelli | General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles[END_REF]. However, it should be noted that PMP requires a convex Hamiltonian function to guarantee global optimality [START_REF] Kim | Optimal Control of Hybrid Electric Vehicles Based on Pontryagin's Minimum Principle[END_REF]. This strong assumption is only partially fulfilled for the considered system, as it will be shown in Section V.

Since PMP method requires the full driving cycle knowledge, it is not suitable for in-line energy management. Many adaptive ECMS were proposed [START_REF] Musardo | A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management[END_REF][3][5] [START_REF] Karbowski | Route-Based Online Energy Management of a PHEV and Sensitivity to Trip Prediction[END_REF]: the idea is to estimate in real-time an equivalent cost 𝑝 which will allow fuel consumption reduction while insuring that the state of charge remains in acceptable boundaries. Most existing methods rely on an empirical feedback on the current 𝑥. The main problem of this approach is that ECMS results are extremely sensitive to the value of the equivalent factor, which leads to unstable behaviors [START_REF] Kermani | PHIL Implementation of Energy Management Optimization for a Parallel HEV on a Predefined Route[END_REF].

The present paper focuses on the algorithm proposed in [START_REF] Onori | Adaptive equivalent consumption minimization strategy for hybrid electric vehicles[END_REF], for which interesting results are reported. The value of the equivalent cost is adjusted at regular intervals of time 𝑇, with a correction proportional to the difference between the current and reference 𝑥. A new value of 𝑝 is calculated for each period [𝑘𝑇, (𝑘 + 1)𝑇] by using [START_REF] Roy | An Optimal Energetic Approach for Systemic Design of Hybrid Powertrain[END_REF], where 𝐾 𝑝 is the gain of the proportional controller and 𝑥 denotes the battery state of charge.

𝑝 𝑘 +1 = 𝑝 𝑘-1 + 𝑝 𝑘 2 + 𝐾 𝑝 . 𝑥 𝑟𝑒𝑓 -𝑥 𝑘𝑇 (14) 
The parameters of the algorithm are the refreshment period 𝑇, the gain 𝐾 𝑝 and the initial guesses 𝑝 0 and 𝑝 1 . Using the value of 𝑝 at the two previous time steps stabilizes the system behavior. It should be noted that the authors show good results, but do not say anything about the value of those parameters, nor about the procedure to determine them.

B. Optimal control law (OCL)

ECMS are basically empirical methods. An attempt of a more rigorous approach, based on non-linear regulation and disturbance rejection, was proposed in [START_REF] Kermani | PHIL Implementation of Energy Management Optimization for a Parallel HEV on a Predefined Route[END_REF]. The authors use analytical close-form of the power components in order to establish a state feedback control law which guarantees optimality and asymptotic stability.

The ICE consumption is approximated by the Willans line model, which states that at given speed 𝜔 𝐼𝐶𝐸 , the input power 𝑃 𝑓𝑢𝑒𝑙 is as an affine function of the output power 𝑃 𝐼𝐶𝐸 [START_REF] Jiao | SDP Policy Iteration-Based Energy Management Strategy Using Traffic Information for Commuter Hybrid Electric Vehicles[END_REF]. Fig. 3 shows the Willians lines that correspond to the present ICE whose efficiency map has been shown in Fig. 2. The OCL method simplifies the Willans model and neglects the speed dependence of the intercept 𝑒 0 and the slope 𝑒 1 . The electric machine and the battery are modeled by their average efficiency, denoted 𝜂 𝐸𝑀 and 𝜂 𝑏𝑎𝑡𝑡 respectively Let us denote 𝜉, the difference between the reference and current SOC: 𝜉(𝑡) = 𝑥 𝑟𝑒𝑓 -𝑥(𝑡). The optimal control law is given by [START_REF] Pourabdollah | Optimal Sizing of a Parallel PHEV Powertrain[END_REF], where the coefficient 𝑝 3 and 𝐾 are defined by [START_REF] Kirk | The variational approach to optimal control problems[END_REF] and [START_REF] Paganelli | General supervisory control policy for the energy optimization of charge-sustaining hybrid electric vehicles[END_REF]. The only setting parameter is the constant 𝜇, which has to be determined in order to fulfill the battery charge sustaining constraint.

𝑃 𝑓𝑢𝑒𝑙 𝜔 𝐼𝐶𝐸 , 𝑃 𝐼𝐶𝐸 = 𝑒 0 𝜔 𝐼𝐶𝐸 + 𝑒 1 𝜔 𝐼𝐶𝐸 . 𝑃 𝐼𝐶𝐸 (15) 
𝑢 * = 𝜇𝜉 2 36 𝐾𝜇𝜉 + 𝑝 3 ( 16 
)
𝑝 3 = 𝑒 1 𝑄 𝐿𝐻𝑉 (17) 𝐾 = 𝜂 𝑏𝑎𝑡𝑡 𝐸 𝑏𝑎𝑡𝑡 . 𝜂 𝐸𝑀 (18) 
One should notice that the control variable 𝑢 * directly depends on 𝜉. Since no minimization is needed at each step of time, the method is faster than A-ECMS for implementation on real vehicles. Furthermore, the theoretical context is clear and there is only one tuning parameter, with respect to which the method is not over-sensitive.

C. Dynamic programming (DP) and stochastic dynamic programming (SDP)

DP is a multi-stage decision-making process which allows solving optimization problems that can be broken down into several sub-problems of the same nature [START_REF] Bertsekas | The dynamic programming algorithm[END_REF]. It applies well to the optimization of cumulative costs in dynamic systems, such as ( 6) - [START_REF] Lin | A stochastic control strategy for hybrid electric vehicles[END_REF].

DP requires the problem to be discretized in time and state. Let us denote respectively 0 and 𝑁 the indexes of the initial and final time steps, 𝑥 𝑘 = 𝑆𝑂𝐶 𝑡 𝑘 , 𝑢 𝑘 = 𝑃 𝐼𝐶𝐸 𝑡 𝑘 and 𝑤 𝑘 = 𝑃 𝑤𝑒𝑒𝑙 𝑡 𝑘 .

The discretized problem is given by ( 19), ( 20) and [START_REF] Jiang | Real-time HEV energy management strategies[END_REF].

Minimize 𝐽 = 𝑃 𝑓𝑢𝑒𝑙 𝑢 𝑘 . ∆𝑡 𝑁-1 𝑘=0 (19) 
subject to 𝑥 𝑘+1 = 𝑥 𝑘 + 𝑓 𝑢 𝑘 , 𝑤 𝑘 . ∆𝑡 [START_REF] Clarke | The relationship between the maximum principle and dynamic programming[END_REF] and

𝑥 0 = 𝑥 𝑁 = 𝑆𝑂𝐶 𝑟𝑒𝑓 (21) 
A so-called cost-to-go function, denoted 𝐽 𝑘 (𝑥), is defined at each time step 𝑡 𝑘 . It corresponds to the minimum cost that can be obtained by optimal control from a given state at time 𝑡 𝑘 (𝑥 𝑘 = 𝑥) to the final state 𝑥 𝑁 . This cost is calculated backwards, starting from the final time [START_REF] Tutuianu | Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation[END_REF] and applying the recursive process [START_REF] Barlow | A Reference Book of Driving Cycles for use in the measurement of road vehicle emissions[END_REF] where 𝑢 𝑘 * 𝑥 denotes the optimal control at time 𝑡 𝑘 as a function of the current system state 𝑥 𝑘 = 𝑥. 

𝐽 𝑁 𝑥 is a penalty function on the final state, which favors 𝑥 𝑁 = 𝑥 𝑟𝑒𝑓 . At the end of the backward process, 𝐽 0 𝑥 represents the minimum fuel consumption which can be obtained starting from the initial state 𝑥 0 = 𝑥. The optimal control policy 𝑢 * = {𝑢 𝑘 * , 0 ≤ 𝑘 ≤ 𝑁 -1} is rebuilt by a forward process. PMP and DP are equivalent when the Hamiltonian function is convex, and their relationship is given in [START_REF] Clarke | The relationship between the maximum principle and dynamic programming[END_REF].

SDP was developed to account for random perturbations in the system. In the present case, the uncertainty about the driving cycle can be modeled by a random process, with more or less information available about the coming itinerary. At each time 𝑡 𝑘 , the wheel power 𝑤 𝑘 can then be described as a random variable characterized by its probability law. This uncertainty is accounted for by an average cost [START_REF] Gong | Trip-Based Optimal Power Management of Plug-in Hybrid Electric Vehicles[END_REF] where 𝐸 𝑤 𝑘 • represents the mathematical expectation with respect to

𝑤 𝑘 probability law 𝐽 = 𝐸 𝑤 𝑘 𝑃 𝑓𝑢𝑒𝑙 𝑢 𝑘 . ∆𝑡 𝑁-1 𝑘=0 (24) 
The cost-to-go function 𝐽 𝑘 (𝑥 𝑘 ) is defined the same way by ( 25) and corresponds to the minimum average cost that can be obtained by optimal control from the state 𝑥 𝑘 at time 𝑡 𝑘 to the final state 𝑥 𝑁 . The iterative process described by formula ( 22) and ( 23) remains the same, except that an additional loop is needed to calculate the cost as a mathematical expectation.

At the end of the process, 𝐽 0 𝑥 represents the average optimal fuel consumption from the initial to the final state 𝑥 0 = 𝑥. The forward process is applied to the in-line driving cycle, that is to say a given realization of the random process. It builds the optimal control policy 𝑢 * = {𝑢 𝑘 * , 0 ≤ 𝑘 ≤ 𝑁 -1}

for the corresponding realization of the random driving cycle. The actual cost may not be the lowest one for the considered cycle, but it is in an average sense.

From a practical point of view, accounting for the random nature of the driving cycle adds complexity and computational load, but it should be underlined that it affects only the backward part of the algorithm, when all possible realizations of the random process are evaluated. This part is done only once and off-line. During the in-line process, only the forward part of the algorithm is applied to the actual driving cycle, and it basically consists in searching the command in a look-up table.

SDP is a well established method, but the quality of the results relies on the quality of the random process model. In the considered problem, a good statistical representation of the driving cycles is needed, and this is a challenging problem. In a previous work [START_REF] Jiang | Real-time HEV energy management strategies[END_REF], the driving cycle was modeled by a random speed characterized by a normal distribution 𝑁(𝜇, 𝜎), where the parameters 𝜇 and 𝜎 were inferred from driving cycle data by the maximum-likelihood estimation, as proposed in [START_REF] Jiao | SDP Policy Iteration-Based Energy Management Strategy Using Traffic Information for Commuter Hybrid Electric Vehicles[END_REF]. This approach gave disappointing fuel saving performances, which can be explained by the fact that the vehicle instantaneous speed is not enough to predict realistic driving cycles. In the present paper, a more sophisticated approach, first proposed in [START_REF] Lin | A stochastic control strategy for hybrid electric vehicles[END_REF], is applied: the power demand at a given time is modeled by a Markov process and assumed to depend on both the power demand and the vehicle velocity at the previous time. This model will be detailed in Section V.

IV. COMPARISON APPROACH AND CONSUMPTION CRITERION

The different strategies have been implemented, tested and compared for the considered system and a large number of driving cycles. PMP and DP provide reference results, in terms of lowest consumption reachable for a given driving cycle and assess the performances of the three real-time strategies.

A. Driving cycles

A key point for a significant real-time strategies evaluation is to perform tests with data which are different from the one used for identification. In order to be convincing, conclusions must rely on statistical analysis involving numerous driving cycles, but most published works do not report this kind of results. The present study tries to fulfill this lack and give a broad overview of the different strategies behaviors by testing them for a wide range of driving cycles, corresponding to different driving conditions.

The first cycle to be considered is a certification one. As the current official European driving cycle (NEDC) is known to poorly represent real world driving behavior, the forthcoming Worldwide harmonized Light vehicles Test Cycle (WLTC) cycle is preferred (Fig. 4) [START_REF] Tutuianu | Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation[END_REF]. This cycle cumulates the three types of driving environment: city, road and highway. Then, a series of ten INRETS cycles representative of user behavior [START_REF] Barlow | A Reference Book of Driving Cycles for use in the measurement of road vehicle emissions[END_REF] is used for robustness analysis. Their characteristics are reported in TABLE I: each of these cycles corresponds to a specific driving context, enabling to test the strategies behavior and performances in all possible conditions. The last step is to evaluate the strategies for a large number of real-world representative missions, as they could be forecasted using in-line traffic information [START_REF] Karbowski | Route-Based Online Energy Management of a PHEV and Sensitivity to Trip Prediction[END_REF][24] [START_REF] Souffran | Simulation of Real-World Vehicle Missions Using a Stochastic Markov Model for Optimal Powertrain Sizing[END_REF]. For this purpose, random driving cycles were generated using a Markov-chain model fed by the statistical characteristics of the WLTC or INRETS cycles.

For each driving cycle, the wheel power is calculated using the dynamic equation of the vehicle:

𝑃 𝑤𝑒𝑒𝑙 = 1 2 𝜌 𝑎𝑖𝑟 𝐴𝐶 𝑑 𝑣 𝑤𝑒𝑒𝑙 2 + 𝜇 𝑟 𝑀𝑔 + 𝑀𝑎 𝑣 𝑤𝑒𝑒𝑙 (26) 
where 𝜌 𝑎𝑖𝑟 is density of air; 𝐴 is the reference area; 𝐶 𝑑 is the drag coefficient; 𝜇 𝑟 is the rolling resistance coefficient; 𝑀 is the vehicle mass; 𝑔 is the gravitational acceleration; 𝑎 is the vehicle acceleration.

B. Comparison criteria

The main comparison criterion is the fuel consumption over the driving cycle:

𝐽 * = 𝑃 𝑓𝑢𝑒𝑙 𝑢 * 𝑡 . 𝑑𝑡 𝑡 𝑓 𝑡 0 (27)
However, the final battery state of charge 𝑥 𝑓 = 𝑥 𝑡 𝑓 must also be accounted for, as an indicator of the charge sustaining constraint respect. As mentioned in Section II, the 𝑥-sustaining constraint cannot be guaranteed in real-time optimization because the future driving information is not available in advance. As a result, two consumption values calculated by ( 27) cannot be compared if they correspond to different 𝑥 𝑓 . Hence, comparison between the strategies is done using a corrected consumption which includes the electric energy stored in the battery. This corrected consumption is defined by (28), where 𝜂 𝑠𝑦𝑠 is the overall system efficiency calculated by (29). For the WLTC cycle (23 km long), a 5% 𝑥 -difference corresponds to a 0.1 liter/100km consumption if the overall efficiency is 20% and to 0.2 liter/100km if it is 10%.

The fuel saving is calculated with respect to the consumption of a conventional vehicle (CV) driving the same cycle as follows:

𝐹𝑢𝑒𝑙 𝑠𝑎𝑣𝑖𝑛𝑔 % = 𝐽 𝐻𝐸𝑉 -𝐽 𝐶𝑉 𝐽 𝐶𝑉 × 100% (30) 
A positive fuel saving value means that the HEV burns more fuel than the CV over the same driving mission while a negative value means the HEV actually economizes.

V. IMPLEMENTATION ISSUES

The current section addresses practical issues for a proper numerical implementation of the different optimization algorithms. The two off-line algorithms -PMP and DPare generally considered as benchmarks to evaluate real-time strategies. As references, their fuel consumption must be carefully calculated and one must obtain the same results for the same system model and driving cycles. However, the numerical implementation of these algorithms brings on discretization effects whose influence will be analyzed

Then the problem of setting parameters determination is discussed. It should be noted that authors usually do not give much information about this procedure, although it is an important point for a good implementation of each strategy. In the present paper, the parameter setting influence on strategy performance will be discussed in details

A. PMP numerical implementation

As mentioned in Section III, PMP method determines the optimal co-state value 𝑝 by a binary search algorithm using the charge sustaining constraint. This algorithm applies well because the final state 𝑥 𝑓 is an increasing function of the equivalent cost 𝑝, as shown by Fig. 5, which shows the values of 𝑝 tested during the iterative process and the progressive reduction of the research interval. Yet, magnifying the curve reveals local discontinuities and a staircase shape. A local jump exists in the interval [141.5107,141.5108] and forbids to exactly fulfill the constraint 𝑥 𝑓 = 𝑥 𝑟𝑒𝑓 = 40%. Such jumps exist all over the 𝑥 𝑓 (𝑝) curve and can easily be explained. For each co-state value 𝑝 , the optimal control sequence requires to solve [START_REF] Moura | A Stochastic Optimal Control Approach for Power Management in Plug-In Hybrid Electric Vehicles[END_REF] and minimize the Hamiltonian function at each time step. It turns out that this function is not convex everywhere and sometimes has two local minima, as shown in Fig. 6. The algorithm returns the smallest one, but in this situation, an infinitely small change of 𝑝 produces a switch from one minimum to the other and a discontinuity of the command, which in turn impacts the final state 𝑥 𝑓 . The non convexity is especially marked at the origin, as the ICE is turned off for 𝑢 = 0.This fact was also mentioned and analyzed in [START_REF] Delprat | Hybrid Vehicle Optimal Control: Linear Interpolation and Singular Control[END_REF]. The jumps are particularly pronounced in the case of driving cycles with unnatural flat zones, such as NEDC.

PMP algorithm can be very efficiently written by using the matrix formalism and functions available in Matlab® or any environment of this type. Time consuming loops can be avoided, excepted the one needed for the binary search. This numerical approach requires the use of discrete command values [𝑢 𝑖 ] 0 ≤𝑢 𝑖 ≤50 𝑘𝑊 among which the optimal one is chosen. Fig. 7 and Fig. 8 show the influence of the command discretization 𝑑𝑢 on the optimal equivalent cost 𝑝, the fuel consumption and the final state 𝑥 𝑓 , in the case of the WLTC driving cycle. The equivalent cost decreases when the discretization is refined, which favors the use of electric power and decreases the fuel consumption. A 0.07 liter/100km difference between 𝑑𝑢 = 1𝑘𝑊 and 𝑑𝑢 = 10𝑊 is observed, whereas the computation time increases from 0.1𝑠 to 5𝑠.The final state has an erratic behavior, which is not surprising. In the rest of the study, most calculations will be done with du=1kW, as it gives a good compromise between precision and computation time, but one must keep in mind that the optimal consumption is slightly overvalued. 

B. DP algorithm implementation

DP is a more complex method, but is a global optimization method which better explores the solution space and always meets the SOC-sustaining requirement. However, it also suffers from discretization problems: a fine discretization achieves a better performance but requires more computation time. This is the main reason why DP is often abandoned in favor of PMP [START_REF] Musardo | A-ECMS: An Adaptive Algorithm for Hybrid Electric Vehicle Energy Management[END_REF]. However, DP computation load is often exaggerated in the literature, when people report that its computation time exponentially increases with the number of states [START_REF] Sciarretta | Control of hybrid electric vehicles[END_REF]. In fact, the number of operations is proportional to 𝑚𝑛 2 𝑁, where 𝑚 is the number of controls, 𝑛 is the number of states and 𝑁 is the number of time steps [START_REF] Bertsekas | The dynamic programming algorithm[END_REF]. The computation time can be optimized by proper coding using matrix formalism and parallelization in Matlab®. In our case, running DP for the WLTC cycle with 𝑑𝑢 = 1𝑘𝑊 and 𝑑𝑥 = 0.1% takes only 2𝑠.

At time k, a given command 𝑢 𝑘 produces a certain change of state according to the evolution law of the system [START_REF] Clarke | The relationship between the maximum principle and dynamic programming[END_REF]. Interpolation errors can be limited by using consistent state and command discretization steps dx and du, that is by choosing 𝑑𝑥 ≅ 𝑓(𝑑𝑢, 𝑤 𝑘 )∆𝑡. The evolution law is not linear, so that this relationship provides only consistent order of magnitudes of both discretization steps. For the considered system, it is found that a good correspondence is 𝑑𝑥 ≅ 1/36 𝑑𝑢, where 𝑑𝑥 and 𝑑𝑢 are expressed in % and 𝑘𝑊 respectively. Fig. 9 and Fig. 10 show the influence of the discretization steps on the fuel consumption: for usual step sizes, both 𝑑𝑢 and 𝑑𝑥 are important (Fig. 9), but for refined discretization, 𝑑𝑥 dominates (Fig. 10). We observe an 0.13 𝑙/100𝑘𝑚 consumption difference between 𝑑𝑢 = 1𝑘𝑊,𝑑𝑥 = 0.1% and 𝑑𝑢 = 10𝑊, 𝑑𝑥 = 3. 10 -4 % over the WLTC cycle. The figures also show a good 𝑥-sustaining respect, and thus there is no need for 𝑥 𝑓 correction.

To sum up, PMP and DP have similar minimization performance. DP is able to meet the SOC-sustaining constraint perfectly, but it requires much more computational time. Besides, this method remains interesting if one needs to account for SOC limitation [START_REF] Roy | An Optimal Energetic Approach for Systemic Design of Hybrid Powertrain[END_REF]. Considering the strategy discretization coherence and the resulting SDP computational time increase, the discretization sizes 𝑑𝑢 = 1𝑘𝑊 and 𝑑𝑥 = 0.1% are taken for strategy comparison in the rest of the study. 

C. A-ECMS parameters determination

The performances of ECMS-type methods are known to be very sensitive to the value of the equivalent cost [START_REF] Kermani | PHIL Implementation of Energy Management Optimization for a Parallel HEV on a Predefined Route[END_REF], making it always difficult to determine their parameters. The parameters should be determined once, using a given cycle representative of the different situations to come. In the present section, the parameters are calculated using the WLTC certification cycle.

In the case of the A-ECMS method, the setting parameters are the period 𝑇, the gain 𝐾 𝑝 and the initial guesses 𝑝 0 and 𝑝 1 and a procedure must be given in order to determine them in an efficient way. For a given driving cycle, the A-ECMS consumption 𝐽 * and the resulting final battery state of charge 𝑥 𝑓 depend on the setting parameters, and the procedure must allow to determine the set of parameters which insures both consumption reduction and 𝑥 𝑓 constraint respect.

To do this, we define a cost function 𝐽 𝐺𝐴 (31) which aggregates both objectives. The setting parameters are calculated by minimizing this function using a genetic algorithm (GA) (Matlab "ga" function).

𝐽 𝐺𝐴 𝑇, 𝐾 𝑝 , 𝑝 0 , 𝑝 1 = 𝐽 * + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑥 𝑓 (31)

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑥 𝑓 = 100 𝑥 𝑓 -𝑥 𝑟𝑒𝑓 6 ( 32 
)
The number of parameters was reduced by choosing 𝑝 0 = 𝑝 1 . Inequality constraints are set to define the searching space: 1 ≤ 𝑝 0 ≤ 200, 1 ≤ 𝑇 ≤ 60 𝑠 and 1 ≤ 𝐾 𝑝 ≤ 10.

GA setting parameters influence itself was carefully examined. Fig. 11 displays the evolution of the criteria 𝐽 𝐺𝐴 as a function of the generation number, for population sizes ranging between 20 and 300. It shows that no gain is obtained after 25 generations. Obviously, many local minima exist and the algorithm is rapidly trapped, even with the largest population size. Very close fuel consumptions (differences less than 0.1 𝑙/100𝑘𝑚 ) are obtained with quite different set of parameters. Fig. 11 illustrates the dispersion of the resulting setting parameters in the (𝑇, 𝐾 𝑝 , 𝑝 0 ) space. After this preliminary study, GA was run with a population size of 100 individuals and 25 generations. Fig. 13 shows the evolution of the criteria 𝐽 𝐺𝐴 as a function of the generation number, for five different initial populations. It confirms the existence of local minima and the dispersion of the corresponding parameters. The A-ECMS method was applied to the WLTC cycle with the 5 sets of parameters found by the genetic algorithm and the results are reported in TABLE II. The parameters set #2 is chosen for the strategy comparison conducted in Section VI because it reaches the lowest consumption while satisfying exactly the battery charge sustaining constraint. 

D. OCL parameters determination

The OCL method has three parameters denoted 𝐾, 𝑝 3 and 𝜇, which are easy to determine. 𝐾 and 𝑝 3 are calculated using physical parameters of the system (cf. Section III), whereas 𝜇 is a constant to calibrate in order to respect the battery charge sustaining constraint.

Fig. 14 shows that the final state 𝑥 𝑓 is a monotonic increasing function of 𝜇, enabling to easily find the optimal value by binary search. For the WLTC driving cycle, 𝜇 = 63.6 𝑘𝑔. 

E. SDP implemantation

As discussed in Section III, SDP is a well established method, and the main problem in order to implement it is to have a good statistical model of the driving cycles [START_REF] Souffran | Simulation of Real-World Vehicle Missions Using a Stochastic Markov Model for Optimal Powertrain Sizing[END_REF]. We have used the stationary Markov chain model proposed in [START_REF] Liu | Modeling and Control of a Power-Split Hybrid Vehicle[END_REF] where 𝑚 𝑖𝑗 ,𝑙 is the number of times a transition has occurred from 𝑃 𝑖 to 𝑃 𝑙 at vehicle velocity 𝑉 𝑗 and 𝑚 𝑖𝑗 is the number of times 𝑃 𝑖 has occurred at vehicle velocity 𝑉 𝑗 .

Fig. 15 shows an example of Markov chain transition probability map at a given speed, using the WLTC cycle as data base. The discretization sizes are 𝑑𝑣 𝑤𝑒𝑒𝑙 = 1𝑚/𝑠 and 𝑑𝑃 𝑤𝑒𝑒𝑙 = 1𝑘𝑊 . It should be noted that an adequate probability distribution of the vehicle's driving speed requires a large amount of data not always available. This can be seen as a drawback or on the contrary as a way to include more information about the current trip of the vehicle. The discretization sizes 𝑑𝑣 𝑤𝑒𝑒𝑙 = 1𝑚/𝑠, 𝑑𝑃 𝑤𝑒𝑒𝑙 = 1𝑘𝑊, 𝑑𝑢 = 1𝑘𝑊 and 𝑑𝑥 = 0.1% were chosen for strategy comparison.

It should be noticed that stochastic dynamic programming requires a large computational load. For the WLTC cycle, it takes 12h with the parameter setting indicated above and one can notice that it is not a fine discretization at all. However, most of the computation time is taken by the backward part of the algorithm and the computation of the cost-to-go function 𝐽 𝑘 , which is done off-line only for calibration cycles. The in-line part consists in applying a look-up table command and is as fast as classical dynamic programming.

VI. SIMULATION RESULTS AND DISCUSSION

This section presents the results obtained with the three real-time strategies under study, in various test conditions. The setting parameters were determined as explained in the previous section, using data of the reference WLTC cycle. PMP and DP results serve as target results. In Sub-section VI.A, the strategies behaviors are examined for the same WLTC cycle, in order to establish the potential of each one. In Sub-section VI.B, their robustness is tested by applying them to a series of ten driving cycles representative of various context, with unchanged setting parameters. Finally, Sub-section VI.C presents a statistical analysis conducted over a large number of random driving cycles, in order to evaluate the strategies performances for real-world driving conditions with parameters optimized for the different driving conditions.

A. Results for the WLTC cycle

TABLE III reports the consumptions and the final battery state of charge obtained for the WLTC cycle, which is also used for the optimal adjustment of the strategies parameters. For a better analysis of the results, Fig. 16 and Fig. 17 As expected, PMP and DP give the lowest consumptions and have very similar behaviors. Yet, they differ in some isolated points and in the very last part of the WLTC cycle. Fig. 18 shows the Hamiltonian function at 𝑡 = 1766 𝑠, one of the points where the PMP and DP commands are slightly different. We think that the initial penalty function [START_REF] Tutuianu | Development of the World-wide harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation[END_REF] needed to initialize the cost-to-go function 𝐽 𝑁 produces some numerical errors which lead to the observed discrepancies in the last steps of the cycle. Fig. 6 (Section V) illustrates another example of discrepancy, when the non-convexity of the Hamiltonian functions at 𝑢 = 0 produces two local minima which may lead to different commands. In the end, DP results in a slightly higher consumption, with a difference within the range of discretization error shown in Section V. The SOC trajectories shown in Fig. 17 reflect well the different behaviors of the three real-time optimization strategies. The respect of the final state of charge for A-ECMS and OCL is the consequence of the fact that this constraint was used to determine the setting parameters of these strategies.

As mentioned in Section III, the A-ECMS tries to adjust the equivalent fuel-cost of electrical power around its optimal value using a state of charge feedback. This optimal equivalent cost depends on the driving cycle and can be obtained off-line using the PMP. Fig. 19 shows how the instantaneous equivalent cost calculated by A-ECMS oscillates around the optimal value calculated by PMP. These oscillations can be correlated to the ones observed on the SOC trajectory around the reference value. One notices that the consumption calculated by A-ECMS is very close to the optimal one despite different trajectories. This indicates that the optimum is not a sharp one. Fig. 17 shows that OCL method favors battery discharge more than the other strategies. One also notices that this strategy often operates the ICE at a rather low power (Fig. 16), where the efficiency is not good (Fig. 2). The mechanism which consists in using the battery storage to operate the ICE at a power larger than the requested one and take advantage of a best efficiency does not seem to be activated. This is reflected by the high consumption of this strategy.

SDP performance lies between A-ECMS and OCL. The method requires a fair amount of ICE power from time to time during lower propulsion power phases to operate the ICE at a good efficiency point and maintain the battery state.

B. Results in the case of INRETS cycles

In the previous section, the methods have been tested on the same cycle that the one used to determine the setting parameters. Hence, the results are the best ones that each method can achieve. In order to establish their real-time performances, the strategies are now tested for a series of ten INRETS cycles representative of different environments, with the same setting parameters as before. Fig. 20 reports the fuel consumption saving reached by the different methods, calculated with respect to a conventional vehicle. The saving is calculated using the corrected consumption defined in (28), which accounts for the final battery state of charge, also plotted. PMP and DP methods are used to provide reference results. The A-ECMS results show a good fuel economy using the parameters calculated for the WLTC cycle which is a combination of all three driving types. However, we have seen in Section V that finding the right set of parameters is not obvious because several solutions appeared during the process. For this reason, we have also tested the A-ECMS method with the 5 parameter sets reported in TABLE II. The results are presented in Fig. 21 and show significant dispersion of the consumption saving as well as the final battery state of charge. This sensitivity to the parameters is a weak point of the method, although it gives overall good results. The OCL method was developed to obtain an easier calibration than A-ECMS. According to the authors [START_REF] Kermani | PHIL Implementation of Energy Management Optimization for a Parallel HEV on a Predefined Route[END_REF], it gives a solution close to the optimal one and is stable enough to work for any driving cycle with the single parameter 𝜇 . The reduction of the number of parameters indeed eliminates the setting difficulty. However, the method does not allow to reduce efficiently the fuel consumption. We have tested different values of the single parameter 𝜇, but Fig. 22 shows that whatever value 𝜇 takes, OCL fails to improve the fuel consumption and insure charge sustaining at the same time: 𝜇 = 100 𝑘𝑔 gives the best charge sustaining respect, but the worst fuel consumption saving.

The SDP, a proven method in other area, uses statistics to model the driver's future power demand and calculate an average optimal solution. Our results show average performances between A-ECMS and OCL. The SDP performances rely on an adequate probability distribution of the vehicle's driving cycle. In previous Subsection VI.A, the SDP method shows a performance close to A-ECMS, but it seems that the statistical model based on the WLTC cycle is not adequate for INRETS cycles. 

C. Statistical analysis with random cycles

In this section, the Markov chain model built for SDP method is used as a random cycle generator, with given statistical properties. A sensitivity analysis is performed on the basis of 1000 different cycles generated for the eight INRETS cycles denoted UF1 to A2 in TABLE I. The cycles UF1 and UF2 are left out because of their extremely low average speed and short travel distance. This represents a database with 8000 driving cycles. Each cycle is 1000 𝑠 long. This length was chosen after checking that it is long enough to insure a correct statistical representation of each type of context.

The parameters of the three tested strategies were optimized for each INRETS cycle, in order to establish to what extend the performances can be improved by adjusting the parameters to the current driving context. The parameters sets are given in TABLE IV. Fig. 23 represents the fuel saving obtained with the different management strategies and the final battery state of charge. The fuel saving is calculated using the corrected consumption defined in (28).Since PMP and DP have extremely close results, only PMP results are displayed as benchmark. These results are the best minimization performance that the real-time strategies can achieve for the considered cycles, since the setting parameters are adjusted specifically for each cycle. The results confirm the ranking observed in the previous section: A-ECMS performs very well, whereas SDP and OCL are disappointing. The next step is to run a dispersion study with random cycles automatically generated. 25 shows the resulting average speed distribution for the 1000 A2-type cycles. This distribution can be characterized by its mean value and standard deviation. These characteristics are plotted for the different types of cycle on Fig. 26, using error bars. It can be observed that the mean speeds are consistent with the data used to produce the random cycles, but it should be noted that due to statistical dispersion a given A1-type random cycle may have a lower average speed than a given A2-type. In other words, the A1 and A2 average speed distributions overlap. The three real-time strategies and PMP have been applied with the setting parameters given in TABLE IV. For each series of cycles, the mean fuel consumption and standard deviation are plotted in Fig. 27. Obviously, the OCL lacks robustness. In fact, the OCL has a relatively wide interval of parameter 𝜇 inside which the predicted final state of charge remains stable and similar consumptions are found. However, once out of the interval, the OCL becomes instable and results in large fuel consumption usually accompanied by a fully recharged battery state. As the interval depends on the driving cycle, the preset parameter may not suit all the 1000 random cycles. The disappointing performance of OCL method can be explained by the very strong hypothesis it relies on: the ICE consumption is modeled by the average slope of Willans lines [START_REF] Clarke | The relationship between the maximum principle and dynamic programming[END_REF] and the intercept of Willans lines is not used despite its importance. To confirm this interpretation, we have applied the PMP and OCL strategies to a hybrid powertrain modeled according to OCL assumptions. Results not reported here show that in these conditions, similar performances are obtained. This recently proposed strategy still needs improvement and will not be considered in the rest of the statistical analysis. In all cases, the A-ECMS obtains fuel consumption saving very close to the PMP, which means that one set of parameters specific to each type of driving conditions does help to improve the results of the A-ECMS. Likewise, the SDP's results are promising. The insufficiently fine discretization (cf. TABLE IV) may cause the relatively higher consumption at category UF1, UF2 and R1.

However, the two strategies behave differently on SOC sustaining. As shown in the bottom curve of Fig. 28, the A-ECMS has the biggest variation of the final SOC in category A1 and the SDP in category R1. What the figure does not tell is that the A-ECMS results in a final SOC between 17.9% and 60.7% for the category A1, while the SDP obtains a final SOC between 39.6% and 49.2% for R1. It means that even with the same final SOC penalty, SDP is more capable of bringing the SOC back to its reference than A-ECMS.

VII. CONCLUSION

The present paper provides a complete comparative study of three promising real-time HEV energy management strategies from the literature. Simulation results show that the original OCL requires modifications to achieve good performance on the considered powertrain model. A-ECMS reaches the best fuel saving performance when used with parameter sets adjusted to the type of driving conditions, while SDP better respects the charge sustaining constraint.

During the implementation phase using published material, the important issue of an efficient parameter determination procedure has been tackled. The two off-line methods PMP and DP whose results are generally considered as on-line approach evaluation benchmark have also been investigated to insure their accuracy.

Once well calibrated off-line on the WLTC certification driving cycle, the real-time strategies have been applied to a series of ten driving cycles that represents users' behavior on different road trips. Based on those simulation results, the setting parameters of the on-line strategies have been adjusted to each type of cycle and a statistical analysis has then been launched using random cycles generated by a stationary Markov process.

A-ECMS results are sensitive to setting parameters which makes the manual calibration very difficult. The integration of a genetic algorithm did help out with an increasing computational load in return. Moreover, with a wisely chosen parameter set specific to each road type driving conditions, it enables to achieve the maximal fuel saving under any circumstance.

With only one tuning parameter, OCL's calibration phase is much easier than A-ECMS. The simulation results show less sensitive parameter dependence. However this method is not as powerful as A-ECMS because of the very strong ICE modeling hypothesis it relies on. Besides, this method may not be as sensitive as A-ECMS to parameter setting, but only in a limited range of parameter and getting out of it directly leads to false results.

SDP insures the charge-sustaining requirement with a fuel economy performance right behind A-ECMS. As an optimization algorithm based on mathematical models, it achieves the optimal control decision in an average sense. In addition, its quality relies on the accuracy of the probability distribution of the vehicle's driving conditions.

The further work will be -Developing an on-line driving condition detection mechanism to wisely choose the A-ECMS parameter set; -Redesigning the OCL method using a more accurate ICE modeling other than the average Willans line slope -Implementing an infinite horizon SDP [START_REF] Liu | Modeling and Control of a Power-Split Hybrid Vehicle[END_REF] instead of the finite horizon one being developed in the present work.
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 1 Fig. 1. Parallel hybrid electric vehicle powertrain.
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 2 Fig. 2. ICE efficiency map. The black line corresponds to the best efficiency at a given output power; the red dotted curve indicates the maximum torque at a given speed. The minimum speed is 1010 𝑟/𝑚𝑖𝑛.
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 3 Fig. 3. Willans lines of the ICE for different rotational speeds 𝜔 𝐼𝐶𝐸 .
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 622 Initialization: at 𝑘 = 𝑁 𝐽 𝑁 𝑥 = 100 𝑥 -𝑥 𝑟𝑒𝑓 Backward iterative process: from 𝑘 = 𝑁 -1 to 𝑘 = 0 𝐽 𝑘 𝑥 = min 𝑢 𝑃 𝑓𝑢𝑒𝑙 𝑢 + 𝐽 𝑘+1 𝑥 + 𝑓 𝑢, 𝑤 𝑘 . Δ𝑡 𝑢 𝑘 * 𝑥 = argmin 𝑢 𝑃 𝑓𝑢𝑒𝑙 𝑢 + 𝐽 𝑘+1 𝑥 + 𝑓 𝑢, 𝑤 𝑘 . Δ𝑡

  𝐽 𝑘 𝑥 = min 𝑢 𝐸 𝑤 𝑘 𝑃 𝑓𝑢𝑒𝑙 𝑢 + 𝐽 𝑘+1 𝑥 + 𝑓 𝑢, 𝑤 𝑘 . Δ𝑡[START_REF] Souffran | Simulation of Real-World Vehicle Missions Using a Stochastic Markov Model for Optimal Powertrain Sizing[END_REF] 

Fig. 4 .

 4 Fig. 4. WLTC driving cycle (23 km long, 47 km/h average speed)

Fig. 5 .

 5 Fig. 5. Final battery state 𝑥 𝑓 versus equivalent cost 𝑝 and close-up: points calculated during the binary search to reach 𝑥 𝑓 = 𝑥 𝑟𝑒𝑓 = 40%.

Fig. 6 .

 6 Fig. 6. Hamiltonian function at 𝑡 = 839𝑠 of the WLTC cycle, for 𝑝 = 141.5. Two local minima exist, with very close values of H. The red 𝑢 𝑃𝑀𝑃

Fig. 7 .

 7 Fig. 7. Influence of the command discretization du on the equivalent cost.

Fig. 8 .

 8 Fig. 8. Influence of the command discretization 𝑑𝑢 on the fuel consumption and final state 𝑥 𝑓 (WLTC cycle).

Fig. 9 .

 9 Fig. 9. Fuel consumption and final state with the command and state discretizations 𝑑𝑢 = [0.1, 1] and 𝑑𝑥 = 1/36. 𝑑𝑢

Fig. 11 .

 11 Fig. 11. Equivalent consumption 𝐽 𝐺𝐴 versus number of generations, for population sizes ranging between 20 and 300.

Fig. 12 .

 12 Fig. 12. A-ECMS parameters found after 100 generations, for population sizes ranging between 20 and 300.

Fig. 13 .

 13 Fig. 13. Equivalent consumption 𝐽 𝐺𝐴 versus generation number, for five different initial populations.

Fig. 14 .

 14 Fig. 14. Final state of charge versus parameter μ, case of WLTC official cycle.

Fig. 15 .

 15 Fig. 15. Probability map at 𝑣 𝑤𝑒𝑒𝑙 = 6𝑚/𝑠 for the WLTC cycle.

Fig. 16 .

 16 Fig.[START_REF] Pourabdollah | Optimal Sizing of a Parallel PHEV Powertrain[END_REF]. WLTC power cycle and optimal control policy calculated by the different energy management strategies for this cycle.

Fig. 17 .

 17 Fig. 17. Battery state of charge trajectories for the WLTC cycle.

Fig. 18 .

 18 Fig. 18. Hamiltonian function at 𝑡 = 1766 𝑠 . The red and black points correspond to the ICE command calculated by PMP and DP respectively.

Fig. 19 .

 19 Fig. 19. Oscillation of the A-ECMS equivalent cost around the optimal value calculated by PMP.

Fig. 20 .

 20 Fig. 20. Real-time strategy results for INRETS cycles, compared to off-line strategies'. Top: the fuel saving is calculated using the corrected consumption defined in (28)-Bottom: the final state 𝑥 𝑓 indicates the capability of each method to respect the final state constraint.

Fig. 21 .

 21 Fig. 21. A-ECMS results for INRETS cycles, with 5 different sets of parameters (𝑇 , 𝐾 𝑝 , 𝑝 0 ). The fuel saving is calculated using the corrected consumption defined in (28).

Fig. 22 .

 22 Fig. 22. OCL results for INRETS cycles, for six different values of the setting parameter 𝜇. The fuel saving does not include any 𝑥 𝑓 correction

  𝑝 1 = 165.4 𝑇 = 56𝑠; 𝐾 𝑝 = 5.9 𝜇 = 568.9𝑘𝑔 𝑑𝑣 𝑤𝑒𝑒𝑙 = 0.2𝑚/𝑠 𝑑𝑃 𝑤𝑒𝑒𝑙 = 0.2𝑘𝑊 UF2 𝑝 0 = 𝑝 1 = 132.6 𝑇 = 34𝑠; 𝐾 𝑝 = 7.0 𝜇 = 275.8𝑘𝑔 𝑑𝑣 𝑤𝑒𝑒𝑙 = 0.4𝑚/𝑠 𝑑𝑃 𝑤𝑒𝑒𝑙 = 0.5𝑘𝑊 UF3 𝑝 0 = 𝑝 1 = 139.3 𝑇 = 10𝑠; 𝐾 𝑝 = 2.2 𝜇 = 143.9𝑘𝑔 𝑑𝑣 𝑤𝑒𝑒𝑙 = 0.4𝑚/𝑠 𝑑𝑃 𝑤𝑒𝑒𝑙 = 0.5𝑘𝑊 R1 𝑝 0 = 𝑝 1 = 134.1 𝑇 = 38𝑠; 𝐾 𝑝 = 4.7 𝜇 = 137.0𝑘𝑔 𝑑𝑣 𝑤𝑒𝑒𝑙 = 0.45𝑚/𝑠 𝑑𝑃 𝑤𝑒𝑒𝑙 = 1𝑘𝑊 R2 𝑝 0 = 𝑝 1 = 126.5 𝑇 = 27𝑠; 𝐾 𝑝 = 1.2 𝜇 = 145.7𝑘𝑔 𝑑𝑣 𝑤𝑒𝑒𝑙 = 0.6𝑚/𝑠 𝑑𝑃 𝑤𝑒𝑒𝑙 = 1𝑘𝑊 R3 𝑝 0 = 𝑝 1 = 128.0 𝑇 = 42𝑠; 𝐾 𝑝 = 2.0 𝜇 = 126.2𝑘𝑔 𝑑𝑣 𝑤𝑒𝑒𝑙 = 0.6𝑚/𝑠 𝑑𝑃 𝑤𝑒𝑒𝑙 = 1𝑘𝑊 A1 𝑝 0 = 𝑝 1 = 134.1 𝑇 = 43𝑠; 𝐾 𝑝 = 1.0 𝜇 = 71.9𝑘𝑔 𝑑𝑣 𝑤𝑒𝑒𝑙 = 0.7𝑚/𝑠 𝑑𝑃 𝑤𝑒𝑒𝑙 = 1𝑘𝑊 A2 𝑝 0 = 𝑝 1 = 121.6 𝑇 = 18𝑠; 𝐾 𝑝 = 8.4 𝜇 = 99.9𝑘𝑔 𝑑𝑣 𝑤𝑒𝑒𝑙 = 1𝑚/𝑠 𝑑𝑃 𝑤𝑒𝑒𝑙 = 1𝑘𝑊

Fig. 23 .

 23 Fig. 23. Real-time strategies' results for INRETS cycles, compared to off-line strategies'. The fuel saving is calculated using the corrected consumption defined in (28).

Fig. 24

 24 Fig. 24 shows the highway cycle denoted A2 and an example of random cycle generated by the associated Markov chain model. The speed discretization step is 𝑑𝑣 = 1𝑚/𝑠 = 3.6𝑘𝑚/, which appears on the generated cycle, which can have short constant speed periods.

Fig. 24 .

 24 Fig. 24. Top: highway A2 INRETS cycle -Bottom: example of random speed profile produced by the associated Markov chain model

Fig. 25 .

 25 Fig. 25. Average speed of the 1000 random cycles generate by Markov chain model using the A2 cycle data (so-called A2-type random cycle)

Fig. 27 .

 27 Fig. 27. Mean fuel consumption and standard error for the three real-time strategies. PMP provides reference results.

Fig. 28

 28 Fig.28shows the mean and standard deviation of the fuel consumption saving and the corresponding final SOC for PMP, A-ECMS and SDP.

Fig. 28 .

 28 Fig. 28. Top: Mean fuel consumption saving and standard deviation for PMP, A-ECMS and SDP. Bottom: mean final state 𝑥 𝑓 and standard deviation

  . The power demand 𝑃 𝑤𝑒𝑒𝑙 𝑘+1 at a given time 𝑘 + 1 is assumed to depend on

			Ρ 𝑃 𝑤𝑒𝑒𝑙 𝑘+1 = 𝑃 𝑙 𝑉 𝑤𝑒𝑒𝑙 𝑘 𝑚 𝑖𝑗 = 𝑝 𝑖𝑗 ,𝑙 = 𝑚 𝑖𝑗 ,𝑙	= 𝑃 𝑖 , 𝑃 𝑤𝑒𝑒𝑙 𝑘	= 𝑃 𝑗	(33)
	both the power demand 𝑃 𝑤𝑒𝑒𝑙 𝑘 before 𝑘. The velocity 𝑣 𝑤𝑒𝑒𝑙 𝑘 +1 is then determined by applying 𝑘 at the time and the speed 𝑣 𝑤𝑒𝑒𝑙	
	the vehicle dynamic equation.			
	The transition probabilities are determined as follows. The	
	observed data of a given cycle 𝑃 𝑤𝑒𝑒𝑙 𝑘	𝑘 𝑘=0,𝑁 and 𝑉 𝑤𝑒𝑒𝑙	𝑘=0,𝑁	
	are mapped into a finite number of classes 𝑛 𝑃 and 𝑛 𝑉 ,	
	corresponding to power and velocity intervals characterized by	
	. The probability = 𝑃 𝑖 and 𝑉 𝑤𝑒𝑒𝑙 their central values 𝑃 𝑖 𝑖=1,𝑛 𝑃 and 𝑉 𝑗 𝑗 =1,𝑛 𝑉 to have 𝑃 𝑤𝑒𝑒𝑙 𝑘+1 = 𝑃 𝑙 , knowing that 𝑃 𝑤𝑒𝑒𝑙 𝑘 𝑘 =	
	𝑉 𝑗 is determined by the maximum-likelihood estimator (33),	
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