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Abstract: This paper deals with on-line parameters and delay estimation of systems involving
retarded phenomena. Using a convolution based approach, it generalizes to arbitrary inputs
existing estimation results based on structured ones, while keeping the generalized eigenvalue
structure. The proposed estimation algorithms allow for updated estimations, avoiding possible
singularities in the matric pencil. Theoretical results are supported by numerical simulation.

1. INTRODUCTION

The real time delay identification is one of the most crucial
open problems in the field of delay systems (see, e.g.,
Richard (2003)). On the one hand, various powerful control
techniques (predictors, flatness-based predictive control, fi-
nite spectrum assignments, observers, ...) may be applied if
the dead-time is known. On the other hand, most existing
identification techniques for time-delay systems (see, e.g.,
Orlov et al. (2006); Drakunov et al. (2006) for adaptive
techniques or Ren et al. (2005) for a modified least squares
technique) generally suffer from poor speed performance.
The developments in Belkoura et al. (2006, 2009) have
considered the on line identification of delay systems with
particular (structured) inputs. This paper considers the
identification problem from general input-output trajecto-
ries. Although the parameter estimation technique is still
inspired from the fast identification techniques that were
proposed Fliess M. (2003) for linear, finite-dimensional
models, this paper considers a new approach to deal with
the delay estimation. Let us recall that those techniques
are not asymptotic, and do not need statistical knowledge
of the noises corrupting the data (See, e.g., Fliess et al.
(2007) for linear and nonlinear diagnosis, Fliess et al.
(2003) for signal processing, and Beltran-Carvajal et al.
(2005) for successful laboratory experiments).

The contribution of this paper is in the continuity of
the works presented in Belkoura et al. (2009) and Belk-
oura et al. (2011), with an extension to arbitrary inputs
and a unified formulation. Moreover, a new identification
approach provides a linear formulation in terms of the
unknown parameters, allowing for recursive estimation
techniques.

The paper is organized as follows. Section 2 gives a brief
summary of the existing approaches for estimation prob-
lems of systems with structured entries. Section 3 presents
the convolution based approach allowing for arbitrary in-
puts, and the connection between these two techniques
is provided on a simple example. Based on projection
methods, Section 4 introduces the numerical resolution of

the generalized eigenvalue problem with non square ma-
trices. An algorithm allowing for a recursive estimation of
parameters and delay is presented. Numerical simulations
are provided in Section 5. Most of the obtained results are
formulated in the distribution framework, and the next
paragraph is devoted to a brief summary of the definitions
and tools we shall need in the sequel. The reader may
consult Schwartz (1966); Zemanian (1965); Hirsch and
Lacombe (1999) for more on distribution theory.

The distribution framework

Throughout this paper, functions will be considered
through the distributions they define, i.e. as continuous
linear functionals on the space D of C∞-functions having
compact support in [0,∞). This framework allows the
definition of the Dirac distribution u = δ and its derivative
u = δ̇ as 〈u, ϕ〉 = ϕ(0) and 〈u, ϕ〉 = −ϕ̇(0), ϕ ∈ D re-
spectively. More generally, every distribution is indefinitely
differentiable, and if u is a continuous function except at
a point a, its distributional derivative writes:

u(1) =
du

dt
+ σaδa. (1)

where δa := δ(t−a), σa := u(ta+)−u(ta−), and du
dt stands

for the distribution stemming from the usual derivative
(function) of u defined almost everywhere. Note that with
a = 0, this result, and its extension to higher order
derivation, is nothing but the analog part of the familiar
Laplace transform L(ẏ) = sy(s)− y0.

We proceed this introductory section with some well-
known definitions and results from the convolution prod-
ucts, and as usual, denote D′+ the space of distributions
with support contained in [0,∞). It is an algebra with
respect to convolution with identity δ. For u, v ∈ D′+, this
product is defined as 〈u ∗ v, ϕ〉 = 〈u(x).v(y), ϕ(x+ y)〉,
and can be identified with the familiar convolution product
(u ∗ v)(t) =

∫∞
0
u(θ)v(t − θ)dθ in case of locally bounded

functions u and v. Derivation, integration and translation
can also be defined from the convolutions



u̇ = δ̇ ∗ u,
∫
u = H ∗ u, u(t− τ) = δτ ∗ u,

where H is the familiar Heaviside step function. We also
recall the following well known property:

u(t) ∗ v(t− τ) = u(t− τ) ∗ v(t) = δτ ∗ u ∗ v. (2)

As for the supports, one has for u, v ∈ D′+:

supp u ∗ v ⊂ supp u+ supp v, (3)

where the sum in the right hand side is defined by

X + Y = {x+ y ; x ∈ X, y ∈ Y } (4)

In our subsequent developments, the specific need for the
distributional framework also lies in its ability to cancel
the singular terms simply by means of multiplication
with some appropriate functions. Multiplication of two
distributions (say α and u) always make sense when at
least one of the two terms (say α) is a smooth function,
and the cancelation procedure presented in this paper will
be derived from the general Schwartz (1966) Theorem on
multiplication.

Theorem 1. Schwartz (1966) If u has a compact support
K and is of order r (necessarily finite), αu = 0 whenever
α and its derivatives of order ≤ r vanish on K.

Particularly, for any smooth function α, one has

α δτ = α(τ) δτ , (5)

and this result generalises to Dirac distributions of arbi-
trary order r as:

α δ(r)
τ = 0, (6)

∀α s.t. α(k)(τ) = 0, k = 0, . . . , r. (7)

Finally, with no danger of confusion, we shall sometimes
denote u(s), s ∈ C, the Laplace transform of u.

2. SUMMARY OF THE IDENTIFICATION
TECHNIQUES FOR STRUCTURED INPUTS

For the sake of completeness and comparison with the
general approach presented in Section 3, a brief summary
on identification results of systems with structured input
is presented. Structured entries have been initially intro-
duced (see e.g. Fliess M. (2003)) to refer to entities (mainly
perturbations) that can be annihilated by means of simple
multiplications and derivations. For a formal definition, we
may state that a distribution ξ is said to be structured if
one can write P ∗ ξ = Q for some P with compact support
and Q ∈ D′+, both with discrete support. This statement
is sufficient for most of the practical situations (and more),
and includes piecewise polynomials, exponential and har-
monic functions, impulsive functions and theirs derivatives
(Dirac functions used to take into account initial condi-
tions in the distribution framework) etc. For the sake of
completeness, let us remark that a counter example can be
found in smooth functions with compact support, whose
convolution with any distribution P results in a smooth
right hand side Q. Further developments on the material
of this section can be found in Belkoura et al. (2009).

2.1 Single delay identification

Let us consider a first order system with a delayed input
governed by:

ẏ + a y = b u(t− τ), (8)

where a, b, and τ are constant parameters, and the
coefficient a is assumed to be known (for the moment).
Consider also a step input u = u0H. A first order
derivation yields

ÿ + aẏ = b u0 δτ . (9)

By virtue of the annihilation procedure (7), the right
hand side of equation (9) can be canceled by means of
a multiplication with a function α such that α(τ) = 0,
and the choice of the polynomial α(t) = t− τ results in

t(ÿ + aẏ) = τ (ÿ + aẏ). (10)

As an equality of singular distributions, this relation
doesn’t make sense for any t (otherwise we would have τ =
t). However, k ≥ 2 successive integrations (or convolution
with regular function hk with support ∈ (0,∞)) result
in functions equality from which the delay τ becomes
available. More precisely, since supphk ∗ δτ ⊂ (τ,∞), we
can easily show that all the obtained functions will vanish
on (0, τ) and the delay is consequently not identifiable on
this interval. Conversely, being nonzero for (almost) all
t > τ , the delay is (almost) everywhere identifiable on
(τ,∞) and given by the relation:

τ =
hk ∗ [tÿ + a tẏ)]

hk ∗ [ÿ + a ẏ]
, t > τ, (11)

2.2 Parameters ad delay identification

Let us now consider a linear system with unknown param-
eters and delay described by:

G(s) =
K e−τ s

a2s2 + a1s+ 1
, (12)

denoting e = e−jωt, a derivation of the differential equa-
tion derived from (12), followed by the multiplication by
α = (1− λe) result respectively in:

a2y
(3) + a1y

(2) + y(1) = Kδτ , (13)

(1− λe) (a2y
(3) + a1y

(2) + y(1)) = 0. (14)

where the delay to be estimated is derived from λ =
ejωτ ∈ C, with tunable frequency ω. We shall focus on the
identification of the coefficients {λ, a2, a1}, and provided
a sufficiently large period 2π/ω, the delay is deduced from
the unique argument τ = arg(λ)/ω. Due to the terms λai,
i = 1, 2, (14) is not linear w.r.t. the unknown coefficients,
but may be written in the following form:

[(y(3), · · · , y(1))− λ(ey(3), · · · , ey(1))]

(
a2

a1

1

)
= 0. (15)

As in the previous paragraph, successive integrations (or
convolution with regular functions) transform the equality
of singular distributions of (14) into one of continuous
functions. Denoting Θ = (a2, a1, 1)T the (normalized)
vector of parameters, the specific structure of (15) leads
to following generalized eigenvalue problem for possibly
non square pencils:

(A0 − λ A1) Θ = 0, (16)

where, using a Matlab-like notation, the entries of them×3
trajectory-dependent matrices A0 and A1 are given by

A0(i, :) = hi ∗ (y(3), · · · , y(1)), i = 1, . . . ,m,

A1(i, :) = hi ∗ (ey(3), · · · , ey(1)) i = 1, . . . ,m. (17)



The use of successive filters hi(s) of relative degree > 2
allow one the one hand, to ensure causal relations from
(15) and on the other hand, to obtain enough equations for
a simultaneous estimation of both parameters and delay.
The implementation of A0(i, j) and A1(i, j) is performed
according to the integration by parts formulas. Therefore,
the identification problem has been transformed into the
eigenvalue problem (16) in which, at each t, the unknown
delay τ = arg(λ)/ω is derived from one eigenvalue, while
the parameters a1, a2 are obtained from the corresponding
normalized eigenvector.

3. IDENTIFICATION APPROACH FOR THE
UNSTRUCTURED CASE

When facing arbitrary inputs, the above annihilation pro-
cedure no longer applies, but algebraic estimation results
can be still obtained by mean of an approach combining
multiplication an cross convolution, as described below.
Provided the system is initially at rest (null initial condi-
tion), state delay may also be identified.

3.1 The cross convolution approach

We first focus on a single delay identification regardless of
any process dynamics. When considered on the whole real
line, a delay between two functions a(t) and b(t) reads as
in (18) and leads to (19) once multiplied by any deviated
known function α(t− τ).

a(t) = b(t− τ), (18)

α(t− τ)a(t) = (αb)(t− τ). (19)

Using (2), a convolution product derived from these two
relations results in equation (21) with no deviated argu-
ment in the original functions a and b.

[α(t− τ)a(t)] ∗ b(t− τ) = a(t) ∗ (αb)(t− τ), (20)

⇒ [α(t− τ)a(t)] ∗ b(t) = a(t) ∗ (αb)(t). (21)

If the adopted function α(t − τ) admits an expansion
separating its arguments t and τ , i.e.:

α(t− τ) =
∑
i finite

λi(t)µi(τ), (22)

for some known functions λ and µ, then an algebraic
relation is obtained allowing a non asymptotic and explicit
delay formulation, as illustrated in the simple following
examples:

α(t) = t ⇒ τ =
ta ∗ b− a ∗ tb

b ∗ a
(23)

α(t) = eγt ⇒ eγτ =
b ∗ eγta
a ∗ eγtb

(24)

Provided the involved convolution products are well de-
fined, this delay formula holds for all nonzero values of
their denominators. More precisely, if the signal b consists
in measurements on (0,∞), then supp a ⊂ (τ,∞) and
hence, by virtue of (3), both numerator and denominator
of (23) and (24) have their support within (τ,∞). There-
fore, the delay is not identifiable for t < τ . However, as

in the finite dimensional case (see, e.g., Fliess and Sira-
Ramirez (2007)), the input signal b being used in this al-
gebraic approach does not necessarily exhibit the classical
”persistency of excitation” requirement. Although a local
loss of identifiability may occur due to the zero crossing of
the denominator, only non trivial trajectories are required.

Once again, when facing derivatives, one of the nice
features of multiplication by polynomial or exponential
functions lies in the ability to use simple integration by
parts formulas to avoid any derivation in the identification
algorithm. The next paragraph illustrates the time lag
identification for the simple first order case.

3.2 Application to a delay identification

Consider the following linear first order process with
delayed input:

ẏ + y = k u(t− τ), (25)

which correspond to the formulation (18) with a = ẏ + y
and b = ku. In order to avoid multiplications by un-
bounded functions (polynomials), and hence the ampli-
fication of noise and neglected dynamics, a decaying expo-
nential functions is considered and equation (24) reads:

λ =
u ∗ eγt(ẏ + y)

(ẏ + y) ∗ eγtu
(26)

where we have denoted λ = e−γτ for some tunable positive
parameter γ. Note that the static gain value k is not
required nor identified. Denoting e(t) = e−γt and taking
into account the integration by parts formula,

∫
eẏ = ey+

γ
∫
ey, on gets:

λ =
ey ∗ u+ (1 + γ)

∫
(ey ∗ u)

eu ∗ y +
∫
eu ∗ y

, (27)

while the delay is obtained from τ = log(λ)/γ. For this
simple example, and since only a constant delay has to
be identified, an additional step considering the integral
of the square of equation (27) (i.e.

∫
(27)2) avoids the

possible singularities resulting from the zero crossing of
the denominator eu ∗ y +

∫
eu ∗ y. This finally results in

the delay estimation:

λ =


∫ t

0

[
u ∗ ey + γ

∫ θ
0

(u ∗ ey)
]2
dθ∫ t

0

[
eu ∗ y +

∫ θ
0

(eu ∗ y)
]2
dθ


1
2

. (28)

A simulation result with noisy data is depicted in Figure
1, for an input u(t) = sin(t/2)sin(2t)(0.2 + sin(t/2)),
γ = 0.2, and a delay τ = 0.3 s. The simulation step size
has been fixed to 0.05 s, and the integrals involved in the
convolutions have been approximated by simple sums. The
trajectory of the estimated delay based on equation (28)
is depicted in Figure 2.

3.3 Simultaneous parameters and delay identification

The aim of this paragraph is to provide a structure of the
estimation problem when simultaneous parameters and
delay identification is required. The above delay estimation
procedure is considered in this section for signals a and b
describing a linear system governed by:



Fig. 1. Trajectories of the process in eq.(25).

Fig. 2. Estimated delay of eq.(25).∑
ai y

(i)(t) = Ku(t− τ), (29)

whose left and right hand sides can be identified with the
functions a and b of the previous section (equation 18) as:

a =
∑

ai y
(i), b = Ku. (30)

The exponential function α(t) = e−γt, with γ ∈ C
may be adopted for the multiplication step, leading to a
reformulation of equation (21) as:

λ
∑

ai [u ∗ (e−γty(i))] =
∑

ai [y(i) ∗ (e−γtu)], (31)

where the unknown delay to be identified is contained
in the unknown term λ = e−γτ . Note that the process
gain K has been removed by this procedure and will not
be estimated. Depending on the regularity of the input
u, equation (31) may be non causal and is non linear
with respect to the delay and parameters ai. As in the
structured input case, successive filters hj(s) allow causal
relations from and provide enough equations for a simulta-
neous estimation of both parameters and delay. Recalling
Θ = (a2, a1, 1)T the (normalized) vector of parameters,
this results in the following estimation problem:

(A0 − λ A1) Θ = 0, (32)

A0(i, j) = sihj(s)[y ∗ e−γtu](s), (33)

A1(i, j) = (s+ γ)ihj(s)[e
−γty ∗ u](s), (34)

where the realization of each term of the filtering of
equation (31), avoiding any measurement’s derivative, is
based on the familiar property of Laplace transform,
L[eγtf(t)](s) = F (s−γ). In the available data A0(i, j) and
A1(i, j), the notation [a∗b](s) emphasizes the measurement
based convolution products subject to the filtering proce-
dure. It is worth noticing that in case of a structured input

u admitting a simple operational description (for instance
a step u(s)=1/s), the realization of the entries of A0 and
A1 reduces to filtering of y and e−γty as:

A0(i, j) = sihj(s)u(s+ γ)y(s), (35)

A1(i, j) = (s+ γ)ihj(s)u(s)y(s+ γ) (36)

3.4 Structured vs unstructured method

This section shows how the unstructured identification
scheme generalizes the structured approach of Section 2.
We illustrate with the simplest input case, i.e. a step input
b = 1/s. Differentiation of (18) and (19) reads:

ȧ = δτ

α(t− τ)× ȧ = (αδ) ∗ ȧ.
In case of a polynomial choice α(t) = t, αδ = 0, and
this yields (t − τ) × ȧ = 0, leading after integration (or
convolution with h) to

(h ∗ ȧ)τ = [h ∗ (tȧ)] (37)

which correspond to (11) when expanding a as in (30).
When considering cancellation with an exponential func-
tion α = eγt, on has from (19) and the annihilation
technique of the introductory Section:

λ(eȧ) = (αδ) ∗ ȧ = (α(0)δ) ∗ ȧ = ȧ (38)

and hence after integration:

h ∗ ȧ = λh ∗ (eȧ) (39)

which correspond to the result obtained in (15) when ex-
panding a as in (30). Therefore, the structured estimation
technique can be viewed as a particular case of the the
unstructured one in which, prior to the cross convolution
operation, a differentiation has been used to reduce the
right hand side of (18) to a singular distribution.

4. NUMERICAL RESOLUTION OF THE
SIMULTANEOUS PARAMETERS AND DELAY

IDENTIFICATION

When considering the identification problems (16) and
(32), and for each value of t, the unknown delay consists in
one eigenvalue while the parameters are derived from the
associated normalized eigenvector. In order to uniquely es-
timate the desired eigenpair one has to consider additional
integrations leading to a rectangular eigenvalue problem.
However, as mentioned in Wright and Trefethen (2002),
rectangular eigenvalue problems ”have the awkward fea-
ture that most matrices have no eigenvalues at all, whilst
for those that do, an infinitesimal perturbation will in
general remove them”. In Gregory Boutry (2005), solving
perturbed pencils is formulated in terms of the following a
minimal perturbation approach: Given any m×n matrices
A0, A1, find:

min
Ā0,Ā1{λk,vk}nk=1

‖A0 − Ā0‖2F + ‖A1 − Ā1‖2F (40)

subject to {(A0 − λA1)vk = 0, ‖vk‖22 = 1}nk=1(41)

where ‖()‖F stands for the Frobenius norm. Except for the
scalar (n = 1) case where analytical solution are obtained,



the proposed algorithms are however asymptotic and can-
not be considered online. To overcome this difficulty, this
section will provide simple estimation algorithms based on
projection techniques.

The developments are based on the QR decomposition
of a matrix (Golub and Van Loan (2012)), and similar
approaches using CS (Cosine Sine) or GSVD (Generalized
singular value) decompositions have shown similar perfor-
mances. We recall that any m×n matrix X can be factored
as the product of an m×m unitary matrix Q (QTQ = I)
and an m × n upper triangular matrix R. Further, this
decomposition reads:

X = QR = [Qx Qy]

[
Rx
0

]
= QxRx (42)

where Rx is n × n upper triangular matrix and Qx has
orthogonal columns. If X is full column rank and we
require that the diagonal elements of Rx are positive, the
decomposition X = QxRx, also called thin factorization,
is unique. Conversely, when X is rank deficient, a column
permutation can be used such that the decomposition
reads as follows where R11 is upper triangular and Π is
a permutation matrix:

XΠT = Q

[
R11 R12

0 0

]
(43)

4.1 A constrained eigenvalue problem

The material on constrained eigenvalue problems pre-
sented in this section can be found in Golub (1973). Con-
sider a n× n constrained eigenvalue problem:

(B0λ+B1)x = 0,

subject to CTx = 0. (44)

If rankC = q, and using an orthogonal decomposition of
the form:

C = QT
(
R S
0 0

)
Π (45)

where R is upper triangular, S is q × (n − q), QTQ = I
and Π is permutation matrix, then the eigenvalues of the
constrained problem are the eigenvalues of

(G0 + λG1) z = 0, (46)

for the matrices Gi, i = 0, 1 given by the (n− q)× (n− q)
bottom right of the following matrix:

QBiQ
T =

(
× ×
× Gi

)
(47)

The eigenvectors xi of the original constrained problem
are derived from those of the unconstrained one zi using:

xi = QT
(

0
In−q

)
zi, i = 1, . . . , s ≤ q. (48)

Note that in the symmetric problem considered in Golub
(1973), s = q. Now let us consider our estimation problems
given by (16) or (32), and denoted here:

(A0 λ+A1)Θ = 0, (49)

and introduce the main assumption of this paper:

Assumption A1: The rectangular linear pencil (49) with
m ≥ 2n admits, at each t, the unique eigenvector Θ with
associated eigenvalue λ given by the delay.

Based on this assumption we shall be able to: (i) estimate
the vector coefficient Θ trough the resolution of a linear
system, (ii) estimate the eigenvalue λ an its associated
delay trough a scalar an linear equation. Consider the QR
decomposition:

Ai = QiRi, i = 0, 1. (50)

One may write

(A0 + λA1) = (Q0Q1)

(
λR0

R1

)
(51)

Multiplying by (Q0Q1)T yields:(
I QT0 Q1

QT1 Q0 I

)(
λR0

R1

)
Θ = 0. (52)

Now applying the (always defined) Schur Complement
with respect to the top left term of the above matrix, and
denoting:

P0 = I −Q0Q
T
0 , (53)

the orthogonal projector onto the complement of range of
A0, our estimation problem (44) has been transformed into
the constrained eigenvalue problem:

(R0λ+QT0 Q1R1)Θ = 0, (54)

QT1 P0Q1R1Θ = 0. (55)

Following Golub (1973), if the (m−n)×n matrix contraint
QT1 P0B1 is of rank r for some r ≤ n, we can derive from
these relations an eigenvalue problem of size (n−r)× (n−
r). The eigenpair of (49) being assumed unique, r = n−1,
leading to a scalar eigenvalue problem, and a matrix con-
traint of rank n− 1 that uniquely determine the unknown
vector parameter. Hence applying the decomposition (45)
to the constraint (55):

QT1 P0Q1R1 = QTp

(
Rp Sp
0 0

)
Πp, (56)

we can state our estimation result as:

Proposition 2. Consider the estimation problem (49), the
associated decomposition (50) and projector (53). Under
assumption A1, the unknown (normalized) vector param-
eter Θ satisfies the linear equation.

QT1 P0A1Θ = 0 (57)

Moreover, and form the QR decomposition (56), the un-
known delay is governed by the scalar equation:

(QpR0Q
T
p )nn λ+ (QpQ

T
0 A1Q

T
p )nn = 0 (58)

Under our principal assumption, we have shown that the
linear constraint in (55) contains enough information in
order to determine the dynamic of the process by solving



a linear system, and regardless of the delay. When consid-
ering the delay estimation, the resolution of equation (58)
requires the orthogonal QR decomposition of QT1 P0A1,
which amounts to solving first the linear equation in the
unknown parameters. Note also that in order for the con-
sidered projection approach to satisfy the rank condition,
one must consider m×n matrices Ai i = 0, 1 with m ≥ 2n.

By virtue of the projectors and rank properties, P 2
0 = P0

and rankXTX = rankX, a left multiplication by RT1 of
(57) and the uniqueness assumption also read:

P0A1Θ = 0, rankP0A1 = n− 1. (59)

It should be stressed that whenever A0 is not full column
rank, the QR decomposition and hence the projector P0

is not uniquely defined. In the next section we shall take
advantage of the stationarity of Θ to provide a recursive
estimation algorithm.

4.2 Vector parameter estimation

Without loss of generality, we may assume that eigenvalue
λ 6= 0 for all t and hence consider the eigenvalue problem
problem (B0+λ−1B1)Θ = 0. Proceeding as in the previous
section with the corresponding projector P1 = I − Q1Q

T
1

and combining both linear constraints results in:

MΘ = 0, M =

[
AT1 P0A1

AT0 P1A0

]
. (60)

Now since the vector parameter Θ is assumed here con-
stant, one may apply any recursive method to update its
estimation and deal with the noise effect. More precisely,
following E.J. Kontoghiorghesa (1999), a block recursive
least-squares (LS) estimation can be formulated as follows,
where the subsequent matrices, including the matrix the
matrix M in (60), will be denoted with a subscript t to
indicate the running time. Let

QT1 M1 = R̂1 =

[
R1 u1

0 s1

]
, (61)

be the QR decomposition of M1, where R1 is upper
triangular, non singular matrix, and Q1 has orthogonal
columns. The least-squares estimation of Θ1 is derived
from the solution of

[R1 u1]Θ1 = 0, (62)

giving he initial estimate. Next, after computing the or-
thogonal factorization

QTt+1

[
R̂t
Mt+1

]
= R̂t+1 =

[
Rt+1 ut+1

0 st+1

]
, (63)

the updated LS estimator is obtained by solving

[Rt+1 ut+1]Θt+1 = 0. (64)

It is worth noticing that from the QR decomposition of
the time varying perturbed pencil matrices Ai, statisti-
cal distributions of the perturbations are generally not
available. To the best of our knowledge, and unlike static
decomposition where bound on the norms of the deviated
factors Q and R can be estimated (see eg Stewart (1993)),
there are no such bounds nor statistical distribution when

considering time varying decomposition Q(t)R(t). It is
however clear that the sensitivity of our estimation prob-
lem highly depends on the time varying condition numbers
κ(Ai) of the involved matrices.

4.3 Delay estimation

The delay estimation can be obtained from the scalar
equation (58) based on a QR decomposition of the matrix
constraint in (55). Alternatively, one may use the updated
vector parameters estimation of the above section, reduc-
ing the delay estimation problem to the following (m× 1)
vector valued relation that can be solved in the least square
sense:

a0 λ+ a1 = 0, ai = AiΘ, i = 0, 1. (65)

As in the single delay case of Section 3.2, one can further
apply the additional step consisting of integration an
squaring to avoid possible local singularities resulting
from the zero crossing. Note that in this scalar case
(n = 1), the problem (40) admits an analytical solution
(Gregory Boutry (2005)), and the optimal solution for λ
is given by the (+)-root of he quadratic equation:

λ2aT0 a1 + λ(aT1 a1 − aT0 a0)− aT1 a0 = 0, (66)

the (+)-root being defined as (−β+
√
β2 − 4αγ)/(2α) for

a quadratic form αx2 + βx + γ. Finally, in case we adopt
an harmonic multiplicative function

α(t) = ejωt, ω = 2π/∆, t ≥ 0 (67)

and using the Frobenius norm, the delay estimation prob-
lem (65) can be sated alternatively as:

minimize ‖a0λ− a1‖F (68)

subject to λTλ = 1. (69)

This correspond to the simplest (scalar) version of the or-
thogonal Procruste problem (Golub and Van Loan (2012)),
considering how a0 can be rotated into a1. Forming the QR
decompositions ai = qiri, the optimal solution is given by:

λ = ejωτ = qT0 q1 (70)

The period ∆ of the harmonic function is chosen suffi-
ciently large to ensure a unique estimated delay from the
argument of λ. While the two later methods provide an
optimal solution at each t, a simple block recursive least
square estimation can still be considered from (65) using
the recursive approach of the previous Section where the
(m× n) (respectively (n× 1)) matrices Mt (resp. Θt) are
replaced by the (m× 2) (resp. (2× 1)) terms:

Nt = [a0 a1] , ΛTt = [λ 1] (71)

5. NUMERICAL IMPLEMENTATION AND
SIMULATION EXAMPLE

The implementation of the estimation algorithms only
requires an arbitrary smooth function α(t) for the multipli-
cation, and m ≥ 2n linearly independent filters hi(t). The
design of such optimal function and filters is a important
and challenging problem, as the pencil matrices Ai in



(49) should: a/ show favourable robustness properties with
regard to noise, and b/ span fairly independent spaces
in order to provide, trough the orthogonal projections,
well conditioned constraint relations in (55). This open
problem is outside the scope of the paper, and we adopt
here the harmonic multiplicative function in (67) and low
pass filters:

hi(s) = si/(1 + ζs)m+n, i = 1, . . . ,m. (72)

5.1 Simulation example

This example considers the of the second order delayed
system described by: :

G(s) =
1.2 e−0.3s

0.6s2 + s+ 1
, (73)

and subject to the input u = sin(2t) + .5 sin(t). The SNR
is fixed to 45dB for both input and output signals, the dis-
cretization step is 2ms, and the convolution products are
performed using simple sums. The rectangular eigenvalue
problem (A0 + A1)Θ = 0 is formed by m × n matrices
as described in (32), with m = 2n = 4. The pair ∆ and
ζ for the multiplicative function and filters is fixed to 4
and 1 respectively. Figure 3 shows the simulated trajec-
tories. Figure 4 shows the time history of the estimated

Fig. 3. Trajectories of eq.(73).

parameters a2 = 0.6 and a1 = 1 using a non recursive
estimation (equation (60)), and in both free and noisy
context. Note that as mentioned in Section 3, the gain
process is not required nor estimated by this approach.
Some fluctuations can be noticed in the noisy context,
probably due to the vicinity of singularities of the matrix
pencil (the pencil is singular when both matrices A0 and
A1 are not column full rank). The benefits of using a
recursive parameter estimation is depicted in Figure 5,
where the local singularities do not affect the estimation
process. Finally, the estimated delay is shown in Figure 6,
in noise free context(black line), noisy context using the
minimal Frobenius norm approach described in (69) and
(70) (blue line), and a noisy context with block recursive
estimation using (71)(red line).

6. CONCLUSION

This paper has presented new tools for the parameters
and delay estimation of systems involving retarded phe-
nomena. The existing estimation results based on struc-
tured inputs have been extended to arbitrary ones, us-
ing a convolution approach. A connection between the

Fig. 4. Non recursive parameters estimation of eq.(73) in
noise free (blue lines) and noisy context (red lines)

Fig. 5. Recursive parameters estimation of eq.(73) in noise
free (blue lines) and noisy context (red lines)

Fig. 6. Estimated delay (73) in noise free case (black
line), noisy context with Procruste problem approach
(eq. (69), blue line), and noisy context with updated
estimation (eq. (71), red line)

two formalisms has been presented. Moreover, algorithms
allowing for updating estimations and avoiding possible
singularities are provided. Extensions to multivariable and
multidelay cases, as well as the ability to tackle slowly
varying parameters and delays, thanks to compact support
filters, are under investigation. The ability to estimate
parameters and delays using non asymptotic methods may
provide new perspectives for real time control procedures.
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