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Abstract

This article is devoted to the design of importance sampling method for the Monte Carlo simulation of a
linear transport equation. This model is of great importance in the simulation of inertial confinement fusion
experiments. Our method is restricted to a spherically symmetric idealized design : an outer sphere emitting
radiation towards an inner sphere, which in practice should be thought of as the hohlraum and the fusion
capsule, respectively. We compute the importance function as the solution of the corresponding stationary
adjoint problem. Doing so, we have an important reduction of the variance (by a factor 50 to 100), with a
moderate increase of computational cost (by a factor 2 to 8).

1 Introduction

In inertial confinement fusion (ICF) experiments, a small ball of hydrogen (the target) is submitted to intense
radiation by laser beams. These laser beams are either pointed directly to the target (direct drive approach),
or pointed to gold walls of a hohlraum in which the target is located (indirect drive approach, see Figure 1).
These gold walls heat up, emitting X-rays toward the target. The outer layers of the target are heated up, hence
ablated. By momentum conservation, the inner part of the target implodes (this is usually called the rocket
effect). Hence, the pressure and temperature of the hydrogen inside the target increase, hopefully reaching the
thermodynamical conditions for nuclear fusion. This process is summarized in Figure 2.

The numerical simulation of such an experiment involves many physical phenomena such as hydrodynamics,
radiation transfer, neutronics, etc... In the present article, we focus on the simulation of radiation, that is,
the transmission of the (X-ray) energy to the target. A simplified model for this is the grey radiative transfer
equation: ∂tu+ Ω · ∇u+ κtu = κs

∫
S2

u(t,x,Ω′)k(x,Ω′,Ω)dΩ′ +Q(x)

u(t = 0,x,Ω) = g(x,Ω),

(1.1)

Figure 1: Schematic view of the Hohlraum and the target
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Figure 2: The concept of ICF (inertial confinement fusion) taken from http://www.lanl.gov/projects/dense-
plasma-theory/background/dense-laboratory-plasmas.php

where the solution u is the radiation intensity and depends on the time t, the position x ∈ R3, the direction of
propagation Ω ∈ S2. The term Q(x) represents a source of radiation. In the present case, Q(x) is a modelling of
the emission of X-rays by the hohlraum walls. Furthermore, κt is the total cross-section. It satisfies κt = κa+κs,
where κa ≥ 0 is the absorption cross-section and κs ≥ 0 the scattering cross-section. The kernel k(x,Ω′,Ω) is

a probability density with respect to Ω′ and Ω, that is, k ≥ 0 and

∫
k(x,Ω′,Ω)dΩ′ =

∫
k(x,Ω′,Ω)dΩ = 1.

Note that we have assumed here that we use units such that the speed of light is c = 1.
Equation (1.1) may be simulated using a Monte Carlo method. If so, the probability distribution k may

be interpreted as the probability density associated to the new direction propagation Ω for a particle having a
shock with initial direction Ω′. In Monte Carlo simulations of such situations, variance reduction methods are
important to reduce the statistical noise. Indeed, as the target implodes, hydrodynamic instabilities develop,
which are a source of energy loss. Should this loss be too important, the experiment would be compromised.
Thus, it is important to have a precise numerical description of these instabilities. In the case of Monte Carlo
simulations, this implies a statistical noise as small as possible (at least smaller than the amplitude of the
instabilites). A small variance is particularly important on the target boundary.

A widely used reduction variance technique in such a situation is the importance sampling method. It may
be summarized as follows:

1. Calculate the importance function (in our case, the solution of the adjoint equation);

2. Use the importance function to modify the transport equation, and apply a Monte Carlo method;

3. Calculate the forward intensity from 1 and 2

Importance sampling is a well-known reduction variance method, which has been applied to transport
problems in many situations. We refer for instance to the textbooks [10] [14] for a general presentation. The
key-point in such a method is the way one computes the importance function. If it is solution to the adjoint
problem, then one achieves a zero-variance method. However, solving the adjoint problem is at least as difficult
as solving the direct problem at hand. Therefore, many methods using approximations of the adjoint solution
have been developped. This is the spirit of the exponential transform (see [6] and [10]). In some situations, a
diffusion approximation is used for this calculation, as for instance in [17]. In other situations, discrete ordinates
approximation is preferred [15]. The method which is the closest to the one presented here is probably [2], in
which the adjoint equation is formulated as an integral equation, and solved using a space discretization. An
importance difference is, however, that when solving the adjoint problem, the scattering is neglected in [2].
Here, we use the same kind of method, but taking advantage of the radially symmetric geometry, we are able
to take scattering effects into account.

The article is organized as follows: in Section 2, we give a rapid presentation of the Monte Carlo method
applied to transport equations, then of the importance sampling method. This method is based on the compu-
tation of an importance function, which is the subject of Section 3. In Section 4, we present some numerical
experiments, while the appendices contain some technical result which we do not want to detail in the main
body of the article.
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2 Monte Carlo method for transport equations

2.1 Natural method

We give in this subsection a short overview of the application of Monte Carlo method applied to transport
equation. More details and mathematical justifications are given in [9]. We concentrate here on practical
aspects.

Considering equation (1.1), we define the following quantities (we assume here that Q and g are integrable
functions):

α =

∫
S2

∫
D
g(x,Ω)dxdΩ, g(x,Ω) =

1

α
g(x,Ω), (2.1)

β =

∫
S2

∫
D
Q(x)dxdΩ = 4π

∫
D
Q(x)dx, Q(x) =

1

β
Q(x) (2.2)

Here, D is the spatial domain. Hence, g and Q are probability measures on the phase space D× S2. Of course,
we assume that both g and Q are non-negative, which is physically relevant.

We first deal with the case Q = 0, and then extend it to the general case. We define N independent
realizations (Xi(t),Ωi(t)) of the jump Markov process (X(t),Ω(t)) as follows:

1. (Xi(0),Ωi(0)) are drawn independently of each other, following the law g(x,Ω)dxdΩ.
To each of them is assigned a weight wi(0) = 1

N .

2. Between jumps, (Xi,Ωi) follows the characteristics of Equation (1.1), that is,{
Ẋi(t) = Ωi(t),

Ω̇i(t) = 0,

which is equivalent to the fact that Ωi is constant1 and

Xi(t) = Xi(t0) + (t− t0)Ωi. (2.3)

Moreover, the weight wi(t) is assumed to satisfy the equation ẇi(t) + (κt − κs)wi(t) = 0, that is,

wi(t) = wi(t0)e−(κt−κs)(t−t0). (2.4)

3. Time jumps are defined by a Poisson process N (t) of intensity one as follows: if the process N (tκs) has
a jump at time t, then Ωi(t) has a jump, and the conditional law of Ωi(t

+) knowing Ωi(t
−) is given by

k(x,Ωi(t
−),Ω)dΩ

It can be proved that such a strategy gives a good approximation of the solution u(t,x,Ω) to (1.1) in the
following sense [9, Theorem 3.2.1]: assume that

ηN (t, dx, dΩ) = α

N∑
i=1

wi(t)δXi(t),Ωi(t)(dx, dΩ), (2.5)

then this measure converges narrowly to u(t,x,Ω)dxdΩ, as N → +∞.

It remains to include the influence of the source Q(x). For this purpose, we split the time interval into
time steps of equal size ∆t. What follows can easily be generalized to non-constant time steps, but this not
our purpose here. At each time step, we generate M more realizations of another jump Markov process,
independently of the initial ones, as follows:

1. At time m∆t, we draw M independent couples
(
Xm
j ,Ω

m
j

)
according to the law Q(x)dxdΩ.

The weight of each particle is wmj (m∆t) = ∆t
M

2. Each of these random variables follow the same evolution as in the preceding case, with positions, velocities,
weights Xm

j (t),Ωmj (t), wmj (t), respectively.

Finally, the measure ηN defined by (2.5) is replaced by (here, we assume that n∆t ≤ t < (n+ 1)∆t)

ηN,∆t(t, dx, dΩ) = α

N∑
i=1

wi(t)δXi(t),Ωi(t)(dx, dΩ) + β

n∑
m=0

M∑
j=1

wmj (t)δXmj (t),Ωmj (t)(dx, dΩ). (2.6)

1Note that in curvilinear coordinates, this is not the case. For instance, in Section 3.2 below, spherical coordinates are used,
hence the direction µi is a non-trivial function of t.
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Here again, this measure narrowly converges to u(t,x,Ω)dxdΩ, as n,N,M → +∞, (with n∆t → t) where u
solves (1.1), according to [9].

As we already pointed out, the time step ∆t may be non-uniform, and, moreover, the number M of particles
generated at each time step may depend on the time step m.

Finally, we point out that we did not take care about boundary conditions. The boundary conditions we
aim at imposing are either free boundary condition, or imposed incoming flux. In the first case, if a process hits
the boundary, it simply vanishes. In the second case, we write the boundary condition as a source consisting of
a Dirac mass supported by the boundary, therefore including it into the source Q.

2.2 Importance sampling

The method of importance sampling is widely used in many applications of Monte Carlo methods, and in
particular in the case of the simulation of transport equations (see for instance [1, 10, 14]). A nice account of
this method in the present context can also be found in [6].

The idea of importance sampling is to introduce an importance function, which we call I(t,x,Ω), and which
is assumed to be positive. Instead of applying a Monte Carlo method to compute u, we are going to apply it to
the function

ũ(t,x,Ω) = I(t,x,Ω)u(t,x,Ω).

A simple computation gives the equation satisfied by ũ:

∂tũ+ Ω · ∇ũ+ κ̃t(t,x,Ω)ũ =

∫
S2

κ̃s(t,x,Ω
′)ũ(t,x,Ω′)k̃(t,x,Ω′,Ω)dΩ′ + Q̃(t,x,Ω), (2.7)

with

κ̃t(t,x,Ω) = κt −
∂tI(t,x,Ω)

I(t,x,Ω)
− Ω · ∇I(t,x,Ω)

I(t,x,Ω)
, (2.8)

κ̃s(t,x,Ω) =
κs

I(t,x,Ω)

∫
S2

k(x,Ω,Ω′′)I(t,x,Ω′′)dΩ′′, (2.9)

k̃(t,x,Ω′,Ω) =

(∫
S2

k(x,Ω′,Ω′′)I(t,x,Ω′′)dΩ′′
)−1

k(x,Ω′,Ω)I(t,x,Ω), (2.10)

and
Q̃(t,x,Ω) = I(t,x,Ω)Q(x). (2.11)

Equation (2.7) has a similar structure as (1.1), and a Monte Carlo method can easily be designed to compute
an approximation of its solution. It should be noted that, although the coefficients κt and κs where assumed
to be constant in (1.1), the new coefficients defined by (2.8) and (2.9) do depend on t, x and Ω since I does.
Similarly, k̃ depends on t although k does not, and Q̃ is now a function of t,x,Ω. This is not a problem for
Monte Carlo simulations, the only point is that equation (2.4) should be modified as follows:

w̃i(t) = w̃i(t0) exp

(
−
∫ t

t0

(κ̃t(s,Xi(s),Ωi)− κ̃s(s,Xi(s),Ωi)) ds

)
. (2.12)

Note that the definition (2.8) of κ̃t does not imply that κ̃t ≥ 0. This may be a problem when dealing with
Monte Carlo simulations of (2.7). However, if I is solution to the adjoint equation (see (2.13) below), then
κ̃t = κ̃s ≥ 0. In the present work, I is not an exact solution of (2.13), but, as it is pointed out in Remark 3.1
below, we still have κ̃t ≥ 0 and κ̃s ≥ 0. The importance function I should be chosen in such a way that the
variance of the computed approximation of ũ has a smaller variance than the approximation of u computed
with the method described above.

2.3 Adjoint equation

It is known (see [10, 14]) that, in order to have zero variance, the importance function should be solution to the
adjoint equation:

−∂tI −Ω∇I + κtI = κs

∫
S2

I(t,x,Ω′)k(x,Ω,Ω′)dΩ′. (2.13)

A rigorous proof of the above fact may be found in [14], but let us give a simple argument which indicates that
this is indeed the case. We assume that the spatial domain D is a ring between R0 and R1 > 0:

D =
{
x ∈ R3, R0 < |x| < R1

}
.
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We consider equation (1.1) in this domain, with initial condition g = 0 and boundary conditions

u(t,x,Ω) =

{
1 if |x| = R1, Ω · n(x) < 0,

0 if |x| = R0, Ω · n(x) < 0.

Here, n(x) is the outer normal unit vector to the domain D at point x. Actually, for the domain we are studying,
n(x) = x

|x| if |x| = R1 and n(x) = − x
|x| if |x| = R0. We assume that we are interested in computing the flux on

the target |x| = R0, that is,

F (T ) =

∫ T

0

∫
|x|=R0

∫
Ω·n(x)>0

|Ω · n(x)|u(t,x,Ω)dΩdxdt. (2.14)

This can be done using the above Monte Carlo method. An estimator of the quantity F (T ) is then given by
the following:

F =
∑

j, |Xj |=R0, Ωj ·n(Xj)>0

wj , (2.15)

provided that, at each time step, particles are created with |Xj | = R1, and Ωj drawn according to Lambert
cosine law (see [9]), with initial weights equal to ∆t

M , where M is the number of particles created at each time
step.

Let us now make precise the equation which the importance function I solves: we assume that (2.13) is
satisfied, and that the following boundary conditions are imposed

I(t,x,Ω) =

{
0 if |x| = R1, Ω · n(x) > 0,

1 if |x| = R0, Ω · n(x) > 0.
(2.16)

Now, consider a Monte Carlo method applied to ũ, that is, to equation (2.7). Here, Q̃ = 0, but the boundary
condition on ũ is different:

ũ(t,x,Ω) =

{
I(t,x,Ω) if |x| = R1, Ω · n(x) < 0,

0 if |x| = R0, Ω · n(x) < 0.

Hence, the boundary data for ũ amounts to sampling the distribution I(t,x,Ω). In particular, a good choice
for the initial weights in such a case is the following:

w̃j(t) =
∆t

M

∫
|x|=R1

∫
Ω·n(x)<0

|Ω · n(x)|I(t,x,Ω)dΩdx,

with velocities drawn according to the law
|Ω · n(x)|I(t,x,Ω)1{Ω·n(x)<0}∫
Ω·n(x)<0

|Ω · n(x)|I(t,x,Ω)dΩ
.

First, we note that, since I solves (2.13), we have κ̃s = κ̃t. Hence, the weight of a particle does not change
between shocks. Second, we point out that all particles go to the target. In order to see this, we assume that it
is not the case. Then, there exists a particle which exits the computation domain through the outer boundary
|x| = R1. Denote by x its position and Ω its direction when it exits. Then, Ω · n(x) > 0, |x| = R1, and
u(t,x,Ω)I(t, x,Ω) 6= 0. But this is impossible since the boundary condition satisfied by I is I(t,x,Ω) = 0 for
such values or x and Ω.

Hence, the estimated flux F̃ is now deterministic:

F̃ =
∑

j, |Xj |=R0, Ωj ·n(Xj)<0

w̃j =

∫ T

0

∫
|x|=R1

∫
Ω·n(x)<0

|Ω · n(x)| I(t,x,Ω)dΩdxdt. (2.17)

Finally, multiplying (1.1) by I, integrating, and using (2.13), a simple integration by parts proves that∫ T

0

∫
|x|=R1

∫
Ω·n(x)<0

|Ω · n(x)|I(t,x,Ω)dΩdx =

∫ T

0

∫
|x|=R0

∫
Ω·n(x)>0

|Ω · n(x)|u(t,x,Ω)dΩdx = F (T ).

Hence, if one is able to compute I solution to (2.13) with boundary conditions (2.16), and to compute the
integral on the right-hand side of (2.17), then we have an exact evaluation of the quantity F (T ).
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3 Computation of the importance function

As it was stated in the previous section, computing the solution to the adjoint equation allows to have an
importance function such that the result of importance sampling computations has zero variance. However,
solving this equation is at least as difficult as solving (1.1). Therefore, a tractable approximation of the solution
to this equation should be sought in order to be used as an importance function. It is in general not possible to
compute it exactly, but we will see that in particular situations, simplified expressions may be derived which give
good approximation of the solution to the adjoint problem. First, in Section 3.1, we review the work of [6], in
which an analytic expression was derived for the importance function in dimension one. Then, in Section 3.2, we
extend this analysis to the spherically symmetric case. In such a case, an analytic expression is no longer valid,
but a numerical solution may be computed with the characteristics method, if κt, κs and k do not vary in space.
If they do vary in space, we do not know for now how to generalize the calculations of Section 3.2. As mentionned
in Section 5 below, a possible way to address this question is to compute numerically the solution. Doing so,
one should be careful to have a good balance between precision (which allows for a significant improvement of
the variance) and computational cost.

3.1 Analytic expression : one-dimensional planar case

In his Phd thesis [6], J.-M Depinay developed a method to compute an importance function in case of stationary
transport equation in slab geometry. This Section is not directly related to what we do in the spherically
symmetric case. It is only a simple example in which an explicit computation of the importance function I is
available. In Section 3.2, we generalize (to some extent) this approach. In the planar case, the unknown u of
(1.1) is assumed to depend only on one space variable x, where x = (x, y, z). Moreover, the structure of the
equation implies (see [5]) that u depends on Ω only through the scalar product µ = Ω · (1, 0, 0). Therefore,
using these notations, Equation (1.1) reads

∂tu+ µ∂xu+ κtu = κs

∫ 1

−1

k(x, µ′, µ)u(x, µ′)dµ′ +Q(x).

Looking for stationary solutions, and assuming that the source is zero (Q = 0), this reduces to

µ∂xu+ κtu = κs

∫ 1

−1

k(x, µ′, µ)u(x, µ′)dµ′. (3.1)

Hence, the corresponding adjoint problem reads

−µ∂xI + κtI = κs

∫ 1

−1

k(x, µ, µ′)I(x, µ′)dµ′. (3.2)

If one assumes that I is of the form
I(x, µ) = exp(Kx)ΦK(µ), (3.3)

then (3.2) implies that ΦK(µ) satisfies the equation

ΦK(µ) =
κs

κt −Kµ

∫ 1

−1

k(x, µ, µ′)φK(µ′)dµ′, (3.4)

where the parameter K is chosen such that ∫ 1

−1

ΦK(µ)dµ = 1. (3.5)

It can be proved that such (3.5) always has a unique solution K (see [6, Proposition 7]), if k ∈ L∞. Moreover,
assuming that k is constant (that is, k = 1

2 ), then (3.4) reduces to

ΦK(µ) =
1

2

κs
κt −Kµ

.

Hence, K is the unique solution of equation (3.5), which reads

1

2

∫ 1

−1

κs
κt −Kµ

dµ = 1.

Let us insert ũ(x, v) = u(x, v)I(x, v) into Equation (3.1). We have the following modified equation for ũ

µ∂xũ+ κ̃tũ =

∫ 1

−1

κ̃s(x, µ
′)k̃(x, µ′, µ)ũ(x, µ′)dµ′. (3.6)
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with the modified parameters
κ̃s = κt −Kµ,
κ̃t = κt −Kµ,

k̃(µ′, µ) =
1

2

ΦK(µ)

ΦK(µ′)

κs
κt −Kµ′

.

These expressions are (2.8), (2.9), (2.10), adapted to the particular case of 1D planar (slab) geometry.
Let us point out two important things here: first, the above importance function I(x, µ) is a solution to the

adjoint equation, but does not in general satisfy appropriate boundary conditions. Therefore, it might result in
poor variance reduction in some situation. However, the tests in [6] indicate very good efficiency of the method
for a case in which a detector is placed far away from an emitting source. Second, this kind of solution is related
to those exhibited in [3] (see also [18]). Such solutions are eigenvectors of the (adjoint) transport operator,
corresponding to the largest possible eigenvalues. This is why they play an important role here.

Finally, although the above derivation is done with a stationary transport equation, an implicit time scheme
leads, at each time step, to solving a stationary transport equation. Therefore, although we do not use an
implicit time scheme to solve our transport equation (this would imply additional difficulties that go beyond the
scope of the present work, see [8], the review paper [16] and the references therein) the use of the corresponding
adjoint solution in the time-dependent case may prove efficient. This is the strategy we are going to apply in
the spherically symmetric case.

3.2 The spherical case

Now, we want to compute an importance function in the case of spherical geometry. In such a case, the unknown
u is assumed to depend on x only through r = |x|, which in turn implies that it depends on Ω only through
µ = Ω · x

|x| . As a consequence, Equation (1.1) becomes [4, 5, 11, 12]:

∂tu+ µ∂ru+
1− µ2

r
∂µu+ κtu = κs

∫ 1

−1

k(r, µ′, µ)u(t, r, µ′)dµ′ +Q(r). (3.7)

Here, µ = cos θ, where θ is the angle formed by the radial direction x and the direction Ω.

0

x+

θ

Ω

As it has been done in the general case, we consider an importance sampling function I(t, r, µ) and define
ũ(t, r, µ) = u(t, r, µ)I(t, r, µ) in Equation (3.7). Thus, we have the following equation for ũ:

∂tũ+ µ∂rũ+
1− µ2

r
∂µũ+ κ̃tũ =

∫ 1

−1

κ̃s(x, µ
′)k̃(x, µ′, µ)ũ(x, µ′)dµ′ + Q̃, (3.8)

with
Q̃(t, r, µ) = Q(r)I(t, r, µ),

κ̃s(µ) = κs
1

I(t, r, µ)

∫ 1

−1

I(t, r, µ′′)k(r, µ, µ′′)dµ′′, (3.9)

κ̃t(µ) = κt −
(
∂tI + µ∂rI +

1− µ2

r
∂µI

)
1

I(t, r, µ)
, (3.10)

k̃(µ′, µ) =
I(t, r, µ)k(µ′, µ)∫ 1

−1

I(t, r, µ′′)k(r, µ′, µ′′)dµ′′
(3.11)

The setting we are going to use is the following: we want to reproduce the geometry of an ICF experiment,
with a good statistical convergence on the boundary of the target (or at the ablation front, which is even better).
In order to do so, we assume that the computation domain is

D = {r, R0 ≤ r ≤ R1} , (3.12)
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where R0 is the radius of the target (or of the ablation front), and R1 > R0 is the outer boundary of the domain.
In all the following, R1 is assumed to be fixed, whereas R0 = R0(t) may be a function of time, reflecting the
dynamics of the implosion. An incoming flux is imposed on the outer boundary, while the quantity we want to
compute is the outgoing flux at r = R0. Therefore, Equation (3.7) is set with the boundary conditions:

u(r, µ) =

{
1 if r = R1, µ < 0,

0 if r = R0, µ > 0.
(3.13)

Equivalently, equation (3.8) is set with the boundary conditions:

ũ(r, µ) =

{
I(r, µ) if r = R1, µ < 0,

0 if r = R0, µ > 0.
(3.14)

Finally, we assume that k is constant, although this is not a limitation in our strategy:

k(r, µ′, µ) =
1

2
.

3.2.1 Solution of the adjoint equation

To find I, we are going to solve the following adjoint equation

−µ∂rI −
1− µ2

r
∂µI + κtI = κs 〈I〉 , (3.15)

where

〈I〉 =
1

2

∫ 1

−1

I(r, µ)dµ. (3.16)

We use a stationary approximation for I, although equation (3.7) is not stationary. This proves sufficient in
the tests below, but this approximation will need to be assessed in the presence of material motion, as we point
out in the conclusion below. The reason for this is twofold: first, some of the numerical tests we are going to
use are in fact stationary, and second, even in the case of a non-stationary situation, the only dependence on
time in the model is that of R0, which is assumed in fact to be constant in each time step of the simulation.
Therefore, at each time step, the stationary importance function should give a good variance reduction.

In order to have a zero variance on the inner boundary R0, the boundary conditions for I should be the
following: {

I(R0, µ) = 1 if µ < 0

I(R1, µ) = 0 if µ > 0,
(3.17)

Considering S(r) = κs 〈I〉 as a source, Equation (3.15) reads :

−µ∂rI −
1− µ2

r
∂µI + κtI = S(r). (3.18)

with the same boundary conditions. We are going to use the method of characteristics to solve (3.17)-(3.18).

In order to do so, we change variables, setting x = rµ and y = r
√

1− µ2. The domain is thus (see Figure 3):{
(x, y) ∈ [−R1 ; R1]× [0 ; R1] | R0

2 ≤ x2 + y2 ≤ R1
2
}

=
{

(x, y) ∈ R× R+ | R0
2 ≤ x2 + y2 ≤ R1

2
}
. (3.19)

We denote by J the new unknown, that is, I as a function of the new variables:

I(r, µ) = J
(
rµ, r

√
1− µ2

)
, and J(x, y) = I

(√
x2 + y2,

x√
x2 + y2

)
.

Equation (3.18) becomes

−∂xJ + κtJ = S
(√

x2 + y2
)
. (3.20)

This is equivalent to

−∂x
(
J(x, y)e−κtx

)
= S

(√
x2 + y2

)
e−κtx (3.21)

with the boundary conditions {
J(x, y) = 1 if x < 0, x2 + y2 = R0

2,

J(x, y) = 0 if x > 0, x2 + y2 = R1
2.

(3.22)
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To solve (3.21)-(3.22), we split the domain into three different parts (see Figure 3):

D1 =
{

(x, y) | x < 0, y < R0, R0 <
√
x2 + y2 < R1

}
,

D2 =
{

(x, y) | x > 0, y < R0, R0 <
√
x2 + y2 < R1

}
,

D3 =
{

(x, y) | y > R0, R0 <
√
x2 + y2 < R1

}
.

(3.23)

In each domain, we integrate the equation along the characteristics and apply the boundary conditions. Thus,

× ×

R0−R0 R1−R1

D1 D2

D3

y

x

Figure 3: Splitting of the domain in three different zones when applying the method of characteristics.

we have, in domain D1,

J(x, y) = exp

(
κt

(
x+

√
R0

2 − y2

))
+

∫ −√R0
2−y2

x

S
(√

s2 + y2
)

exp(κt(x− s))ds

In domain D2,

J(x, y) =

∫ √R1
2−y2

x

S
(√

s2 + y2
)

exp(κt(x− s))ds,

and in domain D3,

J(x, y) =

∫ √R1
2−y2

x

S
(√

s2 + y2
)

exp(κt(x− s))ds.

Collecting all these results, the importance function I(r, µ) reads

I(r, µ) = 1{
µ<−

√
1−R0

2

r2

} exp

(
κt

(
rµ+

√
R0

2 − r2 + r2µ2

))

+

∫ R(r,µ)

rµ

S
(√

s2 + r2 − r2µ2
)

exp(κt(rµ− s))ds, (3.24)

where R(r, µ) = −
√
R0

2 − r2 + r2µ2 1{
µ<−

√
1−R0

2

r2

} +
√
R1

2 − r2 + r2µ2 1{
µ>−

√
1−R0

2

r2

}. In the above for-

mulae (and in the sequel), we use the notation 1 to indicate the step function: for any m ∈ R,

1{µ<m} =

{
1 if µ < m,

0 if µ ≥ m.

3.2.2 Integral equation on S

Recalling that S(r) = κs 〈I〉, and integrating (3.24) with respect to µ, one obtains an integral equation on φ
defined by

φ(r) = rS(r) = κsr〈I〉.
This equation reads

φ(r) =
κs
2

∫ −√1−R0
2

r2

−1

r exp

(
κt

(
rµ+

√
R0

2 − r2 + r2µ2

))
dµ

+
κs
2

∫ 1

−1

∫ R(r,µ)

rµ

r
φ
(√

s2 + r2 − r2µ2
)

√
s2 + r2 − r2µ2

exp(κt(rµ− s))dsdµ. (3.25)
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R(r, µ), µ > µd(r)
×

µd(r)R(r, µ),

µ < µd(r)
×

×
R0

×
r

×
R1

Figure 4: Representation of R(r, µ) and µd(r) = −
√

1− R0
2

r2 , used in the explicit formula for I(r, µ) (3.24).

It is possible to compute exactly the integrals with respect to µ, using the exponential integral function (see
[13, 7], and Appendix A below). This gives

φ (r) =
κs
4

 1

κt

[
exp (κtθ)

]−√r2−R0
2

−r+R0

+
(
R0

2 − r2
) [
κt Ei (κtθ)−

exp (κtθ)

θ

]−√r2−R0
2

−r+R0


+
κs
2

∫ R1

R0

φ(r′)

[
Ei

(
κt

(
−
√
r2 −R0

2 −
√
r′2 −R0

2

))
− Ei

(
κt (−|r − r′|)

)]
dr′.

(3.26)

Here, Ei(x) is the exponential integral defined by

Ei (x) =

∫ ∞
−x

exp (−t)
t

dt. (3.27)

3.2.3 Numerical computation of I

A priori, it is not possible to solve this integral equation exactly. However, it is possible to solve it numerically.
For this purpose, we introduce a mesh to discretize the space variable r. In all the numerical examples we are
going to give, we use a uniform mesh, although this is not essential. Thus, we use the following notations: let
Nr be a positive integer, and define ∆r = R1−R0

Nr
. Note however that in some of the cases treated below, R0

depends on t. In such cases, we use a mesh independent of t, with ∆r = R1

Nr
.

∀ 0 ≤ j ≤ Nr − 1, Mj =
[
rj−1/2, rj+1/2

]
, rj−1/2 = R0 + j∆r, rj+1/2 = R0 + (j + 1)∆r,

rj = R0 +

(
j +

1

2

)
∆r. (3.28)

We then use a piecewise constant approximation of φ, defining

φ(r) =

Nr−1∑
j=0

φj1Mj
(r), hence

∫
Mj

φ = |Mj |φj = ∆rφj .

Inserting this into (3.26), and using a piecewise constant approximation for all the functions appearing in the
integrals, we infer

φj = bj +
κs
2

Nr−1∑
i=0

φi∆r

[
Ei

(
−κt

√
r2
j −R2

0 − κt
√
r2
i −R2

0

)
− Ei (−κt |rj − ri|)

]
,

where

bj =
κs
4

(
1

κt

[
exp (κtθ)

]−√r2j−R0
2

−rj+R0

+
(
R0

2 − r2
j

) [
κt Ei (κtθ)−

exp (κtθ)

θ

]−√r2j−R0
2

−rj+R0

)
(3.29)

Hence, we are lead to the following linear system satisfied by φ:

(Id −A)φ = b, (3.30)
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where Id is the identity matrix and A is defined by:

Aij =
κs
2

∆r

[
Ei

(
κt

(
−
√
ri2 −R0

2 −
√
rj2 −R0

2

))
− Ei

(
κt (−|ri − rj |)

)]
, (3.31)

and the right-hand side b is defined by (3.29). This formula is valid only in the case i 6= j. If i = j, the
singularity of Ei at the origin does not allow for the use of (3.31). In order to compute them, we note that
H = 1 is the unique solution of the system

− µ∂rH −
1− µ2

r
∂µH + κtH = κs 〈H〉+ κt − κs

H (R0, µ) = 1 , µ < 0

H (R1, µ) = 1 , µ > 0

Now, applying the method of characteristics as above to this system, we have an equation for H similar to
(3.24), with an additional term due to the boundary condition at r = R0:

H (r, µ) = exp

(
κt

(
rµ+

√
r2µ2 − r2 +R0

2

))
1{

µ<−
√

1−R0
2

r2

}

+ exp

(
κt

(
rµ+

√
r2µ2 − r2 +R1

2

))
1{

µ>−
√

1−R0
2

r2

}

+

∫ R(r,µ)

rµ

Ψ
(√

s2 + r2 − r2µ2
)

√
s2 + r2 − r2µ2

+ κt − κs

 exp (κt (rµ− s)) ds. (3.32)

Moreover, integrating with respect to µ, we also have a relation similar to (3.26):

Θ (r) := κsr〈H〉 =
κs
4

 1

κt

[
exp (κtθ)

]−√r2−R0
2

−r+R0

+
(
R0

2 − r2
) [
κt Ei (κtθ)−

exp (κtθ)

θ

]−√r2−R0
2

−r+R0


+
κs
4

(
1

κt

[
exp (κtθ)

]r+R1

−
√
r2−R0

2+
√
R1

2−R0
2

+
(
R1

2 − r2
) [
κt Ei (κtθ)−

exp (κtθ)

θ

]r+R1

−
√
r2−R0

2+
√
R1

2−R0
2

)

+
κs
2

∫ R1

R0

(
Ψ(r′) + (κt − κs) r′

)[
Ei

(
κt

(
−
√
r2 −R0

2 −
√
r′2 −R0

2

))
− Ei

(
κt (−|r − r′|)

)]
dr′ (3.33)

Using the fact that H = 1, and assuming a piecewise constant approximation of Θ, we may assume

Θj = κsrj . (3.34)

Inserting this into (3.33), we find

κs

(
rj −

Nr−1∑
i=0

Ajiri

)
= bj + cj +

Nr−1∑
i=0

Ajidi ,

where the coefficients Aij and bj are defined as above by (3.29) and (3.31). Here, the coefficients cj are given
by

cj =
κs
4

(
1

κt

[
exp (κtθ)

]rj+R1

−
√
r2j−R0

2+
√
R1

2−R0
2

+
(
R1

2 − r2
j

) [
κt Ei (κtθ)−

exp (κtθ)

θ

]rj+R1

−
√
r2j−R0

2+
√
R1

2−R0
2

)
,

and
dj = (κt − κs) rj .

Hence, the vector (Θj) satisfies the equation

(Id −A) Θ = b+ c+Ad,

Hence, using (3.34),

rjκs = bj + cj + κt

Nr−1∑
i=0

Ajiri.
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Finally,

Ajj =
rjκs − bj − cj

κtrj
−
∑
i 6=j

Aji
ri
rj
. (3.35)

We have an expression of the diagonal coefficients Ajj in terms of the off-diagonal ones.

After solving (3.30), we use φ to define an approximation of the importance function I(r, µ):

I (r, µ) = 1{
µ<−

√
1−R0

2

r2

} exp

(
κt

(
rµ+

√
r2µ2 − r2 +R0

2

))

+

Nr−1∑
i=0

φi

∫ R(r,µ)

rµ

1Mi

(√
s2 + r2 − r2µ2

) exp (κt (rµ− s))√
s2 + r2 − r2µ2

ds. (3.36)

Since κ̃s depends on µ, we need a mesh in propagation direction µ. We use a piecewise constant approxima-
tion of I on each cell (both in space and direction). This implies discontinuities at the boundaries of the cells,
so we have to change the value of ũ when going from a cell to its neighbour. Indeed, between a cell M1 and a
cell M2, the continuity of u implies that

ũM1(r, µ)

IM1
(r, µ)

=
ũM2

(r, µ)

IM2
(r, µ)

.

In order to take this into account, we multiply the weight of a particle going from M1 to M2 by
IM2

(r,µ)

IM1
(r,µ) .

Remark 3.1 A simple computation proves that, if I is an exact solution of (3.15), then κ̃t = κ̃s ≥ 0. Here,
we do not have an exact solution, but one can still prove, with the same computation, that κ̃s ≥ 0 and κ̃t ≥ 0.

Proof: If I is solution to (3.15), then I ≥ 0. Hence, by definition, we have κ̃s ≥ 0, according to (3.9). Now,
considering κ̃t, we have, using (3.10) and (3.15),

κ̃t = κt −
1

I

(
µ∂rI +

1− µ2

r
∂µI

)
= κt −

1

I
(κtI − κs〈I〉) = κs

〈I〉
I
≥ 0.

Next, we consider the case in which (3.15) is replaced by (3.18), where S is no more equal to κs〈I〉. However,
S(r) = φ(r)/r, where φ is numerically computed by solving (3.30), where A is defined by (3.31) and (3.35), and
b by (3.29). With these definitions and the fact that the function Ei is negative and decreasing on R−, we infer
that Id − A is an M-matrix, and that bj ≥ 0, for all j. Hence, S ≥ 0, from which we deduce again that I ≥ 0.
The proof of κ̃s ≥ 0 is exactly the same as above. Turning to κ̃s ≥ 0, we point out that S ≥ 0, hence the same
computation as above gives

κ̃t = κt −
1

I

(
µ∂rI +

1− µ2

r
∂µI

)
= κt −

1

I
(κtI − S) =

S

I
≥ 0.

�

4 Numerical results

The law of large numbers states that for independent and identically distributed random variables, the sample
average converges to the expected value when the number of random variables increases. (In the present context,
a random variable is synonymous to a Monte Carlo particle.) In addition, the central limit theorem implies

that the rate of convergence is
1√
N

, where N is the number of random variables. In our case, N is equal to the

number of particles used in the simulation. For Monte Carlo methods, the computational cost is proportional
to the number N of random variables. So, to compare the performance of different methods, we have to take
the calculation time T into account. Knowing that T ≈ Nt, where t is the time to generate one realization of a
random variable, we define the figure of merit (F.O.M) of a method by

F.O.M =
1

σ2t
=

1

Σ2
NT

, (4.1)

with σ2 is the variance of Xi, where (Xi)i∈N is used in the simulation sequence of independent random variables.
An unbiased estimator for σ2 is

σ2
N =

1

N − 1

N∑
i=1

(
Xi − X̄N

)2
with X̄N =

1

N

N∑
i=1

Xi.
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Moreover Σ2
N is the variance of X̄N . An unbiased estimator for Σ2

N is
σ2
N

N
. In steady cases below, we apply the

above formulas. In unsteady cases, we apply them to time-integrated values.

We are now going to give some numerical results obtained with the method developed so far. First, we
provide two verification cases, which indicate that our implementation of the Monte Carlo method is correct. In
these cases, we have analytical solutions, allowing to assess the statistical convergence of the method. Second,
we provide variance reduction tests, in which we do not have any analytical solution, so we only study variance
reduction when importance sampling is applied. The first case is stationary, and the second one is unsteady,
with data in agreement with FCI simulations.

4.1 A stationary verification test case

This test is borrowed from [13] and [7], and is used as a verification procedure for our Monte Carlo code (without
using the importance sampling method). We solve Equation (3.7) with a point source located at r = Rsource

(actually, this is a point source only if R0 = 0, but we nevertheless use this denomination even if R0 > 0.):

Q(r) =
1

4πr2
δ (r −Rsource) ,

The domain is (0, 1), that is, (3.12) with R0 = 0 and R1 = 1. The cross sections are such that κt = 1. We test
κs = 0.3 and κs = 0.9. The boundary conditions correspond to zero incoming flux:

u(R1, µ) = 0, ∀µ < 0.

We use 105 particles, and compute the zero-moment of the intensity ψ as a function of r, on a mesh with 1000
identical cells, that is, ∆r = 10−3. Recall that

ψ(r) = 2π

∫ 1

−1

u(r, µ)dµ, (4.2)

so that an unbiased estimator of the average value of ψ on the cell M is given by

ψj =
∑
Xj∈M

wj −→
N→+∞

∫
M

ψ,

where j is the index of a particle, Xj its position and wj its weight.
A semi-analytical solution is derived in [7]. This solution involves an integral which is computed numerically.

In Figure 5 and Figure 6, we compare the result of our Monte-Carlo code (without importance sampling) with
this analytical solution.

(a) Rsource = 0.05 (b) Rsource = 0.45 (c) Rsource = 0.95

Figure 5: The flux ψ defined by (4.2): comparison between the analytical solution of Siewert and Thomas [13],
and the result of our Monte Carlo code without importance sampling. Here, κs = 0.3 and R1 = 1.

This test shows a good agreement between the result of our code and the analytical solution. The statistical
noise is more important in the cells near the origin. This can be explained by the fact that these cells are small,
so very few particles are present in them. The singularity at r = Rsource is well reproduced.

4.2 An unsteady verification test case

In this test, we assume that R1 = 1, and that the target is locate at r = R0(t), where we have set

R0(t) = α+ βt, α = 0.37625, β = −0.027625 (4.3)
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(a) Rsource = 0.05 (b) Rsource = 0.45 (c) Rsource = 0.95

Figure 6: The flux ψ defined by (4.2): comparison between the analytical solution of Siewert and Thomas [13],
and the result of our Monte Carlo code without importance sampling. Here, κs = 0.9 and R1 = 1.

These data are borrowed from physically relevant cases of inertial confinement fusion (after adimensionalization).
The incoming flux imposed at r = R1 is equal to 1 (with Lambert cosine law) between times 0 and Tmax, and
0 between Tmax and T = 10. We tune Tmax so as to have an exact value for the flux on the target integrated
between 0 and T , as is explained below.

In the case κs = 0 and κt = 0, we have an analytic expression for the solution, and the flux at the boundary
of the target, integrated in time from 0 to Tmax, is equal to

F =

∫ Tmax

0

∫ µ(t)

−1

|µ|dµdt, (4.4)

where the time Tmax is made precise below. The direction µ(t) is, for a particle generated at time t and reaching

η
ζ

×

× T − Tmax

×
R0(T )

×
R1

Figure 7: Tmax is the time such that particles generated at t < Tmax with initial direction µ ∈ [−1, µ(t)] reach
the target. Here, cos ζ = β, where β is defined by (4.3), and cos η = −µ(t).

the target, the largest possible propagation direction. In order to compute it, we compute the trajectory of the

corresponding particle, defined by ṙ = µ and µ̇ = 1−µ2

r , hence

r(t+ t′)2 = R2
1 + 2t′R1µ(t) + t′2, µ(t+ t′) =

R1µ(t) + t′√
R2

1 + 2t′R1µ(t) + t′2
.

This trajectory crosses the inner boundary if and only if the equation r(t + t′) = R0(t + t′) has a solution.
This equation reads R0(t+ t′)2 = R2

1 + 2t′R1µ(t) + t′2, which is a second-degree equation in t′. The maximum
direction µ(t) corresponds to the case when the discriminant is 0. Computing it, we find

µ(t) =
1

R1

[
βR0(t)−

√
(1− β2) (R2

1 −R0(t)2)

]
. (4.5)

Hence, (4.4) also reads

F =
1

2

∫ Tmax

0

(
1− µ(t)2

)
dt =

1

2

∫ Tmax

0

(
2− β2 − R0(t)2

R2
1

− 2β
R0(t)

R1

√
(1− β2)

(
1− R0(t)2

R2
1

))
dt (4.6)

In (4.6), the time Tmax is such that a particle generated at t < Tmax reaches the target with initial direction
µ ∈ [−1, µ(t)], where µ(t) is given by (4.5). Indeed, for such value of Tmax < T , formula (4.4) is valid, whereas
if Tmax is chosen to be larger, some particles, generated between Tmax and T , never reach the target. Therefore
the value of µ(t) is no more given by (4.5), and formula (4.4) should be modified. In order to avoid technical
difficulties associated to this new value of µ(t), we restrict the time integral to [0, Tmax]. A simple computation
shows that

Tmax = T −R0(T )β −
√
R0(T )2β2 −R0(T )2 +R2

1.
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Using the above values of α and β, we find Tmax = 9.00777122797, for which we find

F = 0.25172763696.

This computation is carried out in the following conditions: ∆r = 10−2, ∆t = 10−3. The results are displayed
in Figure 8, showing statistical convergence to the exact value as the number of particles grows. Note that the
abscissa in Figure 8 is the number of particles generated at each time step. Therefore, the total number of
particles in the simulation is equal to N × T/∆t = N × 104.

Figure 8: Verification test case for the Monte Carlo code (without importance sampling) with κs = 0 and κt = 0

In the case κs = 0 and κt = 1, we still have an exact expression of the flux on the inner ball R0(t):

F =

∫ Tmax

0

∫ µ(t)

−1

|µ| exp [− (κt − κs) (τ(t, µ)− t)] dµdt

with

τ(t, µ) =
1

1− β2

(
t+ αβ −R1µ−

√
(R1µ− t− αβ)

2 − (1− β2) (t2 +R2
1 − α2 − 2R1µt)

)
.

This integral is not explicit, so we applied a numerical integration method to compute it. The result is

F = 0.11385526445,

up to an estimated error of 10−6. The parameters for this test are as follows: 100 cells in ∆r = 10−2, ∆t = 10−3.
Figure 9 gives the results of this test, showing statistical convergence as the number of particles grows.

4.3 Stationary test case: variance reduction

We now consider a stationary test case again. Here, we solve the transport equation in the domain (R0, R1),
with R0 = 0.1 fixed, and R1 = 1. An incoming flux is imposed on the outer boundary r = R1, of value 1. The
discretization corresponds to ∆r = 10−2 and ∆µ = 2 × 10−3. Note that the discretization in µ is only used
when the importance sampling method is applied.

4.3.1 Case κs = 0.9, κt = 1

Table 1 and table 2 show the results for this test. The last column gives the proportion of particles reaching the
inner sphere r = R0. We note that very few of them reach the inner sphere without the importance sampling
method. On the contrary, an important proportion (almost 90%) reach it when the importance sampling is
applied. The figure of merit (F.O.M) is computed according to formula (4.1). When applying the importance
sampling method, we provide two execution times, and therefore two values for the F.O.M. The first one includes
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Figure 9: Verification test for Monte Carlo code (without importance sampling) with κs = 0 and κt = 1

N Flux Variance Standard deviation Time F.O.M P(N)
100 0.038368316 1.772142E-03 0.04209682 0.1731 3.26E+04 0.87%
500 0.038080894 2.832987E-04 0.01683148 0.8360 4.22E+04 0.72%
1000 0.036268938 1.554811E-04 0.012469206 1.3283 4.84e+04 0.95%
1500 0.036145858 6.882991E-05 0.00829638 1.5196 9.56E+04 0.82%
10000 0.040297305 1.147480E-05 0.00338745 13.571 6.42E+04 0.91%
100000 0.03764841 1.6171619E-06 0.00127168 90.81 6.81E+04 0.85%

Table 1: The case κs = 0.9, κt = 1 without importance sampling.

N Flux Variance Standard deviation Time1 Time2 F.O.M1 F.O.M2 P(N)
100 0.0386001164 1.064560E-05 3.2627599E-03 4.4519 0.7602 2.11E+05 2.07E+06 87.7%
500 0.0376133306 8.991524E-07 9.4823647E-04 7.7332 4.0286 1.44E+06 2.76E+06 87.6%
1000 0.0384584712 7.596407E-07 8.7157369E-04 11.679 8.0108 1.13E+06 1.64E+06 83.3%
1500 0.0381648481 9.266951E-07 9.6265025E-04 15.490 11.79 6.97E+05 9.15E+05 87.7%
10000 0.0379344494 7.686582E-08 2.7724685E-04 83.403 79.67 1.56E+06 1.63E+06 87.5%
100000 0.0381125559 7.0258327E-09 8.3820240E-05 824.3 820.34 1.73E+06 1.74E+06 87.6%

Table 2: The case κs = 0.9, κt = 1, with importance sampling

the computation of the importance function, which is not meaningful from a statistical viewpoint, although it is
from a computational cost viewpoint. On the contrary, the second value (Time2, and F.O.M2), do not include
it, and therefore give a clear meaning to the statistical efficiency of the method. As expected, when the number
of particles grows, these two F.O.M are very close to each other. In the case of a small number of particles, the
importance sampling method is less efficient (the F.O.M is increased only by a factor 20) because the calculation
of the importance function is too expensive compared to the Monte Carlo method. When a large number of
particles is used, however, the method is much more efficient, and we see that the F.O.M is more than 100 times
better than without importance sampling. Figure 10 shows an important variance reduction, for any number
of particles.

4.3.2 Case κs = 0.1, κt = 1

Table 3 and table 4 show the results for this test. Here again, the last column gives the proportion of particles
reaching the inner sphere r = R0. We note that very few of them reach the inner sphere without the importance
sampling method. On the contrary, an important proportion (about 90%) reach it when the importance sampling
is applied. The figure of merit (F.O.M) is computed according to formula (4.1). Here again, we provide two
execution times and two F.O.M, the first one including the computation of the importance function, the second
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Figure 10: Plot of the results shown in Table 1 and Table 2, that is, κs = 0.9 and κt = 1.

N Flux Variance Standard deviation Time F.O.M P(N)
100 0.0153756 4.3191E-04 0.0207825 0.0867 267018 0.7%
500 0.0248605 6.2130E-05 0.00788227 0.436224 368968 1.2%
1000 0.0220205 2.4551E-05 0.00495486 0.847814 480437 1.04%
1500 0.0217672 1.0032E-05 0.00316728 1.32612 751702 1.02%
10000 0.0181373 4.0237E-06 0.00200593 8.01809 309955 0.85%
100000 0.0189385 1.4290E-07 3.78026E-04 85.582 817663 0.89%

Table 3: The case κs = 0.1, κt = 1, without importance sampling.

N Flux Variance Standard deviation Time1 Time2 F.O.M1 F.O.M2 P(N)
100 0.01924 1.0554E-06 0.001027 12.2705 0.58713 772150 1.6137E+07 88.9%
500 0.01930 3.0405E-07 5.5140E-04 14.6477 3.01585 2.2454E+06 1.0906E+07 89.9%
1000 0.01906 1.2213E-07 3.4947E-04 17.5125 5.9825 4.6757E+06 1.3687E+07 89.7%
1500 0.01900 4.9947E-08 2.2349E-04 20.2342 8.79997 9.8948E+06 2.2751E+07 90%
10000 0.01906 1.4452E-08 1.2022E-04 71.0115 59.3438 9.7439E+06 1.1659E+07 89.8%
100000 0.01910 3.3606E-09 5.7970E-05 596.423 584.656 4.9892E+06 5.0896E+06 90%

Table 4: The case κs = 0.1, κt = 1, with importance sampling

one excluding it. In the case of a small number of particles, the importance sampling method is less efficient
(the F.O.M is increased by a factor 50) because the calculation of the importance function is too expensive
compared to the Monte Carlo method. When a large number of particles is used, however, the method is much
more efficient, and we see that the F.O.M is more than 150 times better than without importance sampling.
Figure 10 shows an important variance reduction, for any number of particles.

4.4 Unsteady test case

We use now a test case in which the inner sphere has a radius which depends on time, according to the same
law as in Subsection 4.2, that is,

R0(t) = 0.37625− 0.027625t.

As mentioned above, this value of R0(t) has been derived from three-dimensional simulations of ICF. The
incoming flux imposed on the outer sphere R1 = 1 is constant in time, so we impose a number of particles
generated at each time step. We fix the values of κs = 0.9 and κt = 1, although other values give the same kind
of results. Here again, we use a uniform mesh in r with ∆r = 10−2, a time step ∆t = 10−3 and a direction
discretization ∆µ = 2×10−3. The output value of the code is the flux at the moving boundary R0(t), integrated
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Figure 11: Plot of the results shown in Table 3 and Table 4, that is, κs = 0.1 and κt = 1.

from time t = 0 to time t = 10, which is the final time of the simulation.
The results are presented in Table 5 et Table 6, in which the first column N is the number of particles

generated at each time step. Therefore, the total number of particles generated in the simulation is N×T/∆t =
N × 104. As above, the computation time Time1 includes the computation of the importance function, which is
done at each time step, whereas the computation time Time2 does not. The last column in each table represents
the proportion of particles reaching the target.

N 1 Flux Variance Standard deviation Time F.O.M P(N)
20 0.200042 8.31746E-06 0.002884 292 412 4.44%
100 0.200359 6.7959E-07 8.2437E-04 1437 1024 4.43%
500 0.200569 1.9346E-07 4.398E-04 7722 669 4.44%
1000 0.2006273 1.1675E-07 3.417E-04 15441 554 4.44%

Table 5: The case κs = 0.9, κt = 1 without importance sampling.

N Flux Variance Standard deviation Time1 Time2 F.O.M1 F.O.M2 P(N)
20 0.200611 4.07725E-08 2.019E-04 4947 639 4957 38362 86%
100 0.200660 1.2872E-08 1.1346E-04 7418 3092 10472 25125 86%
500 0.2006824 2.3614E-09 4.869E-05 20823 15923 20251 26481 86%
1000 0.2006723 1.1357E-09 3.37E-05 37153 31388 23699 28052 86%

Table 6: The case κs = 0.9, κt = 1 with importance sampling.

5 Conclusion

We have presented in this paper a new method of variance reduction based on importance sampling for the
transport equation in spherical geometry. The importance function is computed as the solution of the adjoint
equation, which is solved numerically. In order to do so, we use an integral equation derived by Siewert and
Thomas [13], and solve this equation numerically in order to find the first moment (with respect to the direction
µ of the importance function). Once this is computed, we apply the method of characteristics to compute the
importance function. Contrary to what has been done in [6] in a similar context, we do not have an analytical
expression for the importance function. However, it should be noted that the importance function used in [6]
does not satisfy the correct boundary conditions. Therefore, it is adapted only if boundary conditions are not

1N is the number of particles generated at each time step.
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Figure 12: Plot of the results shown in Table 5 and Table 6, that is, κs = 0.9 et κt = 1

of too much importance in the computation at hand. We expect that this is case in ICF experiments, in which
photons can move a long distance before absorption or scattering. In our method, we are not limited by such
considerations.

Numerical tests indicate that the method is efficient, including situations close to the case of inertial con-
finement fusion.

In future works, we plan to test this method in situations closer to experiments. In this respect, several
issues need to be considered:

1. the absorption and scattering coefficients are not constant, contrary to the assumptions we have made
here. These heterogeneities make the calculation of I (Section 3.2) much more difficult. For instance, the
generalization of (3.36) might lead to complicated expressions, thereby impeding the numerical efficiency
of the method. One way (among others) to circumvent this difficulty would then be to use a numerical
approximation for the computation of I itself.

2. The problem is by nature frequency dependent. Although using a grey importance function in such
a simulation is possible, one should bear in mind that it might prove insufficient. Hence, including a
dependence of I upon the frequency will probably be an important question to be dealt with.

3. The problem we studied here does not take into account interaction with matter. Although we have
used transient simulations in which this effect is partly represented by the movement of the detector, the
hydrodynamics of the plasma imply a much richer interaction. This will imply new issues to be considered.

4. In relation with the preceding point, a mesh used for an ICF simulation is in general highly heterogeneous.
This is an additional problem to be considered.
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A Integral equation on φ

We give in this Appendix the details of the derivation of the integral equation satisfied by φ. We define

µd(r) = −

√
1− R0

2

r2
,

and
φ(r) = rS(r) = κsr〈I〉.

Equation (3.24) is equivalent to

I (r, µ) = exp

(
κt

(
rµ+

√
r2µ2 − r2 +R0

2

))
1{µ<µd(r)} +

∫ R(r,µ)

rµ

S
(√

s2 + r2 − r2µ2
)

exp (κt (rµ− s)) ds

= exp

(
κt

(
rµ+

√
r2µ2 − r2 +R0

2

))
1{µ<µd(r)}

+ 1{µ<µd(r)}

∫ −√r2µ2−r2+R0
2

rµ

S
(√

s2 + r2 − r2µ2
)

exp (κt (rµ− s)) ds

+ 1{µd(r)<µ<0}

∫ √r2µ2−r2+R1
2

rµ

S
(√

s2 + r2 − r2µ2
)

exp (κt (rµ− s)) ds

+ 1{µ>0}

∫ √r2µ2−r2+R1
2

rµ

S
(√

s2 + r2 − r2µ2
)

exp (κt (rµ− s)) ds,

That is,

I (r, µ) = exp

(
κt

(
rµ+

√
r2µ2 − r2 +R0

2

))
1{µ<µd(r)}

+ 1{µ<µd(r)}

∫ −√r2µ2−r2+R0
2

rµ

S
(√

s2 + r2 − r2µ2
)

exp (κt (rµ− s)) ds

+ 1{µd(r)<µ<0}

(∫ 0

rµ

S
(√

s2 + r2 − r2µ2
)

exp (κt (rµ− s)) ds

+

∫ √r2µ2−r2+R1
2

0

S
(√

s2 + r2 − r2µ2
)

exp (κt (rµ− s)) ds

)

+ 1{µ>0}

∫ √r2µ2−r2+R1
2

rµ

S
(√

s2 + r2 − r2µ2
)

exp (κt (rµ− s)) ds.

Hence, changing variables r′ =
√
s2 + r2 − r2µ2, we find

I (r, µ) = exp

(
κt

(
rµ+

√
r2µ2 − r2 +R0

2

))
1{µ<µd(r)}

+ 1{µ<µd(r)}

∫ r

R0

r′S (r′) exp
(
κt

(
rµ+

√
r2µ2 − r2 + r′2

)) dr′√
r2µ2 − r2 + r′2

+ 1{µd(r)<µ<0}

(∫ r

r
√
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r′S (r′) exp
(
κt

(
rµ+

√
r2µ2 − r2 + r′2

)) dr′√
r2µ2 − r2 + r′2

+
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r
√
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r′S (r′) exp
(
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(
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√
r2µ2 − r2 + r′2

)) dr′√
r2µ2 − r2 + r′2
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r′S (r′) exp
(
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)) dr′√
r2µ2 − r2 + r′2

.
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Next, we integrate with respect to µ:∫ 1

−1

I (r, µ) dµ =

∫ 1

−1

exp

(
κt

(
rµ+

√
r2µ2 − r2 +R0

2
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1{µ<µd(r)}dµ

+

∫ 1

−1

1{µ<µd(r)}

∫ r

R0

r′S (r′) exp
(
κt

(
rµ+

√
r2µ2 − r2 + r′2

)) dr′√
r2µ2 − r2 + r′2

dµ

+

∫ 1

−1

1{µd(r)<µ<0}

(∫ r

r
√

1−µ2

r′S (r′) exp
(
κt

(
rµ+

√
r2µ2 − r2 + r′2

)) dr′√
r2µ2 − r2 + r′2

+

∫ R1

r
√

1−µ2

r′S (r′) exp
(
κt

(
rµ−

√
r2µ2 − r2 + r′2

)) dr′√
r2µ2 − r2 + r′2

)
dµ

+

∫ 1

−1

1{µ>0}

∫ R1

r

r′S (r′) exp
(
κt

(
rµ−

√
r2µ2 − r2 + r′2

)) dr′√
r2µ2 − r2 + r′2

dµ.

We deal with each term seperately.

- Let

I0(r) =
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2
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ν = rµ+

√
r2µ2 − r2 + r′2,
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Changing variables according to

ν = rµ+

√
r2µ2 − r2 + r′2,

we find
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Changing variables by setting
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Collecting all the above results, we have∫ 1
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Recalling the definition of φ, we get
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