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Haematophagy is costly: respiratory patterns and metabolism
during feeding in Rhodnius prolixus
Miguel Leis1, Marcos H. Pereira2, Jérôme Casas1, Fédéric Menu3 and Claudio R. Lazzari1,*

ABSTRACT
Feeding on the blood of vertebrates is a risky task for
haematophagous insects and it can be reasonably assumed that it
should also be costly in terms of energetic expenditure. Blood
circulates inside vessels and it must be pumped through narrow
tubular stylets to be ingested.We analysed the respiratory pattern and
the energetic cost of taking a blood meal in Rhodnius prolixus using
flow-through and stop-flow respirometry to measure carbon dioxide
emission, oxygen consumption and water loss before and during
feeding. We observed an increase of up to 17-fold in the metabolic
rate during feeding and a change in the respiratory pattern, which
switched from a discontinuous cyclic pattern during resting to a
continuous pattern when the insects started to feed, remaining in this
condition unchanged for several hours. The energetic cost of taking a
meal was significantly higher when bugs fed on a living host,
compared with feeding on an artificial feeder. No differences were
observed between feeding on blood or on saline solution in vitro,
revealing that the substrate for feeding (vessels versus membrane)
and not the nature of the fluid was responsible for such a difference in
the energetic cost. Water loss significantly increased during feeding,
but did not vary with feeding method or type of food. The mean
respiratory quotient in resting bugs was 0.83, decreasing during
feeding to 0.52. These data constitute the first metabolic measures of
an insect during blood feeding and provide the first insights into the
energetic expenditure associated with haematophagy.

KEY WORDS: Respiration, Blood-feeding, Metabolic rate,
Disease vectors, Chagas

INTRODUCTION
Vertebrate blood is the main or even the sole food for many
arthropod species. Blood is rich in nutrients (proteins, lipids,
carbohydrates, water, etc.) and, except for the potential presence of
parasites, it is otherwise sterile.
Feeding on blood is, however, not an easy task, nor is it obtained

without risk. This food is not freely available in nature; instead, it
circulates inside vessels hidden below the skin surface of active
animals, usually larger than the insect, that are able to defend
themselves from bites.
Haematophagy has appeared independently several times in the

evolutionary history of arthropods (Lehane, 2005), at least 20 times

according to some authors (Mans et al., 2008). Under the influence
of strong selective pressures, specific morphological, physiological
and behavioural adaptations arose, which allowed these animals to
successfully adopt this particular way of life.

Among haematophagous insects, two different feeding methods
can be observed: telmophagy and solenophagy (Lavoipierre, 1965;
Lehane, 2005). Telmophagous insects produce a wound with their
cutting mouthpieces and quickly lick the blood flowing from the
surface of the injury. In contrast, solenophagous insects possess tiny
mouthparts that pierce the skin and enter the lumen of large
capillaries, venules and arterioles. The latter method causes less
damage and no pain in the host, allowing the insect to remain
undetected. However, solenophagy requires sucking blood through
a very narrow conduct (∼10 µm diameter), increasing the time
needed to obtain a full meal, particularly in relatively large insects,
such as triatomine bugs. To solve the trade-off between injuring the
host skin as little as possible and feeding as quickly as possible,
solenophagous insects have developed powerful ingestion pumps
derived from the cibarial and/or the pharyngeal pumps (Lehane,
2005). Thanks to these pumps, which are able to generate high
differences in hydrostatic pressure (negative to suck blood and
positive to push it into the digestive tract), feeding times remain on
the order of a few minutes for most solenophagous insects.

The contraction activity of feeding pumps, as any other muscular
activity, requires energy and can be assumed to be energetically
costly (Guarneri et al., 2000). At present, however, no data are
available concerning the energetic cost associated with obtaining a
blood meal in any haematophagous insect.

One way of analysing the energetic cost of feeding is to compare
the metabolism at resting with that during feeding activity. Different
blood-sucking arthropod species have been analysed in terms of
metabolic activity, such as fleas, bedbugs, ticks and mosquitoes
(Lighton et al., 1993; Gray and Bradley, 2003, 2006; DeVries et al.,
2013). However, the species that has been best characterized in
terms of respiration dynamics and metabolism is the triatomine
Rhodnius prolixus (Bradley et al., 2003; Contreras and Bradley,
2009, 2010; Rolandi et al., 2014; Heinrich and Bradley, 2014).
Hence, this bug constitutes a good model system with which to
evaluate the energetics of feeding in blood-sucking insects. In
addition, this species is a classical model in insect physiology and a
major vector of the causative agent of a major health problem in
Central and South America, Chagas disease.

Very little knowledge exists on evolutionary ecology of
triatomines (Menu et al., 2010). To fill this gap, we need
quantitative estimates of the costs and benefits associated with
different activities (e.g. feeding, locomotion, egg laying, etc.) and
life history traits (tolerance to starvation, reproductive strategy,
dispersal, etc.). As a first step in this direction, we analyse in this
paper the cost associated with feeding in R. prolixus.

In the present study we employed two different respirometric
procedures (flow-through and stop-flow) to characterize the differentReceived 9 February 2015; Accepted 17 March 2016
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variables that allow the estimation of energetic parameters in R.
prolixus during feeding under different conditions, in vivo (live host)
and in vitro (artificial feeder), and provided different types of meals
(blood or saline). The objective of our experimental study was to
shed some light on the metabolism and energetic expenditure during
feeding events in a haematophagous insect, as well as to provide the
first quantitative data on different respirometric variables. Another
aim of our work is to establish bridges connecting ecophysiology,
evolutionary ecology and epidemiology of triatomines.

MATERIAL AND METHODS
Experimental animals and set-up
Fourth-instar nymphs of Rhodnius prolixus Stål 1859 from our
laboratory colony were fed on heparinized sheep blood in an
artificial feeder and used for experiments 15 to 20 days after their
moult to the fifth instar. Groups of insects were maintained in
0.5 litre plastic jars at 25±1°C, 60±5% relative humidity and
subjected to a 12 h:12 h light:dark cycle.
Thirty unfed fifth-instar nymphs were separately weighed to the

nearest 0.1 mg and then individually placed in respirometric
chambers. Chambers were made with 5 ml disposable syringes
(Terumo) to measure the basal metabolic rate. Similar chambers, but
having a 1 cm diameter hole sealed with latex, were used for
simultaneous feeding and respirometric measurements (Fig. 1).

Feeding
Insects were allowed to feed on a living host (human finger) or on an
artificial feeder. The meals offered in the feeder consisted of either
heparinized sheep blood or saline solution (NaCl 0.15 mol l−1

containing ATP 10−3 mol l−1). The food was deposited in a 3 ml
plastic cylinder sealed with a latex membrane at the bottom and its
temperature was kept at 37±1°C by means of a circulating-water
heater. A small piece of filtre paper was provided to the insect inside
the chamber as substrate. The finger or the feeder membranewas put
in contact with the membrane of the respirometric chamber to allow
the insects to feed. Insects were allowed to feed ad libitum and to a
fully engorged state (i.e. getting a distended abdomen). Afterwards,
individuals were weighed and their respirometric variables were
measured.

Respiratory measurements
Metabolic measurements were carried out in a thermostatized room
at a constant temperature of 25±1°C. Flow-through respirometry

following the methods already validated by other authors (Bradley
et al., 2003; Lighton, 2008; Contreras and Bradley, 2010) was used
to measure the CO2 production, O2 consumption and water loss.
Measures were performed during resting (standard metabolic rate)
and during and after feeding using Sable Systems respirometric
equipment. Expedata software controlled an eight-channel
multiplexer switching a water (Drierite)- and CO2 (Ascarite)-
scrubbed airflow of 66 ml min−1 (Sierra mass flow controller). The
airflow was passed by the multiplexer through one of the
respirometric chambers, and was then conducted through Bev-A-
Line tubing no longer than 30 cm (to reduce errors related to water
vapour and CO2 absorbance) to a water vapour analyser (RH-300,
Sable Systems, Henderson, NV, USA), after which the water was
scrubbed using magnesium perchlorate. Then, the current entered an
infrared CO2 analyser (CA-10, Sable Systems) followed by a dual
fuel cell oxygen analyser (OXYLLA II, Sable Systems). An
electronic interphase (UI-2, Sable Systems) gathered the data from
the instruments and fed them to a computer through Expedata.

Baseline measurements using an empty chamber were made
before and after each recording event to determine zero CO2 and to
correct for the instruments.

Respiratory quotients (RQ) were determined using the stop-flow
method described by Lighton (2008). An empty chamber and an
experimental chamber were washed for 5 min with CO2 and water-
scrubbed air (flow of 66 ml min−1), which passed then through the
same instruments, as previously described. In resting bugs,
accumulated CO2 emission and O2 consumption were recorded
for 20 min for both the empty and the experimental chamber.
During feeding, the amount of gas accumulation in the experimental
chambers depended on the feeding duration of each insect.

Metabolic calculations, data analysis and statistics
Data on CO2 emission, O2 consumption and H2O loss rate
measurements were analysed using Expedata. The initial 5 min of
recording of the experimental chambers and the first 3 min of the
empty chambers were excluded from the analysis to eliminate
effects of the accumulated CO2 derived from insect respiration and/
or valve action. The respiratory pattern (VCO2

min−1), real-time O2

consumption (VO2
min−1) and water loss (VH2O min−1) were

determined during resting, during feeding and after feeding up to
defecation. We calculated the mean rate of VCO2

emission, O2

consumption and water loss using the methods and equations
established by Lighton (2008). We calculated the mass-independent
and mass-specific energy expended to ingest 1 mg of food as
specific dynamic effect (SDE) after Sarfati and collaborators
(2005). To determine an energy equivalent of metabolic rate
measured as the rate of CO2 produced, we also followed the methods
used by Lighton (2008). Depending on the normality and
homoscedasticity of the data, data were analysed using a paired
Student’s t-test to compare resting and feeding variables, and one-
way ANOVA or Kruskal–Wallis to compare meals. Calculations
of metabolic rate were based in each case on the corresponding RQ,
i.e. either in resting unfed insects or during feeding.

RESULTS
Food ingestion
To assess the cost of feeding, first we had to characterize the
dynamics associated with feeding on a natural host and on an
artificial feeder, as well as on different diets.

Fig. 2 depicts the feeding parameters associatedwith each situation,
as the mass increases, the feeding duration, the feeding rate and the
normalized feeding rate. The insects increased theirmass significantly

1
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5

Fig.1. Respirometric chamber for measuring CO2 release, O2

consumption and water loss during feeding. 1, Plastic syringe; 2, incurrent
air; 3, excurrent air; 4, fifth-instar Rhodnius prolixus; 5, latex membrane; 6,
artificial feeder; 7, magnetic stirrer; 8, heating shirt; 9–10, incurrent–excurrent
water flow at 37±0.5°C.
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after feeding, regardless of feedingmethod, i.e. living host or artificial
feeder (AF), or the type of meal offered (AF–saline solution:
t5=5.1925, P<0.005; AF–blood: t5=11.379, P<0.001; living host:
t3=4.571,P<0.05; Fig. 2A). Even though saline solution was ingested
in a shorter time and host feeding was slightly slower than feeding on
an artificial device, no statistically significant differences were found
among treatments for these variables (Fig. 2B–D).

Respiratory patterns and RQ
Prior to feeding, resting bugs exhibited a discontinuous gas-
exchange cycle (DGC) of CO2 emission (Fig. 3A, left panel), as

previously described by Contreras and Bradley (2009). Once an
insect began to feed, either on a live host or the artificial feeder, the
pattern switched to continuous and CO2 production notably
increased (Fig. 3A, right panel). A similar increase and change in
the dynamics were observed for O2 consumption (Fig. 3B). In both
cases, the respiratory pattern remained continuous for several hours
after feeding, before switching back to DGC.

Water loss, in turn, did not exhibit any cyclic component
(Fig. 3C), and was always continuous during resting and feeding,
but showed a clear increase during the ingestion of a meal. As a
consequence of diuresis, and given that drops of urine rapidly
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Fig. 2. Feeding parameters of
Rhodnius prolixus fed on blood or
saline solution, in vivo or in vitro.
(A) Body mass during resting and after
feeding, (B) feeding duration, (C) mass-
independent feeding rate and
(D) mass-dependent feeding rate of
insects fed from an artificial feeder (AF)
or a living host. Data are means±s.e.m.
(n=6 for artificial feeder treatments and
n=4 for living host). Different letters in
A indicate a significant (P<0.05)
difference between before and after
feeding.
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Fig. 3. Example of gas exchange and water
loss for a single R. prolixus during resting
(left) and during feeding (right). (A) Rate of
CO2 release (VCO2

); (B) rate of O2 consumption
(VO2

); and (C) water loss rate (WLR). During
resting, a discontinuous gas-exchange cyclic
pattern was observed, which changed to a
continuous pattern during feeding. A high
amount of water loss was observed due to
defecation.
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evaporate, a further increase in water loss was observed (Fig. 3C,
right panel).
The measures of accumulated CO2 emission and O2 consumption

in a closed chamber using stop-flow respirometry revealed an RQ of
0.83±0.07 (mean±s.e.m., n=7) in resting bugs. During feeding,
the RQ measured under the same conditions (i.e. stop-flow) was
0.52±0.02 (mean±s.e.m., n=10). Both CO2 production and O2

consumption were significantly higher during feeding (VCO2
:

t8=5.3143, P<0.001; VO2
: t6=4.8453, P<0.005; mass-specific

VCO2
: t8=5.3010, P<0.001; mass-specific VO2

: t6=5.3093,
P<0.005; Fig. 4). These values were used for further energetic
calculations.

Metabolism during feeding
A summary of the measures of metabolic variables measured in this
study is presented in Table 1.
The computation of energetic variables revealed that actual, as

well as normalized, metabolic rates significantly increased
during feeding as compared with resting conditions (metabolic
rate: AF–saline: t5=8.6804, P<0.0005; AF–blood: t5=10.1156,
P<0.0005; living host: t3=5.9131, P<0.05; Fig. 5A; mass-specific
metabolic rate: AF–saline: t5=11.1077, P<0.0001; AF–blood:

t5=7.276, P<0.001; living host: t3=9.5273, P<0.005; Fig. 5B).
This increase reached 9.7-fold for saline solution and 13.2-fold for
blood in vitro. Bugs that fed in vivo displayed an increase in
energetic expenditure of approximately 16.8-fold, which was
significantly higher than the energetic cost of in vitro feeding
(metabolic rate: ANOVA, F2,13=5.833, P<0.05; Fig. 5A; mass-
specific metabolic rate: Kruskal–Wallis, H2=7.4853, P<0.05;
Fig. 5B). This was consistent for the SDE (mass-independent
SDE: ANOVA, F2,13=5.516, P<0.05; Fig. 5C; mass-specific SDE:
Kruskal–Wallis, H2=7.8713, P<0.005; Fig. 5D).

Water loss
The water loss rate (WLR) was significantly higher during feeding
than during resting, even after excluding diuresis and defecation
events (WLR: AF–saline: t5=8.9662, P<0.0005; AF–blood:
t5=8.3138, P<0.0005; living host: t3=3.9971, P<0.05; Fig. 6A;
mass-specific WLR: AF–saline: t5=6.4073, P<0.005; AF–blood:
t5=6.5471, P<0.005; living host: t3=9.8802, P<0.005; Fig. 6B).
All three types of feeding rendered increases in water loss (4.6-,
8.2- and 5.2-fold for saline solution, blood in artificial feeder and
living host, respectively), but no statistical differences were found
among them.
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DISCUSSION
Artificial versus natural hosts
In agreement with previous studies on feeding dynamics in
triatomines (e.g. Pereira et al., 2006), taking a meal from an
artificial feeder seems easier in terms of energetic investment than
taking it from a living host. Feeding in vitro only requires the insect
to pierce a membrane and to gather a fluid (i.e. saline or blood)
whose properties remain constant. Conversely, when biting a living
host, insects have to find a vessel, neutralize the response of the skin
and vessels to the mechanical damage, and deal with the local
variations of blood flow (Soares et al., 2014).

Varying respiratory patterns according to behaviour
As previously described (Contreras and Bradley, 2009), R. prolixus
displays different respiratory patterns according to their
physiological condition. Three different patterns of gas exchange
have been described in this species: continuous, DGC and cyclic.
Two of them, DGC and cyclic, have been proposed in mosquitoes to
be variants of the same dynamic, being the cyclic pattern of a
manifestation of DGC (Gray and Bradley, 2006). In the present
study, we used the same airflow (66 ml min−1) and chamber size
(4 ml) as that employed by Bradley et al. (2003), while Contreras
and Bradley (2009) employed 200 ml min−1 and chambers of 2 ml.
Even though we do not describe cyclic respiration in this species, as
it was not evinced under the conditions of this particular study, we
regularly observed it in adults and nymphs. Thus, despite the
variation in measuring conditions, i.e. different airflows and
chamber sizes, the three patterns clearly appear as manifestations
of gas exchange in R. prolixus, suggesting that they are probably not
just artefacts of measuring procedures.
Unfed resting bugs exhibited DGC and switched to continuous

respiration during active feeding. This change was revealed in
our experiments as a marked increase and dynamic change in the
CO2 emission and O2 consumption (Fig. 3). Water loss was
predominantly continuous during both phases of our experiments,
i.e. before and during feeding, and a high increase in the rate of

water loss was only observed after defecation, but without a change
in the dynamics. Cyclic water loss, synchronized to CO2 emission
and O2 consumption, could not be observed in resting unfed
nymphs used in this experiment, although it was occasionally
observed under other conditions, e.g. in resting adults. During
feeding, the large increase in the exchange rate of CO2, O2 and water
vapour may be related to the continuous opening of spiracles.

Unexpectedly low respiratory coefficient
Our calculation of the RQ from stop-flow measures of oxygen
consumption and carbon dioxide emission rendered values around
0.83 for resting insects, which is close to the consensus value of 0.8
that has been assumed by several authors when only carbon dioxide
was measured (Lighton et al., 1993; Sarfati et al., 2005; Lighton,
2008). This value is within the classical interval resulting from
burning lipids, proteins and sugar. During feeding, however, we
observed a marked increase of both oxygen consumption and
carbon dioxide emission, but the ratio between the two is not that
observed at resting (Fig. 4), resulting in a RQ of approximately 0.52.
This result shows that the rate at which oxygen is consumed is
higher than that at which carbon dioxide is produced.

Unusually low RQ values, i.e. below 0.7, have also been
measured in birds, and the available evidence shows that they are not
measurement artefacts (Walsberg and Wolf, 1995). Their
physiological nature, however, remains unknown.

In the case of R. prolixus, different testable hypotheses could be
proposed to explain this phenomenon. The remaining carbon
dioxide could have dissolved into tissues or could have been used
for other physiological processes associated with feeding. For
instance, diuretic activity greatly increases during feeding, and the
production of excretory products (i.e. uric acid) requires CO2 for
forming KHCO3 (Wigglesworth, 1931). This retained carbon
dioxide should be gradually eliminated once feeding has ended
and this could explain the fact that the respirometric variables
remained high and the respiratory pattern remained continuous for
several hours after the ingestion of a blood meal (data not shown).

Table 1. Summary of the measured values corresponding to the different metabolic variables analysed in this study

Treatment

MR during
resting
(J h−1)

Mass-specific
MR during resting
(J h−1 mg−1)

MR during
feeding (J h−1)

Mass-specific
MR during feeding
(J h−1 mg−1)

Mass-
independent
SDE (J h−1)

Mass-specific
SDE (J h−1)

MR increase
during feeding
(fold change)

Mass-dependent
MR increase
during feeding
(fold change)

AF-saline 0.12±0.016 0.00296±0.000375 1.164±0.121 0.0281±0.0022 0.988±0.121 0.00467±0.000623 9.7 9.5
AF-blood 0.103±0.004 0.00247±0.0000703 1.334±0.121 0.0328±0.00421 1.183±0.122 0.00465±0.000441 13 13.2
Living host 0.125±0.01 0.00323±0.000396 2.1±0.327 0.0524±0.00478 1.917±0.324 0.00954±0.001481 16.8 16.2

AF, artificial feeder; MR, metabolic rate; SDE, specific dynamic effect.
Data are means±s.e.
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Alternately, the blood ingested could act as an oxygen sink,
gathering it from respiratory activity to saturate haemoglobin. None
of these alternatives appears as stronger than the other and further
experiments are necessary.
As underlined by previous authors, errors that could result from

these unexpected RQ values can be large and could present the
primary limit to the accuracy of power consumption estimates based
upon measurement of carbon dioxide production (Walsberg and
Wolf, 1995).

Feeding is costly
When we compare the metabolism of bugs before and during
feeding in terms of rates of variation in respiratory or energetic
variables, we observe that feeding is a costly activity. The increase
associated with taking a blood meal is up to three times over that of
walking in the ant Camponotus sp. (Lipp et al., 2005) and even
higher than the metabolic increase of flying over resting in terms of
mass-specific rate of O2 consumption for Drosophila melanogaster
(Hocking, 1953; Lehmann et al., 2000; Niven and Scharlemann,
2005). It is, however, lower than the increase in oxygen
consumption associated with flying in the bee Apis mellifera and
the grasshopper Schistocerca gregaria (Niven and Scharlemann,
2005), and lower as well to the increase in metabolic rate during
leaf-cutting in the ant Atta sexdens rubropilosa (Roces and Lighton,
1995).
The cost of feeding in blood is associated with the necessary

muscular activity for feeding on blood. Solenophagous
haematophagous insects such as mosquitoes and bugs ‘cannulate’
blood vessels with thin mouthparts that minimize the damage
caused to the host’s tissues. So, the diameter of alimentary channels
is just large enough to allow blood cells to circulate inside. In the
case of R. prolixus, the apical diameter in the fifth-instar larva is
approximately 8 µm and it has been estimated that a pump capable
of developing between 2 and 9 atm of pressure is required for a fifth-
instar larvae of R. prolixus to consume approximately 300 µl of
blood in 15 min or less (Bennet-Clark, 1963; Smith, 1979). A
conservative estimate of the necessary muscle tension to produce
such pressure differences is at least 25 N cm−2 or 1 kg cm−2 (Smith,
1985). In line with this effort, our calculations show that all
metabolic variables, normalized by the insect and food masses,
increased several-fold during feeding, for the different feeding
conditions tested.
It is worth noting that the quantitative analysis of different

feeding parameters in several species of haematophagous insects
has revealed that they usually feed easier on the host with which they
are naturally associated than on other vertebrates (Guarneri et al.,
2000; Sarfati et al., 2005). Hence, not only does haematophagous
feeding have a cost, but it should also vary with alimentary
eclecticism. Therefore, we hypothesize that the energetic cost of
feeding will also vary from one host to another, even in insects that

are essentially opportunistic in their haematophagous activity. It is
worth noting that the energetic expenditure for digesting the blood
(not considered here) should be added to the cost of obtaining a
meal. The latter may also vary according to the host, as shown by
Sarfati et al. (2005) in fleas that fed on different bat species.

The available information on R. prolixus and other
haematophagous insects provides quantitative data on resting
unfed and fed (digesting) individuals. We can then compare some
energetic variables, in order to have an idea about the relative cost of
haematophagy across species and under different conditions, i.e.
resting, starved, feeding and digesting. Such a comparison is
presented in Table 2. It can be verified that the normalized
production of CO2 is highly variable across species of blood-
sucking arthropods, suggesting that their metabolic demands are not
similar. This may be related to their mobility (e.g. ticks versus fleas),
but our knowledge is too scarce to reasonably speculate. In
particular, we need more data on metabolism during feeding. If our
hypothesis proposing that the energetic cost of feeding depends on
the host is correct, this cost of feeding might constitute an important
selective force modelling the adaptation of blood-sucking
arthropods to exploit particular vertebrate species as hosts. The
comprehension of this relationship may not only shed light on the
adaptation of arthropods to the haematophagous way of life, but also
provide relevant information to epidemiologists about host
preferences.

Our results are also of interest from the point of view of
evolutionary ecology. Indeed, it is probable that the availability of
preferred hosts (hosts with which bugs are naturally associated, i.e.
birds in the case of R. prolixus) in the field is not constant in time
and/or space. According to this assumption, when preferred hosts
are temporally absent, bugs should choose to feed on other hosts
(e.g. mammals) to which they are less adapted (Guarneri et al.,
2000; Soares et al., 2014) and then pay a higher cost for feeding
than they would when feeding on birds. This additional
investment will probably have an impact on individual fitness in
the future. To avoid this additional cost, bugs should wait for the
arrival of an appropriate host, exploiting their tolerance to
starvation (i.e. time escape), or disperse and look for the
appropriate host elsewhere (i.e. spatial escape). The most
adaptive response will depend on the relative cost of feeding on
natural hosts or on an alternative host to which they are
maladapted, the cost associated with dispersal and fasting, as
well as the probability of finding a natural host after a given time
or spatial dispersal. We propose then as relevant research avenues
the comparison of the energetic costs associated with these
different activities, and the investigation of the consequences, in
terms of individual fitness, of such costs in order to unravel the
most adequate evolutionary strategy that may be selected in
different ecological contexts. The adaptive response selected
could, theoretically, have strong epidemiological consequences if

Table 2. Comparative production of CO2 (VCO2
; µl h−1 mg−1) as a function of nutritional state in haematophagous arthropods

Species Unfed During feeding Post-feeding References

Amblioma marmoreum 0.023–0.042 – 0.08–1.3 Lighton et al. (1993)
Parapulex chephrenis 0.17 – 0.2–1.34 Sarfati et al. (2005)
Cimex lectularius 0.127–0.218 – – DeVries et al. (2013)
Rhodnius prolixus 0.10–0.15* 0.78–1.45* 0.04–0.26‡ Contreras and Bradley (2010);

Rolandi et al. (2014); present study

When not in the same units, data from other studies were transformed to allow proper comparisons. The only available values during feeding are those of
R. prolixus, which were obtained in this study.
*Normalized by initial mass of unfed insects.
‡Normalized by total mass.
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it can impact the vectorial capacity of bugs, for example, affecting
the defecation delay at each feeding event.
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