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CONCEPTS & SYNTHESIS
EMPHASIZING NEW IDEAS TO STIMULATE RESEARCH IN ECOLOGY
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organisms in fluctuating and multifactorial environments
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Abstract.   Understanding how variance in environmental factors affects physiological per-
formance, population growth, and persistence is central in ecology. Despite recent interest in 
the effects of variance in single biological drivers, such as temperature, we have lacked a com-
prehensive framework for predicting how the variances and covariances between multiple en-
vironmental factors will affect physiological rates. Here, we integrate current theory on 
variance effects with co-limitation theory into a single unified conceptual framework that has 
general applicability. We show how the framework can be applied (1) to generate mathemati-
cally tractable predictions of the physiological effects of multiple fluctuating co-limiting fac-
tors, (2) to understand how each co-limiting factor contributes to these effects, and (3) to detect 
mechanisms such as acclimation or physiological stress when they are at play. We show that 
the statistical covariance of co-limiting factors, which has not been considered before, can be a 
strong driver of physiological performance in various ecological contexts. Our framework can 
provide powerful insights on how the global change-induced shifts in multiple environmental 
factors affect the physiological performance of organisms.

Key words:   co-limitation; covariance; eco-physiology; feeding rate; global change; multiple stressors; 
nonlinear averaging; nutrients; scale transition; temperature; temporal ecology; variance.

Introduction

Variation is the norm in nature. The natural envi-
ronment is heterogeneous across space, time, and scales. 
Yet, ecologists mostly focus on the mean environmental 
conditions as a predictor variable of the patterns and 
processes they observed. There is, however, an increasing 
recognition that the descriptors of natural heterogeneity, 
such as the statistical variance and the probability distri-
bution of environmental conditions, explain many 
important ecological phenomena (Benedetti-Cecchi et al. 
2006). For example, understanding how variance influ-
ences organismal physiological performance is essential 
for predicting the impacts of variable plant phytochem-
istry on herbivores (Underwood 2004, Hood and Sterner 
2010, Wetzel et  al. 2016) and increasing temperature 
variation on ectotherms (Paaijmans et  al. 2010, Estay 
et al. 2014, Vasseur et al. 2014).

Environmental variation can be experienced at the pop-
ulation level, i.e., individuals or groups of individuals expe-
rience different values of a limiting factor depending on 
their position in the landscape. However, quite often vari-
ation can also be experienced at the individual level, i.e., the 
same individual faces changing values of a limiting factor 
within its lifetime. Hence, the effects of the environmental 
variation (e.g., temperature, light, pH, oxygen, food 
quantity and quality) on physiological performance should 
be analyzed at the scales relevant to individual organisms 
(Potter et  al. 2013). This variation can be spatial (e.g., 
movements within a thermally heterogeneous landscape) 
and/or temporal (e.g., daily temperature fluctuations). 
Even very small organisms such as spider mites (<1 mm) 
moving across a single leaf can experience microhabitats 
that differ by more than 10°C (Caillon et  al. 2014). 
Similarly, within an hour, understory plants or phyto-
plankton cells might experience changes in irradiance that 
span from near darkness to oversaturating light (Ruel and 
Ayres 1999, Litchman 2000, Retkute et al. 2015). Finally, 
the food quantity and quality (essential nutrients, sec-
ondary metabolites) encountered by consumers during 
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their lifetime can also be highly variable (Park et al. 2004, 
Simpson and Raubenheimer 2012). Even consumers for-
aging within individual plants experience substantial vari-
ation in nutritional quality (Orians and Jones 2001). A 
growing body of experimental and theoretical work 
demonstrates that there is much to be gained in the study 
of the sources and consequences of the variation experi-
enced by individual organisms (Dowd et  al. 2015, 
Pincebourde et al. 2016).

To date however, studies on variation mostly con-
sidered single environmental factors, and to a large extent 
only temperature, thus largely ignoring the fact that 
organismal performance can be simultaneously co-
limited by several factors. Here, co-limitation is defined 
(see the glossary in Box 1 for definitions) in its broadest 
sense: when the combination of simultaneous or sequential 
changes in several biotic or abiotic factors has a different 
effect on organismal performance response (e.g., vital 
rates such as growth, maturation, fertility, survival) than 
the effects of changing each factor alone. To cite only a 
few examples, such co-limitations have been repeatedly 
shown for light and temperature on plants (Edwards et al. 
2016), temperature and nutrients (Cross et al. 2015), or 
various combinations of nutrients (Harpole et al. 2011, 
Sperfeld et  al. 2016) on autotrophs and heterotrophs. 
Co-limitation of physiological performance does not 
necessarily involve two distinct factors (e.g., light and 

temperature), but can also involve the same factor in dif-
ferent contexts (e.g., temperature during immersion and 
emersion in intertidal organisms; Pincebourde et  al. 
2012). Interestingly, co-limitation can involve a fluctu-
ating factor and the temporal scale at which the factor 
fluctuates as co-limiting factor (Kingsolver and Woods 
2016). Despite accumulating evidence on the importance 
of co-limitation on physiological performance of 
organisms, a conceptual framework of how organisms 
can be affected by environmental variation in their co-
limiting factors is still missing (Gunderson et al. 2016). 
Yet, such a framework is essential for addressing the 
pressing issue of the potential effects of the multiple 
drivers of ecological change on organisms (Darling and 
Côté 2008, Jackson et al. 2016).

Our objective here is to introduce a conceptual 
framework in physiological ecology that motivates and 
guides the study of the role of multifactorial environ-
mental variation. The framework (Fig. 1) extends recent 
theory on the consequences of the thermal variation expe-
rienced by individual organisms (Dowd et al. 2015) to any 
combination of variable factors that might simultaneously 
limit performance. In the first part of the paper, we propose 
a novel integration of theory on nonlinear averaging in 
biological systems (Chesson 2012, Denny and Benedetti-
Cecchi 2012, Dowd et al. 2015), co-limitation theory con-
cepts (Harpole et  al. 2011, Sperfeld et  al. 2016), and 

Box 1. Glossary.

Additivity: When the effect of simultaneous or sequential changes in several biotic or abiotic factors equals 
the sum of the effects of changing each factor alone.

Antagonism: When the effect of simultaneous or sequential changes in several biotic or abiotic factors is 
smaller than the sum of the effects of changing each factor alone.

Co-limitation: When the simultaneous or sequential changes in several biotic or abiotic factors have a 
different effect on performance than the effects of changing each factor alone.

Covariance effect: Sensitivity of the performance to the covariance of the co-limiting factors in a variable 
environment.

Cross-dependence: When the level of one of the co-limiting factors determines the shape (i.e., the position 
of the maxima, minima, inflexion, and/or half-saturation points along the limiting factor axis) of the response 
to the other factor.

Effect partitioning (scale transition [ST] theory): Mathematical partition of the ST term that allows the 
quantification of the individual contributions of the variances of each co-limiting factor as well as that of 
their covariance.

Integrated performance (ST theory): Predicted performance in a variable environment. Symbolized by f(x).
Mean-field (ST theory): Biological response (here, organismal performance) in a constant environment. 

Symbolized by f(x̄).
Scale transition theory: A mathematical upscaling “recipe” stemming from recognition that biological response 

functions are typically nonlinear and that the interaction of these nonlinearities with spatial or temporal 
variation distorts the prediction of large-scale patterns from small-scale patterns.

Scale transition term (ST theory): The mathematical correction to add to the mean-field in order to predict 
the integrated performance.

Static performance curve: The common practice of experimentally generating a curve describing the perfor-
mance of an organism as a function of a limiting factor under constant conditions. While several factor levels 
are tested, the level of the factor experienced by individual organisms over the experiment is kept constant.

Synergy: When the effect of simultaneous or sequential changes in several biotic or abiotic factors is larger 
than the sum of the effects of changing each factor alone.
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phenotypic plasticity of the responses to variance 
(Kingsolver and Woods 2016, Sinclair et al. 2016). After 
presenting the mathematical framework for predicting the 
effect of multifactorial variation and its utility for parti-
tioning the contribution of each factor (effect partitioning; 
Fig.  1, Box  1), we focus on the contribution of the 
covariance between factors (covariance effect; Fig.  1), 
which remains virtually unconsidered in eco-physiology 
(Pincebourde et al. 2012, Koussoroplis and Wacker 2016). 
The mathematical framework has to be viewed as a null-
model based on certain assumptions on the physiology of 
the organisms, which when violated, lead to deviations 
from predictions. We review the broad categories of such 
deviations and provide a novel synthetic view of how these 
deviations relate to the temporal scale at which variance 
manifests (time dependence; Fig. 1). We propose this syn-
thesis as a diagnostic tool for identifying the specific phys-
iological mechanisms causing the deviation.

In the second part of the paper, we present two appli-
cation examples of our conceptual framework. In the first 
example, we explore a novel question: How does the 

complexity of the interaction between co-limiting factors 
(cross-dependence) modulate the way different statistical 
moments of the experienced environment affect physio-
logical performance? The second example illustrates how 
the problem of coincidence of environmental stressors can 
be reformulated within our framework and the novel 
insights to be gained from that. In both examples, the 
covariance between co-limiting factors is predicted to be an 
important driver of physiological performance. We con-
clude by discussing how our framework can conceptually 
advance global change research and identify the necessary 
future theoretical and methodological directions.

Theory and Concepts

Nonlinearity of physiological responses  
and environmental variance

One of the main mechanisms through which organ-
ismal performance is affected by environmental variation 
is the nonlinearity that characterizes most of the physio-
logical responses to the various environmental factors 
(Ruel and Ayres 1999). For example, temperature perfor-
mance curves (TPC) are generally characterized by an 
exponential increase at low temperatures, a transition to 
a peak at an optimal temperature, followed by a rapid 
decline in performance at higher temperatures. In ther-
mally variable environments, the nonlinearities of the 
TPC lead to disproportionate effects of cool and warm 
events on performance. Because of Jensen’s inequality 
(Jensen 1906), the integrated performance over a period 
of thermal variability increases (concave upward part of 
the TPC) or decreases performance (concave downward 
part of the TPC) relative to that predicted by mean tem-
perature (Ruel and Ayres 1999).

The quantification of these increases or decreases can be 
achieved using mean-field approaches (Morozov and 
Poggiale 2012), which are the core of the scale transition 
(ST) theory. This theory focuses on the changes in the equa-
tions for population dynamics as the spatial or temporal 
scale enlarges (Chesson 2012). There is however a formi-
dable opportunity to apply the concepts of this theory to 
other levels of biological organization such as the physio-
logical level (Denny and Benedetti-Cecchi 2012). Such an 
“eco-physiological” ST framework has been recently 
developed (Box 2) for organisms limited by a single factor 
(temperature), allowing important theoretical insights on 
the effects of thermal variability on ectotherms (Dowd 
et al. 2015). However, despite the fact that the vital rates of 
organisms can be limited by multiple environmental factors 
simultaneously, current theory does not include 
co-limitation. Here, we address this theoretical gap.

Accounting for multiple co-limiting factors  
and partitioning their effects

A strength of the ST mathematical framework is that 
it can be extended to include as many co-limiting factors 

Fig. 1.  Conceptual diagram of the structure of this paper. 
The diagram shows the place of our eco-physiological, 
multifactorial, scale transition (ST) framework in the literature 
and the ideas and concepts that it integrates. The main novel 
methods and concepts that our framework contributes are 
illustrated through two examples.
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Box 2. Using scale transition (ST) theory for predicting physiological  
performance in fluctuating unifactorial environments.

Theoretical principles
In its ecophysiological version (Dowd et  al. 2015), ST theory (Chesson et  al. 2005) predicts that the 

physiological performance in a variable environment is expressed as the sum of the performance under the 
average yet constant environment (the mean-field) and a correction term (the ST) that accounts for the effect 
of environmental variance on performance. For a performance function, g, (or any other vital rate function 
contributing to organismal fitness) depending on the abundance of a resource, R, the ST can be written as 
a second-order Taylor expansion around the mean resource value: 

where g(R) is the integrated performance under variable R conditions and g(R̄) is the growth expected on 
the averaged resource over the considered time period, R̄. g′′(R̄) is the second derivative of g and quantifies 
the nonlinearity of the performance function measured at R̄. The variance around R̄ is �2

R
. Note that g′′(R̄)>0 

for concave upward functions, and g′′(R̄)<0 for concave downward functions, thus explaining the positive 
or negative effects of environmental variance, respectively. For linear functions, g��(R̄)=0 thus leading to 
g(R)=g(R̄) (no variance effect).

Applications and links to ecological concepts
Scale transition theory is increasingly applied to thermal biology (recently reviewed by Dowd et  al. 2015). 

For example, it can been used to explain (1) why ectotherm’s body temperature preferences should lie below 
the temperatures that optimize physiological performance (Martin and Huey 2008), (2) why ectotherms fitness 
should be more vulnerable to changes in temperature variance rather than to averaged climate warming (Vasseur 
et  al. 2014), and (3) why temperature variance has to be accounted for when determining the climatic ranges 
for the development (Blanford et  al. 2013) and the transmission (Paaijmans et  al. 2010) of pathogens.

Scale transition theory can also be used to translate risk sensitivity of foraging behavior into long-term 
energetic gain (Smallwood 1996, Matassa and Trussell 2014). In the context of resource-dependent growth, 
ST theory can be related to resource- and growth-integration, two important concepts of resource-limited 
growth in variable environments (Litchman 2000, Sterner and Schwalbach 2001, Hood and Sterner 2010). 
Growth integrators readily respond to resource abundance changes, producing synchrony between growth 
and resource fluctuations. The resulting long-term growth rate is the mean of the growth expected for 
each value the resource takes, thus the g(R) term of Eq.  1. Alternatively, resource integrators are able to 
store resources, thus buffering the resource fluctuations and, by consequence growth fluctuations, around 
their mean values (Fujiwara et  al. 2003). Hence, the integrated growth on variable resources departs from 
the predicted g(R) and converges toward the growth predicted by the mean resource level g(R̄) depending 
on the strength of the storage buffering effect (reserve effect).

Scale transition theory can be applied to both spatial and temporal variations. Rather than quantifying the 
integrated performance through time of an individual in a variable environment, ST can be used to describe 
the instantaneous performance of a population of individuals distributed in a heterogeneous landscape. The two 
applications can be combined to estimate the time-integrated physiological performance of the population.

Limitations
Scale transition theory is a highly valuable theoretical tool for understanding the effects of environmental 

variation on physiological performance, the mean-variance interaction, and in its multifactorial version (see text: 
Accounting for multiple co-limitng factors and partitioning their effects), for partitioning variance and covariance 
effects. However, the ST equation is accurate only when σx is small. For temperature performance curves 
(TPCs) for instance, it is accurate only when the range of temperature is small compared to the overall breadth 
of the TPC. For numerically accurate predictions at larger variances, g(x) must be calculated using 

where P(x;�x,�2
x
) is the probability density function of the distribution of the limiting factor x (Vasseur et  al. 

2014). The equation can be solved analytically for Gaussian distributions. For more complex distributions, 
g(x) must be calculated from numerical simulation in which x are drawn at random from the distribution. 
For each drawn x, a g(x) is calculated to produce the arithmetic average g(x). Also, in its current version, 
ST theory is based on performance functions that do not account for multiple limiting factors or some 
physiological phenomena thereby reducing the accuracy of the predictions under some circumstances (see 
Box  3: Time-scale-dependent effects).

(B1)

Integrated

performance
���

g(R) ≈

mean- field
���

g(R̄) +

scale transiton
���������

1

2
g��(R̄)𝜎2

R

g(x)= ḡ(𝜇x,𝜎2
x
)=∫ P(x;𝜇x,𝜎2

x
)g(x)dx
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as necessary. The ST not only allows predictions of the 
general effect of multivariate environmental heteroge-
neity but also on the contribution of each factor to that 
effect (Melbourne and Chesson 2006). Building on the 
unifactorial example presented in Box 2, and following 
(Chesson et al. 2005, Morozov and Poggiale 2012), for a 
performance function, g, depending on the abundance of 
two variable resources (or any other factors), R1 and R2, 
the Taylor expansion can be written as 

where g′′
R1,R1

(R1,R2) and g′′
R2,R2

(R1,R2) are the second 
partial derivatives with respect to R1 and R2 evaluated 
at R1  and R2  and quantify the nonlinearities in the R1 
and R2 dimensions. These nonlinearities interact with 
the variances �2

R1
 and �2

R2
, respectively. The cross-

partial derivative with respect to R1 and R2, g′′
R1R2

(R1,R2) 
evaluated at R1  and R2, quantifies the nonlinearity 
arising from the non-additive effect of the  two 
resources on performance. Finally, the term σR1,R2 is 
the covariance of the two resources. The equation can 
be extended to accommodate as many co-limiting 
factors as necessary (although the equation quickly 
becomes very lengthy). Note also that Eq.  1 is an 
approximation that is accurate when the variances are 
small relative to the width and the breadth of the 
response surface (see also Box 2).

Beyond the fact that Eq. 1 predicts the effect of multi-
factorial variation on performance, it also allows the par-
titioning of the contribution of each factor to this effect. 
Indeed, the first two terms of the ST expression quantify 
the effect of the variance of each of the two factors while 
the third term quantifies the effect of the covariance 
between the two factors (Fig. 2). This effect partitioning 
is one of the main strengths of the ST theory (Melbourne 
and Chesson 2006), because it allows us to (1) understand 
and predict how the different statistical moments of the 
environment experienced by the organisms affect their 
performance and (2) see how the partition of these effects 
dynamically changes with the mean experienced envi-
ronment. In general, mathematical partitions have 
proven to be extremely useful in ecology and evolution 
(Fox 2016). The two examples we provide illustrate the 
utility and the new insights that can be gained by applying 
the ST effect partitioning.

Introducing covariance effects: the roles of synergy, 
antagonism, and additivity between co-limiting factors

The third term of the ST in Eq. 1, which quantifies the 
covariance effect, shows that the performance in a var-
iable environment not only depends on the means and the 
variances in the different factors, but also on the corre-
lation between these variances in space or time. More 

importantly, the magnitude of this covariance effect is 
modulated by the term g′′

R1,R2
(R1,R2). Physiologically, 

this term reflects how the two factors together influence 
performance. As long as the two factors act non-additively 
on a vital rate then this term differs from zero, and the 
performance in heterogeneous environments becomes 
dependent on the co-limiting factor covariance. In the 
case of antagonistic (sub-additive) co-limitation effects, 
g′′

R1,R2
(R1,R2) is negative which means that performance 

is negatively correlated with covariance. For synergistic 
(super-additive) co-limitation effects, g′′

R1,R2
(R1,R2) 

becomes positive and therefore covariance and perfor-
mance are positively correlated.

Nutritional co-limitation illustrates how the non-
additivity of the two factors interacts with the covariance 
of these co-limiting factors. Empirical studies demon-
strate that temporal variation in the nutritional resource 
has a negative effect on consumer growth (Hood and 
Sterner 2010, Tremmel and Müller 2013). This can be 
explained by the fact that the relationships between 
growth and the specific nutrients that determine food 
quality are usually concave downward (i.e., the second 
derivative or growth, g′′(R̄) is negative, see Box 1). If the 
relationship is concave downward for both co-limiting 
nutrients (g′′

R1,R1
(R1,R2) and g′′

R2,R2
(R1,R2)<0), then 

nutritional variance in any or both of the nutrients 
decreases consumer performance, as observed in studies 
involving single nutrient limitation. More interestingly 
however, Eq.  1 also predicts that spatial or temporal 
covariance of substitutable and essential co-limiting 
resources (sensu Sperfeld et  al. 2016) should influence 
consumer integrated performance in different ways 
depending on the overall nutritional balance (Fig. 3).

For example, terrestrial consumers need often to 
temporally mix prey with strongly imbalanced nutrient 
compositions (Simpson and Raubenheimer 2012) thereby 
experiencing negative temporal covariance in the 
nutrients that are co-limiting their growth (Fig. 3a, b). In 
such cases the negative effects of nutritional variability 
should be less important when the nutrients are substi-
tutable (Fig. 3d) than when they are interactively essential 
(Fig.  3e). Indeed, substitutable nutrients act sub-
additively on consumer performance (g′′

R1R2
(R1,R2)<0) 

so that when covariance is negative, the product 
g′′

R1,R2
(R1,R2)�R1,R2 becomes positive thereby mitigating 

the negative effect of the first two ST terms of Eq. 2.
Consumers might also be forced to temporally alternate 

between low and high quality prey in which the two  
co-limiting nutrients are either simultaneously absent or 
present, respectively, thereby experiencing positive nutri-
tional covariance (Fig. 3a). Such a situation could occur 
in vertically migrating zooplankton feeding in different 

(1)

Integrated

performance
⏞⏞⏞⏞⏞

g(R1,R2) ≈

mean- field
⏞⏞⏞⏞⏞

g(R1,R2) +

scale transition
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

1

2

[

g��
R1,R1

(R1,R2)�2
R1

+g��

R2,R2
(R1,R2)�2

R2
+2g��

R1,R2
(R1,R2)�R1,R2

]
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depths in which either eukaryotic algae or cyanobacteria 
dominate, the latter being devoid in polyunsaturated 
fatty acids and sterols, two nutrients known to co-limit 
zooplankton performance (Sperfeld et al. 2012). Under 
this scenario, the negative effect of nutritional variability 
should be less important in the case of strongly limiting 
essential nutrients (Fig.  3e) because they act super-
additively on performance (g′′

R1,R2
(R1,R2)�R1,R2 is pos-

itive when covariance is positive).
Finally, generalist consumers typically feeding on a 

diverse set of prey among which the balance in the two 
co-limiting nutrients is randomly distributed, should 
experience a null nutrient covariance. In the absence of a 
covariance effect the negative effects of nutritional var-
iance are the sum of the R1 and the R2 variance effects. 

Note that co-limiting nutrients do not necessarilly 
influence performance in the same way all along the two-
dimensional nutrient space (Fig. 3c) so that the direction 
of the covariance effect might change. In our example, if 
the mean level of the two co-limiting essential nutrients is 
high (Fig.  3c, f), their effect on performance becomes 
additive (g��

R1,R2
(R1,R2)=0) yealding a null covariance 

effect.

Time-scale-dependent deviations from ST predictions: 
identifying the underlying mechanisms

In the simple case when variation is only experienced 
at the population level (i.e., between individuals), the 
mathematical framework presented above is sufficient 

Fig.  2.  Partitioning variance effects. (a) The effect of a spatiotemporally heterogeneous environment with two co-limiting 
factors (resources 1 and 2) on the performance (e.g., growth rate) of an organism is evaluated relative to its performance in a 
constant environment with the same mean properties (i.e., the mean-field). (b) Using the scale transition equation, the net effect of 
environmental variance on growth rate can be predicted and partitioned into its components, i.e., the effect of variance of each 
resource as well as the effect of their covariance. (c) The different effects are expressed as percent deviation from the mean-field. The 
magnitude and the direction of the covariance effects (and by consequence the net effect of environmental variance) depend on the 
absolute value and the sign of covariance, respectively.
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Fig.  3.  Covariance effects and the role of synergy, antagonism, and additivity. (a) Depending on the ecological context, 
consumers may have to deal with different dietary covariance patterns. The different symbols indicate distinct prey composing the 
diet of a consumer. (b, c) The assignment of the various dietary items on a two-dimensional resource space illustrates how their 
composition, in terms of co-limiting resource availability differs (arbitrary units). The underlying contour plot depicts the achieved 
growth rate for constant combinations of the resources, assuming either perfectly substitutable or interactively essential resources 
(see Sperfeld et al. [2016] for an extensive list of possible co-limitation models). The solid black circles indicate the growth rate (d−1) 
expected under the average resource availability in the diet when the various items are consumed in equal proportions (mean-field). 
The effect (sub-additive, super-additive, or additive) of the resources in the considered region of the resource space is written in 
white. (d–f) Cross-sections of the response surfaces along the white lines in panels b and c (long-dashed, short-dashed, and solid 
lines, respectively). The different dietary covariance setups are illustrated by the symbols and the double-headed arrows. The 
predicted integrated performance under the various covariance setups are depicted by the color-filled circles. See Appendix S1 for 
model equations and parameters.
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for predicting the integrated performance of the average 
individual. However, when the variation is mainly expe-
rienced at the individual level (i.e., across the lifetime of 
an individual), one needs to additionally account for the 
effects of the temporal patterns (fluctuation frequency or 
order of events) of the limiting factor variance (Schulte 
et al. 2011, Niehaus et al. 2012, Kingsolver et al. 2015). 
These effects (presented in more detail in Box 3) have 
been coined as time-dependent effects (Kingsolver et al. 
2015) and are the consequences of various physiological 
functions that evolved to buffer environmental variation 
(e.g., reserves) or to adjust performance in a variable 
environment (e.g., phenotypic plasticity/acclimation). 
Under certain circumstances, time-dependent effects 
lead to substantial deviations between experimental 
observations of performance under variable perfor-
mance and ST predictions. This is because the ST 
approach is based on performance responses (curves or 
surfaces) measured under constant conditions (hereafter 
static performance curves) and assumes that these 
responses also hold under variable conditions (Litchman 
2000, Niehaus et al. 2012, Kingsolver et al. 2015, Sinclair 
et al. 2016). The deviations might follow the same or the 
opposite direction than predicted by ST theory, hence 
amplifying (Pincebourde et  al. 2012) or buffering 
(Kingsolver et al. 2015), respectively, the effects of envi-
ronmental variation predicted by static performance 
curves (Box 3).

Some categories of time-dependent effects occur only 
when the fluctuation frequency is low (acclimation effect; 
Box  3; Fig.  4c), when the fluctuating factor reaches 
extreme values (stress effect; Box 3; Fig. 4b), or when the 
organism deviates dramatically from its growth trajectory 
(compensation effect; Box  3, Fig.  4d). In other cases, 
however (reserve and inertia effects; Box 3; Fig. 4a), the 
effects occur in each situation. Each type of time-dependent 
effect should cause a predictable deviation pattern from 
ST predictions (Box 3; Fig. 4a–d). In most cases, the mag-
nitude of this deviation is a function of environmental 
fluctuation frequency (Box 3; Fig. 4e) so that changing the 
frequency fluctuation value affects performance, exactly 
as the focal fluctuating limiting factor does.

The physiological mechanisms underlying time-
dependent effects operate only within a relatively narrow 
range of environmental fluctuation frequencies (Box  3; 
Fig. 4e). If the strongest fluctuations occur outside this 
frequency range, ST theory can be used to accurately 
predict organismal performance in variable environ-
ments. By contrast, if the limiting factor mostly fluctuates 
within this range, then ST theory based on static perfor-
mance curves will have a limited predictive power but can 
still be useful in another sense. Indeed, the predictions can 
be regarded as null models to which the realized (observed) 
performance of individuals and populations need to be 
compared (Estay et al. 2014). Subsequently, the observed 
deviations can be used as a diagnostic tool for identifying 
the specific physiological mechanisms causing these devi-
ations and to reveal when and how they act.

The time-dependent effects described above (Box 3) 
are found both in univariate and multivariate environ-
ments. In the latter, however, the co-limiting factors 
might interactively influence the rates and the magni-
tudes of the physiological responses that generate 
time-dependent effects. For example, the nutritional 
status of an organism (influenced by the mean and var-
iance in resources) could alter the sensitivity to stressful 
temperatures (Terblanche et al. 2011) and therefore the 
onset and the magnitude of a temperature-driven stress 
effect. Similarly, the dynamics of nutrient reserve accu-
mulation and utilization could have different thermal 
sensitivities so that the magnitude of the reserve effect 
depends on whether temperature and food availability 
covary or not (Koussoroplis and Wacker 2016). In 
some cases organisms might respond to different 
stressors with the same physiological mechanisms 
(Gunderson et  al. 2016) generating a very large 
diversity of possible response patterns. Clearly beyond 
the scope of the present paper, the possible patterns are 
discussed elsewhere (Gunderson et al. 2016, Taff and 
Vitousek 2016).

In conclusion, discarding static performance curves 
from future research because of time-dependent effects 
would be counter-productive (Sinclair et al. 2016). These 
curves are readily available in the literature and are rela-
tively easy to obtain experimentally. Yet, understanding 
when and how specific time-dependent effects can be 
expected (Box 3) is essential for making the best out of 
static performance curves. Based on such knowledge the 
ST approach can be optimally used, either as a tool for 
diagnosis or  as a tool for prediction.

Application 1: Cross-Dependence Between  
Co-limiting Factors and Responses to  

Environmental Variation

A co-limitation function may differ in whether the 
two co-limiting factors cross-depend or not. Here, 
cross-dependence is defined as the influence of the level 
of a co-limiting factor on the shape of the response to 
another factor (e.g., inflexion or half-saturation points). 
In some studies, cross-dependence is termed an “inter-
action” between the factors (Cross et al. 2015), while in 
others, “interaction” is used to indicate non-additivity 
(Sperfeld et al. 2016). We therefore use the term cross-de-
pendence to avoid any confusion. Note however, that 
co-limitation is also possible without cross-dependence 
between factors. In this case, the level of one of the co-
limiting factors influences only the maximum response 
to the other factor. Whether we have cross-dependence 
or not is determined by the underlying physiological 
mechanisms that drive the co-limitation. How cross-
dependence (or its absence) mediates organismal 
responses to environmental variation is unknown. Here, 
we combine effect partitioning with numerical simula-
tions to explore this question within the context of global 
change biology.
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Box 3. Time-scale-dependent effects.

Reserve and inertia
Storage is an ubiquitous feature of living organisms allowing them to store energy, water, or specific nutri-

ents for future use, thus partially decoupling resource fluctuations in the environment from growth (Sterner 
and Schwalbach 2001, Hood and Sterner 2010). The assimilated energy and nutrients are first transformed 
into a metabolically inactive pool called reserves and subsequently mobilized to maintenance, growth, and 
reproduction (Kooijman 2010). Hence, reserves act as a low-pass filter that reduces the amplitude to some 
extent, or completely mutes high-frequency environmental variation (Muller and Nisbet 2000, Fujiwara et  al. 
2003). Note that the thermal inertia of the body acts exactly like the reserve effect, decoupling to some extent 
body temperature from environmental temperature fluctuations (Helmuth et  al. 2010).

For concave downward performance responses, reserve should cause observations to deviate from the ST 
prediction and converge toward the mean-field, thereby mitigating the negative effects of resource variance on 
physiological performance (Fig.  4a). However, the magnitude of this mitigating effect decreases with decreasing 
reserve capacity per unit biomass (or decreasing body size for thermal inertia) and with decreasing frequencies 
of resource (or temperature) fluctuations (Stevenson 1985, Fujiwara et  al. 2003). Therefore, the observed 
performance should tend toward the ST predictions with decreasing fluctuation frequencies (Fig.  4e).

Stress
The duration of exposure to temperatures (or other factors) that lie far from the thermal optimum may 

decrease performance with increasing duration of exposure, an effect referred to as thermal stress (Niehaus 
et  al. 2012, Rezende et  al. 2014, Kingsolver et  al. 2015). The stress is due to various physiological mechanisms 
(e.g., expression of heat shock proteins) aiming to improve short-term survival but negatively affect long-term 
performance (e.g., growth, development, or reproduction).

Typically, the static performance curves of organisms are measured over longer temporal scales (several 
days or weeks, e.g., from birth to sexual maturity) than those at which the organism experiences variability 
(daily, hourly). Hence, while the static performance curve reflects the potential stress effects, this stress might 
not occur under fluctuating conditions when the organism is only shortly exposed to the stressful levels of 
the limiting factor. Consequently, ST predictions overestimate the effect of environmental variance on organ-
ismal performance (Fig.  4b). However, the duration of continuous exposure to the stressful factor levels 
increases when the environmental fluctuation frequency decreases, thereby inducing stress responses. Hence, 
for decreasing frequencies, observations should tend toward and eventually match the ST predictions (Fig.  4e).

Phenotypic plasticity effects: acclimation and compensation
When given enough time, organisms might dynamically acclimate their physiology to match the prevailing 

environmental conditions in order to optimize performance (Taff and Vitousek 2016). As for stress effects, 
acclimation responses might be reflected in the static performance curves, but may not occur under variable 
conditions when the environment changes faster than organisms can acclimate. Hence, the organism spends 
a large amount of time suboptimally acclimated, during which it underperforms. In this case, the ST predic-
tions based on static performance curves will underestimate the effect of environmental variance on organismal 
performance (Fig.  4c). However, for decreasing frequencies, the organism has increasingly more time to fully 
acclimate and perform optimally thus causing the observations to tend toward, and eventually match the ST 
predictions (Fig.  4e)

Phenotypic plasticity in individual performance may also occur under the form of compensatory growth. 
The general pattern is for individuals that experienced a period of low growth (e.g., due to low food avail-
ability or temperature) to enter a phase of growth acceleration when conditions improve (Metcalfe and Monaghan 
2001). This is achieved by various mechanisms such as increased resource uptake rates, prolongation of the 
daily feeding activity or decreasing competitive interactions between individuals (Arendt 1997, Metcalfe and 
Monaghan 2001, Gurney et  al. 2003). Static performance curves do not incorporate compensatory growth 
effects because the organisms never experience changes in growth conditions. Yet, compensation may occur 
under variable conditions, leading to higher growth than predicted (Fig.  4d).

Whether compensatory growth responds to environmental fluctuation frequency depends on how the organism 
“measures” its developmental delay. When it is measured as the time spent growing suboptimally, compensation 
effects should appear at low fluctuation frequencies causing observations to deviate from predictions and 
potentially surpassing the mean-field (Fig.  4e). However, the delay might also be assessed as the developmental 
state reached at a fixed point in time (e.g., determined by seasonal daylight or temperature changes). In this 
case, compensation responses should be independent from environmental fluctuation frequencies.
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Temperature–nutrition interactions and global change

Temperature and nutrient availability are considered 
key drivers of the rates and the pathways of material and 

energy movement through ecosystems (Cross et al. 2015). 
Temperature and nutrition are tightly linked at the phys-
iological level and often co-limit ectotherm performance. 
Temperature alters the rates of food assimilation and 

Fig. 4.  Time-scale effects (see also Box 2). (a) Reserve effect. Environmental resource variance (Rlow − Rhigh) and resource 
reserve variance (R∗

low
−R∗

high
). (b) Stress effect. The performance depends on exposure duration. (c) Acclimation effect. The 

organism acclimates to optimize its performance for a given level of the limiting factor (dotted curves). (d) Compensatory growth 
effect. Following a prolonged period of growth restriction, the organism grows faster than expected (dotted line) under favorable 
conditions. (e) Influence of fluctuation frequency of the limiting factor (F) on the magnitude of the time-dependent effects. Gray-
filled circles are mean-field estimates of performance g(R̄); open black circles show inferred performance from static response curves 
(solid black curves), g(R)i. Open red circles are the realized performance, g(R)r, under the influence of a time-dependent effect. The 
different effects do not necessarily manifest within the same range of frequencies.
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energy expenditure thus changing the quantitative needs 
for food (Lemoine and Burkepile 2012). Temperature also 
influences the physiological needs of ectotherms for some 
specific nutrients (Sperfeld and Wacker 2012, Malzahn 
et  al. 2016). Changes in temperature and in resource 
quantity and quality are expected to occur concomitantly 
as a result of global changes (Bauerfeind and Fischer 
2013, De Senerpont Domis et al. 2014) thus stressing the 
need to increase our understanding of how these two 
factors act on ectotherm fitness in a variable world. There 
are two frequently assumed models for the co-limitation 
of ectotherm performance by temperature and a resource 
(sensu Tilman 1982) that could be either energy (food 
quantity, light) or a specific nutrient (food quality).

Constructing a mean-field model: the  
multiplicative model

The first model argues that temperature sets the 
maximum growth rate of an organism, while the limiting 
resource levels mediate the realized growth rate. In this 
model, the maximal possible performance drops with 
decreasing food availability or quality, yet the shape of the 
TPC (the position of temperature optimum, critical tem-
peratures, and inflexion points along the temperature axis) 
remains unchanged across resource abundances (Fig. 5a, 
solid lines). Furthermore, the model implies that the effect 
of nutrition is maximal at the optimal temperature, while 
nutrition has almost no effects close to the extreme tem-
peratures (Fig.  5a, solid lines). This model describes a 
simple (here multiplicative) co-limitation function where 
the two factors do not cross-depend. It can be written as 

where g(T, R) is the realized growth rate (or some other 
performance parameter), f(T) is the function describing the 
temperature dependence of growth, R is the availability of 
the limiting resource, and k a half-saturation coefficient. 
Note that we model resource dependence of growth as a 
Monod function, usually applied to nutritional limitation. 
Light limitation is modelled differently, yet the shape of the 
response is qualitatively similar to the Monod model as 
long as no photo-inhibition occurs. Regarding the temper-
ature function, f(T) (see Appendix S2), many alternative 
formulations are possible, most of them describing a 
unimodal right-skewed curve (Angilletta 2006).

Constructing a mean-field model: the  
cross-dependent model

The second model states that, in addition to setting the 
maximum growth rate, temperature also affects the nutri-
tional dependence of growth, i.e., how efficiently the 
organism captures and utilizes resources. In this model, 
the shape of the TPC changes depending on resource 
abundance (Fig. 5b, solid lines). This is what we define as 
a cross-dependent co-limitation and can be written as 

where k(T) is some function (see Appendix S2) of tem-
perature: linear, accelerating (Rhee and Gotham 1981), 
or unimodal (Edwards et  al. 2016). Applying the ST 
theory on the two models above allows us to predict the 
net effect of combined temperature and resource var-
iance around various mean values of the two factors 
(Fig. 5a, b, dashed lines). Below, we show how the two 
types of models differ in terms of the mechanisms that 
drive the effect of environmental variation on perfor-
mance (Fig. 5c–f).

Partitioning the effects of environmental variation:  
multiplicative vs. cross-dependent model

Partitioning the variance effects of the simple co-
limitation model (Eq. 2) shows that the relative temper-
ature variance effect remains unchanged between 
resource conditions (Fig.  5c vs. Fig.  5d; Appendix S2: 
Fig. S3). Similarly, the resource variance effect remains 
constant across mean temperature conditions (Fig.  5c; 
Appendix S2: Fig. S3). The implications can be better 
understood in a hypothetical situation where the resource 
for consumers within a given habitat is nearly constant 
but is highly variable among habitats. If the simple co-
limitation model applies, the nutritional context of the 
habitat (level of resource limitation) of the consumer 
should not affect its relative sensitivity to thermal var-
iance (i.e., percent change in performance relative to the 
constant conditions), which will then solely depend on 
the mean temperature of the habitat. Mathematically, 
this can be explained by the fact that the value of the 
temperature variance effect (1

2
g′′

T,T
(T̄,R̄)𝜎2

T
, Appendix S2: 

Fig. S2) changes at same rate as the mean-field (g(T̄,R̄), 
Appendix S2: Fig. S1) does along a gradient of mean 
resource. Similarly, the temperature might be constant 
within habitats but the organism might face important 
temporal nutritional variance. For the same average level 
of resource, the relative sensitivity of performance to 
nutritional variance should remain unaffected across dif-
ferent thermal habitats (Appendix 2: Fig. S3).

In the case of a cross-dependent co-limitation (Eq. 3), 
the temperature variance effect (Appendix S2: Fig. S2) 
along a gradient of mean resource changes at a different 
rate than the mean-field does (Appendix S2: Fig. S1). 
This implies that the sensitivity to temperature variance 
changes across resource contexts (Fig.  5e vs. Fig.  5f; 
Appendix S2: Figs. S3 and S4). In the specific example 
shown here, the performance of a light or nutritionally 
limited organism experiencing mean temperatures close 
to its optimum will be more sensitive to thermal variance 
than under moderate or no resource limitation. For the 
same reasons, the negative effect of light or nutritional 
variance will peak when the mean environmental temper-
ature conditions are around the thermal optimum of the 
organism (Fig. 5e, f).

(2)g(T,R)= f(T)
R

k+R

(3)g(T,R)= f(T)
R

k(T)+R



May 2017 189PERFORMANCE IN FLUCTUATING ENVIRONMENTS

C
o
n
c
e
p
ts &

 S
yn

th
e
s
is

Fig. 5.  Exploring the role of cross-dependence between co-limiting factors. Each component effect is derived from Eq. 2. The 
net effect is the sum of all compound effects. (a, b) Net effect of joint temperature and resource variance (�2

T
=4 and �2

R
=0.5, 

respectively) on ectotherm performance for the (a) simple and the (b) cross-dependent co-limitation models (Eqs.  2 and 3, 
respectively) with severe resource limitation (LR, low resource, R̄=1) and near saturating resource (HR, high resource, R̄=4.4). 
(c–f) Variance effect partitioning based on Eq.  2 for the simple (c, d) and the cross-dependent (e, f) interaction models. Red, 
temperature variance effect; blue, resource variance effect; orange, temperature and resource covariance effect; black, net variation 
effect. The effects are calculated for the maximum and minimum possible covariance (long dashed lines, σT,R = 1.41, and short 
dashed lines, σT,R = −1.41, respectively). See Appendix S2 for model equations and parameters.

0 5 10 15 20 25 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 5 10 15 20 25 30 35

0 5 10 15 20 25 30 35

-4
0

-2
0

0
20

40

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Resource variance

> 0
< 0

> 0
< 0

Net effectCompound effects
Temperature variance

Covariance

Covariance

> 0
< 0

a) b)

c) d)

High resource (HR)

Low  
resource (LR)

e) f)

Mean temperature (°C) 

Vi
ta

l r
at

e 
(d

-1
)

Ef
fe

ct
 (%

) 

HR HRLRLR

Simple (multiplicative) co-limitation Cross-dependent co-limitation



190 APOSTOLOS-MANUEL KOUSSOROPLIS ET AL.

C
o
n
c
e
p
ts

 &
 S

yn
th

e
s
is

Ecological Monographs 
 Vol. 87, No. 2

When both temperature and resource vary, the org
anism experiences the effects of their covariance (App
endix S2: Fig. S2). Regardless of the co-limitation type 
(simple or cross-dependent), the sensitivity of perfor-
mance to covariance changes both along mean temper-
ature and resource gradient. In general, the sensitivity to 
covariance increases as the resource becomes more lim-
iting (Fig. 5c, f; Appendix S2: Fig. S3). Yet, the patterns 
along the temperature gradient strongly differ between 
the two co-limitation models. In the simple co-limitation, 
the sensitivity to covariance increases monotonically as 
the temperature moves away from the thermal optimum 
and toward the lower boundary of the TPC. In the case 
of cross-dependent co-limitation, the sensitivity to covar-
iance peaks near the thermal optimum. It becomes null at 
the optimum and then above the optimum increases 
again but with an inversed direction.

In conclusion, the co-limitation model clearly deter-
mines how the effects of each co-limiting factor mix in the 
various regions of the state-space to determine the net 
effect on physiological performance. Hence, knowledge of 
the underlying co-limitation model is essential for deter-
mining the mechanism through which changes in environ-
mental heterogeneity alter organismal performance.

Application 2: Revisiting the Effects of  
Thermal Stress Coincidence

Here, we present a second example of how our 
framework can be used to infer the mechanisms at play 
during the response of organisms to multifactorial and 
variable environments using a published experimental 
study (Pincebourde et al. 2012). In this study, the authors 
were interested in the effects of the degree of coincidence 
(within a tidal cycle) of extreme, yet non-lethal aerial and 
underwater body temperatures (emersed [Te] and 
immersed [Ti], respectively) on the long-term feeding rate 
of an intertidal predator (Pisaster ochraceus). This study 
controlled the mean and variance effects to show that the 
temporal pattern of emersed temperatures relative to 
immersed temperatures influenced predation rate rather 
counter-intuitively.

First, we show how the experimental design of the 
study can be translated in the mathematical terms used in 
the present framework and generate mechanistically jus-
tified null hypotheses. Second, we use the effect parti-
tioning to gain novel theoretical insight on how the effects 
of thermal stress coincidence depend on mean Ti and Te 
conditions. Finally, we use the conceptualization of the 
time-dependent effects presented above to provide a 
more solid interpretation of the deviations of the experi-
mental observations from the null hypotheses, which was 
not possible to infer outside the proposed framework.

Constructing a mean-field model

The first step for applying ST theory is to describe 
the performance as a function of the focal factors in a 

mathematical model. Following the logic in Pincebourde 
et  al. (2012), we treated Te and Ti as two independent 
factors operating within each tidal cycle (emersion-
immersion) to co-limit predator performance (prey con-
sumption rate during emersion). We assumed that the 
responses to Te and Ti are both unimodal TPC, fe(Te) and 
fi(Ti), respectively, each with a unique set of parameters 
(Appendix S3). As we are not aware of any published 
model on how the two factors co-limit the performance 
of intertidal rates, we assumed the following simple mul-
tiplicative model: 

where p(Te, Ti) is the per capita predation rate in a tidal 
cycle and pmax its maximal possible value (constant). The 
parameters of the model were adjusted empirically to fit 
the experimental observations under various combina-
tions of constant Te and Ti conditions (Appendix S3: Fig. 
S1). The generated model can therefore be used as the 
mean-field in Eq. 1 and, as we show below, it allows for-
mulating mathematically grounded null hypotheses for 
the effects of the variance in each factor as well as the 
effects of their covariance and co-limitation.

From coincidence to covariance

In order to generate the ST predictions, we quantified 
the means, variances, and covariances of Te and Ti applied 
in each of the experimental treatments in Pincebourde 
et al. (2012). In the original study, the authors did not 
quantify the covariance in Te and Ti. Instead, they quan-
tified the degree of coincidence between stressful Te and 
Ti, i.e., the relative proportion of the tidal cycles (during 
the entire duration of the experiment) at which Te and Ti 
above a given threshold coincided. In essence, the degree 
of “coincidence” in extreme Te and Ti temperatures 
depends on the correlation between the fluctuations of the 
two factors. When scaled to the respective amplitudes of 
the fluctuations of Te and Ti, this correlation corresponds 
to their level of covariance. Hence, the extreme high Te 
and Ti coincide (100% coincidence) when their covariance 
is maximal (strongly positive). The covariance is minimal 
(strongly negative) when the Te and Ti peaks do not 
coincide (0% coincidence). Finally, in the case of partial 
coincidence (50%) treatments the covariance is close to 
zero (slightly positive or negative).

Exploring the relationship between coincidence  
and the mean thermal conditions

In their study, Pincebourde et al. (2012) generated a 
series of theoretical predictions (Fig.  6) subsequently 
used as null hypotheses for their experiments. These pre-
dictions were generated by averaging the consumption 
rates they observed under constant temperature condi-
tions. In essence, their predictions correspond to the 
integrated performance, p(Ti,Te), introduced in Eq.  1. 

(4)p(Te,Ti)=pmaxfe(Te)fi(Ti)
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Indeed, by using our theoretical model for temperature-
dependent predation rate (Eq. 4) with the ST approach 
we obtained very similar predictions (Fig. 6). Yet, in con-
trast to the original predictions, ours are mathematically 
linked to (1) clearly identified features of the temperature 
reaction norm of the predator (nonlinearities) and (2) to 
the statistical structure of the immersed and emersed 
thermal environments experienced by the predator 
(mean, variance, and covariance).

For example, the prediction of lower average predation 
rates under variable Ti compared to variable Te condi-
tions (Fig.  7) despite twofold higher thermal variance 
applied in the latter (7° and 15°C2, respectively) is due to 
the much higher curvature along the Ti axis (i.e., 
p′′

Ti ,Ti
(Ti,Te)>p′′

Te,Te
(Ti,Te)). More interestingly, the 

apparently counter-intuitive result that the frequent coin-
cidence of stressful Ti and Te peaks within a tidal cycle is 
less harmful for performance than their non-coincidence 
(Fig. 6) can be explained by the synergistic effects (i.e., 
p′′

Ti ,Te
(Ti,Te)>0) of the two factors on predation rate. A 

100% coincidence of Ti and Te stressful events means that 
lower (more optimal) Ti and Te also always coincide. The 
predation rates under these coincident optimal condi-
tions are high enough to compensate for the coincident 
stressful conditions. More importantly, the synergy (or 

super-additivity) of Ti and Te implies that the positive 
effect of coincident optimal Ti and Te on the predation 
rate is higher than the sum of the effects of each factor 
alone (i.e., when optimal Ti and Te never coincide).

Under the assumed mean-field model, the ST theory 
can be used to expand the predictions of the net effects of 
temperature variability (Fig. 5a) and the relative impor-
tance of each factor to these effects (Fig. 5b–d) over a wide 
range of environmental conditions (see also Appendix S3: 
Fig. S2). For example, all else being equal, an increase in 
mean Te from 21.5° to 24°C should have a stronger neg-
ative effect on the average predation rate under non-
coincidence (or negative covariance) than coincidence (or 
positive covariance) conditions (−24% and −17% respec-
tively; Fig. 7a). Regarding the effect partitioning, the rel-
ative effect of Te variance (1

2
p′′

Ti ,Ti
(Ti,Te)�2

Te
) and of 

covariance (p′′
Ti ,Te

(Ti,Te)�Ti ,Te
) should increase (Fig. 7c, d).

Interestingly, all else being equal, colder mean water 
temperatures (Ti < 12°C), should lead to an inversion of 
the covariance effects (Fig.  7c) (p′′

Ti ,Te
(Ti,Te)<0). This 

implies that negative covariance in Ti and Te contributes 
positively to performance, while positive covariance has 
a negative effect (Fig. 7a). In this case, however, the coin-
cidence of stressors should also be redefined as a negative 
covariance situation in which suboptimally low Ti (cold 

Fig. 6.  Revising thermal stress coincidence. Theoretical predictions and experimental observations of the per capita feeding rate 
of Pisaster ochraceus under the various thermal treatments in Pincebourde et al. (2012). These treatments consisted in manipulating 
the variance of immersion (Ti) and emersion (Te) body temperatures. We recalculated the covariance values from the data available 
in Pincebourde et al. (2012). See Appendix S3 for model equations and parameters
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stress) coincides with suboptimally high Te (heat stress). 
Consequently, when expressed in terms of stress coinci-
dence, the pattern of the effects should remain unaltered 
(i.e., a higher performance should be observed under 
stress coincidence conditions)

Reinterpreting observed deviations

Under Ti variance alone and under coincident (100%) 
fluctuating regime, the observed predator performance 
reached a level similar to that predicted but was otherwise 

always below (i.e., for Te variance alone, 50% and 0% 
coincident fluctuating regimes; Fig.  6). The underlying 
mechanisms of these deviations being unknown, the 
authors hypothesized that P. ochraceus requires a period 
free of any thermal stress to either recover from, or com-
pensate for the effects of past exposure. According to this 
hypothesis, in the 100% coincidence treatments, episodes 
of cold water occurring right after periods of concom-
itant high aerial and underwater thermal stresses could 
optimize the capacity of P. ochraceus to recover or com-
pensate quickly. Here, we use the conceptualization of 

Fig. 7.  Simulation of immersion (Ti) and emersion (Te) temperature covariance effects on the long-term average per capita 
predation rate of P. ochraceus along a gradient of mean Ti and three mean Te values. (a) Performance under constant condition 
(solid lines) vs. performance under variable conditions for maximal (long dashed lines) and minimal covariance (short dashed lines) 
predicted using the scale transition (ST) approach. (b–d). Effect partitioning using the ST approach. The effects are expressed as 
deviation (%) from the mean-field. The net effect is the sum of all the effects under positive or negative covariance conditions. The 
vertical line depicts the effect partitioning under the mean experimental conditions used in Pincebourde et al. (2012). Simulation 
parameters �2

Ti
=7,�2

Te
=15, �Ti ,Te

=±10. See Appendix S3 for model equations and parameters.
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time-dependent effects that we presented above to refine 
the authors’ original hypothesis.

Some observations deviate from our predictions of 
integrated performance p(Ti,Te). Referring back to 
Fig. 4c and e, this type of deviation is in agreement with 
our definition of the phenotypic plasticity effect (Box 3; 
Fig. 4c). When exposed to high temperatures during the 
low tide, P. ochraceus increases feeding rate during the 
next high tide phase (Pincebourde et al. 2008). This sug-
gests an acclimation aiming to compensate the metabolic 
costs of high Te during the following immersion. However, 
this plastic response seems to be constrained by trade-offs 
involving a suboptimal performance under low Te 
(�2

Te
 effect, Fig. 6) and/or low Ti (�Ti ,Te

 effects, 50% and 
0% coincidence, Fig. 6). This further contributes to the 
apparently counter-intuitive result of lower performance 
under lower stress coincidence (effects, 50% and 0% coin-
cidence, Fig. 6).

In conclusion, we demonstrated that our framework 
not only enables a novel theoretical insight into the rela-
tionship between thermal stress coincidence and mean 
thermal conditions in intertidal habitats, but that it also 
provides a solid re-interpretation of the exact mecha-
nisms contributing to the experimental observations.

Discussion

Exploring the role of environmental covariance as a 
driver of physiological performance

We report that covariance can drive or at least strongly 
influence integrated physiological performance over a 
wide range of values of co-limiting factors. The inte-
grated physiological performance becomes sensitive to 
co-limiting factor covariance when the factors act non-
additively on physiological processes. Hence, the fact 
that non-additive responses to ecological factor combi-
nations appear to be the rule in nature (Darling and Côté 
2008, Jackson et al. 2016) strongly suggests that covar-
iance plays a major yet largely overlooked role in organ-
ismal performance (Pincebourde et al. 2012, Koussoroplis 
and Wacker 2016).

Covariance patterns in nature are highly diverse and 
depend on the considered factors (Boyd et  al. 2014, 
Gunderson et  al. 2016). While only one covariance 
direction prevails in some combinations (e.g., positive 
covariance between temperature and drought intensity), 
the direction and the strength of covariance may vary 
between habitats, scales, or seasons in other combina-
tions (Gunderson et al. 2016). For example, Reum et al. 
(2014) showed that the variance in carbonate chemistry, 
temperature, and oxygen, as well as the strength and the 
slopes of their correlations in the water column of a fjord, 
change with season and location, thereby exposing ver-
tical migrators to different covariance patterns. Similarly, 
depending on the biogeochemical context, phytoplankton 
density, the main food of freshwater herbivorous zoo-
plankton, may peak in the warmer surface layer or in the 

deep cold waters thus leading to a positive or negative 
food–temperature covariance, respectively (Winder et al. 
2004). Both situations can occur within the same lake at 
different times or simultaneously at different locations 
(Rinke et al. 2009). Despite the examples above and few 
others, the environmental covariance structures experi-
enced by organisms remain to be determined in most eco-
logical contexts.

Anthropogenic pressure on ecosystems can potentially 
modify the natural covariance patterns through several 
ways. Because the covariance in two factors is the product 
of their SD to their correlation coefficient, a change in the 
variance of any of the two variables or their spatial or 
temporal correlation also modifies covariance. For 
example, there is compelling evidence that thermal varia-
bility will change over the next century, both temporally 
(Easterling et al. 2000, Donat and Alexander 2012) and 
spatially (Sears et al. 2011, Caillon et al. 2014, Kraemer 
et  al. 2015). All else being equal, these changes should 
alter the covariance between temperature and any other 
temporally or spatially correlated co-limiting factor. Yet, 
covariance might also change independently from var-
iance. In a thermally heterogeneous landscape, an 
increase in mean temperature may homogenize the spatial 
distribution of prey or skew it toward the relatively cooler 
patches, thus driving resource-temperature covariance 
experienced by ectotherm consumers toward zero or 
more negative values, respectively (Huey 1991, Davies 
et al. 2006). Changes in other factors, such as competition 
or predation, might also drive the prey toward different 
thermal habitats, thus modifying the food–temperature 
covariance experienced by their consumers.

Our framework provides two important insights on 
when and how the covariance structure experienced by 
organisms and its potential alterations influence the 
physiological performance. The first is that synergy and 
antagonism of the co-limiting factors determine whether 
a given covariance direction (positive or negative) 
improves or reduces physiological performance. Yet, in 
some cases, the effect of two co-limiting factors on phys-
iological performance can switch from synergistic to 
antagonistic or additive depending on the mean values of 
the factors (Sperfeld et  al. 2016) indicating that the 
direction and the magnitude of covariance effects is 
context specific but still predictable. The second important 
insight is that depending on the complexity of the inter-
action between the co-limiting factors, the sensitivity to 
co-limiting factor covariance might peak either at the 
edges (e.g., close to the critical points of the TPC) or close 
to the center (e.g., close to the thermal optimum of the 
TPC) of the ecological niche of a species. In the first case, 
the species is sensitive to stressor coincidence (i.e., 
extreme co-limiting factor values), even in the absence of 
physiological damage or compensatory responses 
(Gunderson et  al. 2016, Taff and Vitousek 2016), and 
covariance patterns potentially determine the spatiotem-
poral limits of the species distribution. In the second case, 
covariance will determine the species performance in its 
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preferred habitat and covariance patterns potentially set 
the population growth rate.

Applying the framework to global change biology:  
challenges and perspectives

Understanding the mechanistic details of organismal 
physiological performance increases considerably our 
ability to predict and anticipate the effects of global 
change at the scales of biotic communities (Helmuth et al. 
2005). In this context, the roles of (1) environmental (to 
date, mostly thermal) heterogeneity (e.g., Potter et  al. 
2013, Vasseur et al. 2014, Dowd et al. 2015), (2) the inter-
actions between temperature and other drivers of global 
change (e.g., Cross et al. 2015, Gunderson et al. 2016), 
and (3), the phenotypic plasticity of the organisms facing 
environmental changes (Gunderson et al. 2016, Taff and 
Vitousek 2016) emerge as major research issues. Here, all 
these aspects are united into a common conceptual 
framework applicable for designing experiments, inter-
preting experimental and field data, and eventually pre-
dicting the biological impacts of ongoing global change. 
While employing the framework for designing and inter-
preting controlled lab experiments is rather straight-
forward (Koussoroplis and Wacker 2016), applying it for 
testing hypotheses or generating predictions in more 
complex field contexts involves certain challenges, which, 
once addressed, open new perspectives.

Each organism experiences the environment and its 
variations at the spatial and temporal scales imposed by 
body size and its resulting properties (e.g., metabolic 
rates, mobility, longevity; Woods et  al. 2015). Thus, a 
first challenge is to measure in parallel the environmental 
factors of interest at the scales that are relevant for the 
organisms. For example, biomimetic data logging is a 
promising method for obtaining organism-relevant high 
resolution (both spatial and temporal) data sets for body 
temperature (Helmuth et al. 2010). Biophysical modeling 
can be an important alternative approach to extensive 
data logging, yet quite demanding in terms of parameter 
determination (Helmuth et al. 2005). These approaches 
should be extended to obtain parallel temporal series for 
factors such as pH, dissolved oxygen, salinity, and other 
physical constraints. This would enable a baseline under-
standing of how all these potentially co-limiting factors 
covary at scales relevant to organisms.

Usually, organisms experience environmental fluctua-
tions (Vasseur and Yodzis 2004, Dillon et al. 2016) with 
different effects on performance among temporal grains. 
Therefore, a great challenge underlying the estimation of 
the biological impacts of climatic change is to measure 
the amount of variance experienced by organisms at the 
different temporal scales. A promising tool for achieving 
this is spectral analysis. It uses Fourier transforms to 
decompose a time series (e.g., body temperature) into 
sine waves of different amplitudes (variance or power) 
and frequencies (Dillon et al. 2016). Used on field time 
series, this approach enables the quantification of the 

contribution of each frequency to the total variation. 
This can be very useful for identifying the temporal scales 
at which environmental variation most strongly influ-
ences performance and for designing experiments 
addressing the impacts of multiscale environmental vari-
ation (Dillon et  al. 2016). There is a promising oppor-
tunity to operate a fruitful connection between ST theory 
and spectral analysis (Denny 2016), which can be readily 
extended to embrace the multifactorial perspective of our 
framework (e.g., by using metrics such as cross-covariance 
or coherence) and to assess how co-limiting factors 
covary at different temporal scales.

In nature, the physiological responses to environmental 
variation cannot be decoupled from behavior as these two 
aspects interact. A moving individual samples space at a 
given rate, causing a unique value of variance that inte-
grates both space (e.g., spatial heterogeneity of tempera-
tures) and time (e.g., sampling rate of patches and temporal 
variability within the patches; Woods et al. 2015). Behavior 
is permanently adjusted according to environmental con-
ditions and to the status of the organism (e.g., its thermal 
needs or nutritional state). For example, many organisms 
exhibit thermoregulatory behaviors and/or will track to a 
certain extent resource peaks in the landscape thereby 
acting as a strong filter of environmental temperature var-
iance (Sears and Angilletta 2015; Pincebourde et al. 2016). 
Hence, fine tracking of organisms’ movements in their 
habitat is essential for understanding how they integrate 
and filter the heterogeneity of their environment into par-
allel time-series of co-limiting factors. In that aim, recent 
technological progress offers a large panel of bio-logging 
and bio-tracking methods, applicable even to small 
organisms such as insects (Le Galliard et al. 2012).

Sclerochronology offers a highly promising alternative 
or complementary approach, yet limited to organisms 
with incremental sclerified structures. For example, by 
combining microchemical and microscopic methods, 
otoliths can provide parallel time series of proxies for 
several potentially co-limiting factors including temper-
ature, food intake, and water chemistry (Morrongiello 
et  al. 2012). These time series are individual, integrate 
both environmental variability and behavior, and in 
some cases, can be highly resolved (up to the daily scale; 
Morrongiello et al. 2012). Furthermore, otoliths offer the 
possibility to estimate performance (growth rate), both at 
short and long time scales. Combined with pre-established 
performance curves, such otolith-derived data sets could 
offer a formidable opportunity to test and apply our 
framework and contribute powerful insights on how 
ongoing multifactorial changes in the statistical structure 
of the environment affect individual performance.

Pre-established performance curves and surfaces are 
essential for the application of the framework. Performance 
curves for a large diversity of factors (temperature, food, 
light, etc.) and organisms are readily available in the liter-
ature, yet performance surfaces are still relatively rare. 
This is partially due to the relatively recent inclusion of 
multiple factors in experimental global change biology but 
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mostly to the predominance of factorial ANOVA-oriented 
designs incorporating only few highly replicated factor 
levels (usually two to three). Our framework underscores 
the insights to be gained by shifting from factorial to gra-
dient designs (sensu Sperfeld et al. 2016) in experimental 
global change biology. Gradient experimental designs, 
consist in measuring performance over a continuous mul-
tifactorial state space. The effort of increasing the range of 
tested values very likely imposes a decrease in treatment 
replication. We argue that this cost is worthwhile because 
the question is no longer to verify whether there is a signif-
icant interaction between two environmental factors but to 
understand how this interaction changes in the variable 
state space.

An interesting alternative to experiments is physio-
logical modeling, but it also involves experimental deter-
mination of several parameters. Physiological modeling, 
potentially combined with experiments, offers a prom-
ising avenue for a tighter theoretical integration of time-
dependent effects in our framework (e.g., Kingsolver and 
Woods 2016). Although further theoretical developments 
are required, the models could be used to generate 
response surfaces with temporal scale (fluctuation fre-
quency) as a factor co-limiting performance (Rezende 
et al. 2014) and thus to explicitly incorporate time scale 
as a factor in the ST equations. Such an integration would 
allow one to address aspects such as periodicity (time 
scale has no variance) or stochastity (time scale has a var-
iance) of environmental fluctuations. For all their detail, 
physiological models do not question the necessity of the 
ST approach. Indeed, slightly paraphrasing Chesson 
(2012): ST is a biological theory. It is not intended to be 
a better way of solving models or performing calcula-
tions. ST is about quantitative concepts (curvature, var-
iance, and covariance) that explain the behavior of 
biological systems. Finally, there is much to be gained by 
playing with the high flexibility of the ST theory in a 
multifactorial context.
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