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Abstract: Gibbs-type random probability measures, or Gibbs-type priors,
are arguably the most “natural” generalization of the celebrated Dirichlet
prior. Among them the two parameter Poisson–Dirichlet prior certainly
stands out for the mathematical tractability and interpretability of its pre-
dictive probabilities, which made it the natural candidate in several appli-
cations. Given a sample of size n, in this paper we show that the predictive
probabilities of any Gibbs-type prior admit a large n approximation, with
an error term vanishing as o(1/n), which maintains the same desirable fea-
tures as the predictive probabilities of the two parameter Poisson–Dirichlet
prior.
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1. Introduction

Gibbs-type random probability measures, or Gibbs-type priors, are arguably the
most “natural” generalization of the Dirichlet process by Ferguson [17]. They
have been first introduced in the seminal works of Pitman [36] and Gnedin and
Pitman [18], and their importance in Bayesian nonparametrics have been exten-
sively discussed in Lijoi and Prünster [30], De Blasi et al. [12] and Bacallado et
al. [4]. Gibbs-type priors have been widely used in the context of Bayesian non-
parametric inference for species sampling problems, where their mathematical
tractably allowed to obtain explicit expressions for the posterior distributions of
various population’s features, and to predict features of additional unobservable
samples. See, e.g., Lijoi et al. [27], Lijoi et al. [29], Favaro et al. [14], Favaro et
al. [15], Bacallado et al. [3] and Arbel et al. [1]. The class of Gibbs-type priors
has been also applied in the context of nonparametric mixture modeling, thus
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generalizing the celebrated Dirichlet process mixture model of Lo [31]. Nonpara-
metric mixture models based in Gibbs-type priors are characterized by a more
flexible parameterization than Dirichlet process mixture model, thus allowing
for a better control of the clustering behaviour. See, e.g., Ishwaran and James
[22], Lijoi et al. [26], Lijoi et al. [28], Favaro and Walker [16] and Lomeli et
al. [32]. Most recently, Gibbs-type priors have been used in Bayesian nonpara-
metric inference for ranked data (Caron et al. [9]), sparse exchangeable random
graphs and networks (Caron and Fox [8] and Herlau [20]), exchangeable feature
allocations (e.g., Teh and Görür [41], Broderick et al. [5], Heaukulani and Roy
[19], Roy [38] and Battiston et al. [6]), reversible Markov chains (Bacallado et al.
[2]), dynamic textual data (Chen et al. [10] and Chen et al. [11]), and bipartite
graphs (Caron [7]).

The definition of Gibbs-type random probability measures relies on the notion
of α-stable Poisson–Kingman model introduced by Pitman [36]. Specifically,
let (Ji)i≥1 be the decreasing ordered jumps of an α-stable subordinator, i.e.
subordinator with Lévy measure ρ(dx) = Cαx

−α−1dx for some constant Cα,
and let Pi = Ji/Tα with Tα =

∑
i≥1 Ji < +∞ almost surely; in particular Tα

is a positive α-stable random variable, and we denote its density function by
fα. If PK(α; t) denotes the conditional distribution of (Pi)i≥1 given Tα = t,
and if Tα,h is a random variable with density function fTα,h(t) = h(t)fα(t),
for any nonnegative function h, then an α-stable Poisson–Kingman model is
defined as the discrete random probability measure Pα,h =

∑
i≥1 Pi,hδX∗

i
, where

(Pi,h)i≥1 is distributed as
∫
(0,+∞)

PK(α; t)fTα,h(t)dt and (X∗i )i≥1 are random

variables, independent of (Pi,h)i≥1, and independent and identically distributed
according to a nonatomic probability measure ν0. An α-stable Poisson–Kingman
model thus provides with a generalization of the normalized α-stable process in
Kingman [25], which is recovered by setting h = 1. According to Gnedin and
Pitman [18], Gibbs-type random probability measures are defined as a class of
discrete random probability measures indexed by a parameter α < 1 such that:
i) for any α < 0 they are M -dimensional symmetric Dirichlet distribution, with
M being a nonnegative random variable on N; ii) for α = 0 they coincide with
the Dirichlet process; iii) for any α ∈ (0, 1) they are α-stable Poisson–Kingman
models.

In this paper we focus on the predictive probabilities of Gibbs-type pri-
ors with α ∈ (0, 1), i.e. the posterior expectation E[Pα,h(·) |Xn], with Xn =
(X1, . . . , Xn) being a random sample from Pα,h. Due to the (almost sure) dis-
creteness of the Gibbs-type random probability measure Pα,h, we expect ties in
a sample Xn from Pα,h, that is Xn features Kn = kn ≤ n distinct types, labelled
by X∗1 , . . . , X

∗
Kn

, with corresponding frequencies (N1, . . . , NKn) = (n1, . . . , nkn)
such that

∑
1≤i≤kn ni = n. In other terms the sample Xn induces a random

partition of the set {1, . . . , n}; see Pitman [37] for details on Gibbs-type ran-
dom partitions. According to Pitman [36], the predictive probabilities of Pα,h
are

Pr[Xn+1 ∈ · |Xn] =
Vn+1,kn+1

Vn,kn
ν0(·) +

Vn+1,kn

Vn,kn

kn∑
i=1

(ni − α)δX∗
i
(·) (1)
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for n ≥ 1, where

Vn,kn =
αkn

Γ(n− knα)

∫ +∞

0

∫ 1

0

t−knαpn−knα−1h(t)fα((1− p)t)dtdp, (2)

with Γ(·) being the Gamma function. See, e.g., Pitman [36] and Gnedin and
Pitman [18] for a detailed account on (1) and (2). Hereafter we briefly recall
two noteworthy examples of Gibbs-type random probability measures: the two
parameter Poisson–Dirichlet process and the normalized generalized Gamma
process.

Example 1. Let (a)n be the rising factorial of a of order n, i.e. (a)n =∏
0≤i≤n−1(a+ i), for a > 0. For any α ∈ (0, 1) and θ > −α the two parameter

Poisson–Dirichlet process, say Pα,θ, is a Gibbs-type random probability measure
with

h(t) =
αΓ(θ)

Γ(θ/α)
t−θ (3)

such that

Vn,kn =

∏kn−1
i=0 (θ + iα)

(θ)n
. (4)

The normalized α-stable process is Pα,0, whereas the Dirichlet process may be
recovered as a limiting special case for α→ 0. See, e.g., Perman et al. [34], Pit-
man and Yor [35], James [23], Pitman [36] and James [24] for detailed accounts
on Pα,θ.

Example 2. Let Γ(·, ·) be the incomplete Gamma function, i.e., Γ(a, b) =∫∞
b
xa−1 exp{−x}dx for (a, b) ∈ R × R+. For any α ∈ (0, 1) and τ ≥ 0 the

normalized generalized Gamma process, say Gα,τ , is a Gibbs-type random prob-
ability measure with

h(t) = eτ
α−τt (5)

such that

Vn,kn =
αkneτ

Γ(n)

n−1∑
i=0

(
n− 1

i

)
(−τ1/α)iΓ

(
kn −

i

α
, τ

)
. (6)

The normalized α-stable process coincides with Gα,0, whereas G1/2,τ is the nor-
malized inverse Gaussian process. See James [23], Pitman [36], Lijoi et al. [26],
Lijoi [27], Lijoi et al. [29] and James [24] for detailed accounts on Gα,τ and
applications.

Within the large class of predictive probabilities of the form (1), those of the
two parameter Poisson–Dirichlet process Pα,θ certainly stand out for their math-
ematical tractability, and for having an intuitive interpretability with respect to
the parameter α ∈ (0, 1) and θ > −α. See De Blasi et al. [12] for details, and
Zabell [42] and Bacallado et al. [4] for a description of the predictive probabili-
ties of Pα,θ in terms of a simple Pólya like urn scheme. These desirable features
of Pα,θ arise from the product form of the Vn,kn ’s in (4), which makes the ratio
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Vn+1,kn+1/Vn,kn a simple linear function of kn, and the ratio Vn+1,kn/Vn,kn in-
dependent of kn. Specifically, the predictive probabilities of Pα,θ reduce to the
following

Pr[Xn+1 ∈ · |Xn] =
θ + knα

θ + n
ν0(·) +

1

θ + n

kn∑
i=1

(ni − α)δX∗
i
(·), (7)

for n ≥ 1. The weight attached to ν0 in (7) can be read as a sum of two terms
with distinct asymptotic orders of magnitude: i) αkn, referred to as the first
order term, and θ, referred to as the second order term. An analogous two-term
decomposition holds for the weight attached to the empirical part of (7). Our
distinction and phrasing is formally captured by writing the two weights as
follows

θ + knα

θ + n
=
knα

n
+
θ

n
+ o

(
1

n

)
(8)

and
1

θ + n
=

1

n
− θ

n2
+ o

(
1

n2

)
, (9)

where o is almost sure, recovering both contributions in a two-term asymptotic
decomposition. Equations (8) and (9) lead to two large n approximations of the
predictive distribution displayed in (7). In particular: i) a first order approxi-
mation of (7), denoted by ∼, is obtained by combining (7) with the first term
on the right-hand side of (8) and (9); ii) a second order approximation of (7),
denoted by ≈, is obtained by combining (7) with the first two terms on the
right-hand side of (8) and (9).

Ruggiero et al. [39] and Arbel et al. [1] first extended the decompositions
(8) and (9) to the case of the normalized inverse Gaussian process and the
normalized generalized Gamma process, respectively, thus covering the setting
of Example 2. In the next theorem we generalize (8) and (9) to the entire class
of Gibbs-type priors, that is, for any continuously differentiable function h and
any α ∈ (0, 1) we provide a two-term asymptotic decomposition for the weights
Vn+1,kn+1/Vn,kn and Vn+1,kn/Vn,kn of the predictive probabilities (1).

Theorem 1. Let Xn be a sample from Pα,h featuring Kn = kn ≤ n distinct
types, labelled by X∗1 , . . . , X

∗
Kn

, with frequencies (N1, . . . , NKn) = (n1, . . . , nkn).
Assume that function h is continuously differentiable and denote its derivative
by h′. Then

Vn+1,kn+1

Vn,kn
=
knα

n
+
βn
n

+ o

(
1

n

)
(10)

and
Vn+1,kn+1

Vn,kn
=

1

n
− βn
n2

+ o

(
1

n2

)
(11)

for any n ≥ 1, where βn = ϕh(nk
−1/α
n ) with ϕh being defined as ϕh(t) =

−th′(t)/h(t).
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Theorem 1 may be applied to obtain a first and a second order approximations
of the predictive probabilities of any Gibbs-type prior Pα,h, thus remarkably
simplifying the evaluation (1) for any choice of the function h. Besides that,
Theorem 1 highlights, for large n, the role of the function h from a purely
predictive perspective. According to Theorem 1, h does not affect the first order
term in the asymptotic decompositions (10) and (11), and it is sufficient to
consider a second order term in order to take into account h. This leads to two
meaningful approximations of the predictive probabilities (1). In particular, by
considering the sole first order term in (10) and (11), one obtains the first order
approximation

Pr[Xn+1 ∈ · |Xn] ∼ knα

n
ν0(·) +

1

n

kn∑
i=1

(ni − α)δX∗
i
(·), (12)

which is the predictive probability of the normalized α-stable process, i.e. h = 1.
By including the second order term in (10) and (11), one obtains the second
order approximation

Pr[Xn+1 ∈ · |Xn] ≈ βn + knα

βn + n
ν0(·) +

1

βn + n

kn∑
i=1

(ni − α)δX∗
i
(·), (13)

which resembles the predictive probabilities (7) of the two parameter Poisson–
Dirichlet process Pα,θ, with the parameter θ replaced by a suitable function of
h, α and the number kn of distinct types in the sample Xn. The predictive
probabilities of any Gibbs-type prior thus admit a second order approximation,
for large n, with an error term vanishing as o(1/n). More importantly, such
a second order approximation maintains the same mathematical tractability
and interpretability as the predictive probability of the two parameter Poisson–
Dirichlet prior.

The paper is structured as follows. In Section 2 we prove Theorem 1 and
the approximate predictive probabilities displayed in Equation (12) and Equa-
tion (13). In Section 3 we present a numerical illustration of our approximate
predictive probabilities, thus showing their usefulness from a practical point
of view; the R code for generating the plots presented in Section 3, includ-
ing the functions for obtaining predictive weights approximations, is available
at http://www.julyanarbel.com/software. Section 4 contains a brief discussion of
our results.

2. Proof of Theorem 1, Equation (12) and Equation (13)

Throughout this section, we will use the notation an� bn when an/bn → 1 as
n → ∞, almost surely. The main argument of the proof consists in a Laplace
approximation of the integral form for Vn,kn in (2) as n→∞. This approxima-
tion basically replaces an exponentially large term in an integrand by a Gaussian
kernel which matches both mean and variance of the integrand. From evaluating

http://www.julyanarbel.com/software
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the Gibbs-type predictive probabilities (1) on the whole space it is clear that
we have

Vn+1,kn+1

Vn,kn
= 1− (n− αkn)

Vn+1,kn

Vn,kn
. (14)

Denote the integrand function of (2) by fn(p, t) = t−αknpn−1−knαh(t)fα((1 −
p)t), and denote integration over its domain (0, 1) × R∗+ by

∫∫
. Then we can

write

Vn+1,kn

Vn,kn
=

1

n− αkn

∫∫
pfn∫∫
fn

. (15)

Note that this ratio of integrals coincides with En(P ), that is the expectation
under the probability distribution with density proportional to fn. This, com-
bined with (14) provides Vn+1,kn+1/Vn,kn = En(1 − P ). In order to apply the
Laplace approximation method, write the nonnegative integrand fn in exponen-
tial form fn = enln , and further define functions g(p, t) = 1− p and g̃(p, t) = 1.
Then

Vn+1,kn+1

Vn,kn
=

∫∫
genln∫∫
g̃enln

. (16)

The mode (tn, pn) of fn (or equivalently of ln) is determined by the root of the
partial derivatives

n
∂ln(p, t)

∂p
=
n− αkn − 1

p
− tf

′
α(t(1− p))
fα(t(1− p))

(17)

and

n
∂ln(p, t)

∂t
=
−αkn
t

+
h′(t)

h(t)
+ (1− p)f

′
α(t(1− p))
fα(t(1− p))

, (18)

where f ′α and h′ denote respectively the derivatives of the α-stable density fα
and of the function h. Now consider the Laplace approximations to the numera-
tor and the denominator of the ratio (16) with the notations set forth in Section
6.9 of Small [40]. The exponential term is identical in both integrands of the
ratio (16), hence the term involving det fn, the Hessian of fn, is also identical
and equal to

Cn = (2π/n)2/2(−det fn)−1/2enln(tn,pn).

Thus it simplifies in the ratio. One needs only to consider the asymptotic series
expansions, where we require a second order term a(tn, pn) for the numerator,
that is

Vn+1,kn+1

Vn,kn
=
Cn ×

(
g(tn, pn) + 1

na(tn, pn) +O
(

1
n2

))
Cn ×

(
g̃(tn, pn) +O

(
1
n

)) .
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The expression of a(tn, pn) is provided in Equation (6.14) of Small [40]. In our
case, a(tn, pn) = o(1/n), hence with g̃ = 1, the previous display simplifies to the
following

Vn+1,kn+1

Vn,kn
= g(tn, pn) + o

(
1

n

)
. (19)

Let ϕh(t) = −th′(t)/h(t). Note that, adding (1− pn)×(17) and tn×(18) we can
write

g(tn, pn) = 1− pn =
αkn + ϕh(tn)

n+ ϕh(tn)− 1
(20)

so, in view of (19),

Vn+1,kn+1

Vn,kn
=

αkn + ϕh(tn)

n+ ϕh(tn)− 1
+ o

(
1

n

)
. (21)

Let ψ(x) = (xf ′α(x))/(αfα(x)). By (17), ψ((1 − pn)tn) = (1 − pn)(n − αkn −
1)/αpn. By Theorem 2 in Arbel et al. [1], 1− pn�αkn/n. Hence, ψ((1− pn)tn)
grows to infinity when n→∞ at the same rate as kn. But studying the variations
of the α-stable density fα, Nolan [33] shows that the only infinite limit of ψ is
in 0+ according to

ψ(x) �
0+

(α/x)
α

1−α .

In order that ψ((1 − pn)tn) matches with its infinite limit when n → ∞, its
argument (1 − pn)tn needs go to 0+, which yields to the following asymptotic
equivalence

kn�ψ((1− pn)tn)�
(

α

(1− pn)tn

) α
1−α

,

which in turn gives

tn�α
k
1−1/α
n

1− pn
�αk

1−1/α
n

αkn/n
� n

k
1/α
n

�Tα,h,

where the last equivalence is from [36]. Since function h is assumed to be posi-
tive and continuous differentiable, ϕh(Tα,h) is a.s. well defined (and finite) and

ϕh(tn)�ϕh(nk
−1/α
n )�ϕh(Tα,h) a.s., so (21) can be rewritten

Vn+1,kn+1

Vn,kn
=
αkn
n

+
βn
n

+ o

(
1

n

)
,

where we set βn = ϕh(nk
−1/α
n ). In other terms, to match the expression of the

second order approximate predictive probability displayed in Equation (13), we
have

Vn+1,kn+1

Vn,kn
=
βn + knα

βn + n
+ o

(
1

n

)
.
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The expression of the second weight in the predictive of the theorem follows
from (14), i.e.,

Vn+1,kn

Vn,kn
=

1− Vn+1,kn+1/Vn,kn
n− αkn

=

(
1− αkn

n
+
βn
n

+ o

(
1

n

))(
1

n
+
αkn
n2

+ o

(
kn
n2

))
,

=
1

n
− αkn

n2
− βn
n2

+
αkn
n2

+ o

(
1

n2

)
=

1

n
− βn
n2

+ o

(
1

n2

)
,

or, to match the expression of the second order approximate predictive of equa-
tion (13),

Vn+1,kn

Vn,kn
=

1

βn + n
+ o

(
1

n2

)
.

3. Numerical illustrations

As we recalled in Example 1, the two parameter Poisson–Dirichlet process Pα,θ is
a Gibbs-type random probability measure with α ∈ (0, 1) and h(t) = t−θΓ(θ +
1)/Γ(θ/α + 1), for any θ > −α. Then, by an application of Theorem 1, the
predictive probabilities of Pα,θ admit a first order approximation of the form
(12) and a second order approximation of the form (13) with ϕh(t) = θ, and
such that

βn = θ.

Among Gibbs-type random probability measures with α ∈ (0, 1), the two pa-
rameter Poisson–Dirichlet process stands out for a predictive structure which
admits a simple numerical evaluation. This is certainly one of the reasons that
made the two parameter Poisson–Dirichlet prior a natural candidate in several
applications within the large class of Gibbs-type priors. Hereafter we present a
brief numerical illustration to compare the predictive probabilities of Pα,θ with
their first and second order approximations given in terms of Equation (8) and
Equation (9). While there is no practical reason to make use our approximate
predictive probabilities, because of the simple expression of (7), the illustration
is useful to show the accuracy of our approximations. We then present the same
numerical illustration for the normalized generalized Gamma processGα,τ of Ex-
ample 2. We will see that, differently from the two parameter Poisson–Dirichlet
process, the predictive probabilities of the normalized generalized Gamma pro-
cess do not admits a simple numerical evaluation. This motivates the use of
Theorem 1.

We consider 500 data points sampled independently and identically dis-
tributed from the ubiquitous Zeta distribution. For any σ > 1 this is a dis-
tribution with probability mass function Pr(Z = z) ∝ z−σ, for z ∈ N. Here we
choose σ = 1.5. For each n = 1, . . . , 500 we record the number kn of distinct
types at the n-th draw, and we evaluate the predictive weight Vn+1,kn+1/Vn,kn



J. Arbel and S. Favaro/Approximating predictive probabilities of Gibbs-type priors 9

for the two parameter Poisson–Dirichlet prior, i.e. the left-hand side of (8). We
consider the following pairs of parameters (α, θ): (0.25, 1), (0.25, 3), (0.25, 10),
(0.5, 1), (0.5, 3), (0.5, 10), (0.75, 1), (0.75, 3) and (0.75, 10). For each of these
pairs we compare the left-hand side of Equation (8) with the first term of the
right-hand side of Equation (8) (first oder approximation) and with the first
two terms of the right-hand side of Equation (8) (second order approximation),
that are

θ + knα

θ + n
, (22)

knα

n
(23)

and
knα

n
+
θ

n
, (24)

respectively. Figure 1 shows the curve, as functions of n, of the “exact” pre-
dictive weight (22) and its first order approximation (23) and second order
approximation (24). The first order approximation consistently underestimates
the “exact” predictive weight, while the second order approximation consistently
overestimates it. This is due to the fact that the parameter θ is positive. The dis-
crepancy between the first order approximation and (22) stays substantial even
for large values of n, all the more for large θ. On the contrary, the second order
approximation consistently outperforms the first order approximation, closely
following (22). Importantly, for n = 500, the “exact” predictive weight and its
second order approximation are barely distinguishable in all the considered pairs
of parameters.

Figure 1 about here

3.1. The normalized generalized Gamma process

As we recalled in Example 2, the normalized generalized Gamma process is a
Gibbs-type random probability measure with α ∈ (0, 1) and h(t) = exp{τα−τt},
for any τ ≥ 0. Then, according to Theorem 1, the predictive probabilities of the
normalized generalized Gamma process admit a first order approximation of the
form (12) and a second order approximation of the form (13) with ϕh(t) = τt,
and such that

βn =
τn

k
1/α
n

.

The predictive probabilities of the normalized generalized Gamma process are
of the form (1), with the predictive weights Vn+1,kn+1/Vn,kn and Vn+1,kn/Vn,kn
admitting an explicit (closed-form) expression in terms of (6). However, differ-
ently from the two parameter Poisson–Dirichlet process, the evaluation of the
predictive weights is cumbersome, thus preventing their practical implementa-
tion. In particular, as pointed out in Lijoi et al. [28] in the context of mixture
models with a normalized generalized Gamma prior, the evaluation of (6) gives
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rise to severe numerical issues, even for not too large values of n. These issues
are mainly due to the evaluation of the incomplete gamma function, as well as
with handling very small terms and very large terms within the summation (6).
Here we give an example of the numerical issues encountered in the evaluation
of (6). We consider 500 data points sampled independently and identically dis-
tributed from the Zeta distribution with parameter σ = 1.5. Figure 2 shows the
predictive weight Vn+1,kn+1/Vn,kn computed for the following pairs of parame-
ters (α, τ): (0.5, 1), (0.5, 3) and (0.5, 10). The Vn,kn ’s in (6) are evaluated using
the software Mathematica, which allows to set the desired numerical precision.
Despite that, the resulting values of Vn+1,kn+1/Vn,kn appear very unstable, no-
tably for large values of the τ parameter, leading to evaluate Vn+1,kn+1/Vn,kn
outside of (0, 1) even for not too large values of n. In contrast, the first order
approximation and the second order approximation of Vn+1,kn+1/Vn,kn behave
well.

Figure 2 about here

Due to the aforementioned numerical issues in the evaluation of (6), hereafter
we propose an alternative approach to evaluate the Vn,kn ’s of the normalized
generalized Gamma process. This is a Monte Carlo approach, and it relies on
the fact that Vn,kn in (6) can be written as the expectation of a suitable ratio
of independent random variables. Recall that fα denotes the density function of
a positive α-stable random variable. Then, using (2) with h(t) = exp{τα − τt},
we can write

Vn,kn =
αkn

Γ(n− knα)

∫ +∞

0

∫ 1

0

pn−1−knαt−knα exp{τα − τt}fα(t(1− p))dpdt

=
αkn−1Γ(kn)

Γ(n)

∫ +∞

0

exp{τα − τt} αΓ(n)

Γ(kn)Γ(n− knα)
t−knα∫ 1

0

(1− p)n−knα−1fα(tp)dpdt

=
αkn−1Γ(kn)

Γ(n)
E

[
exp

{
τα − τX

Y

}]
, (25)

where X and Y are two independent random variables such that Y is distributed
according to a Beta distribution with parameter (knα, n − knα), and X is dis-
tributed according to a polynomially tilted positive α-stable random variable,
i.e.,

Pr[X ∈ dx] =
Γ(knα+ 1)

Γ(kn + 1)
x−knαfα(x)dx. (26)

We refer to Pitman [36], Pitman [37] and Devroye [13] for a detailed account on
the polynomially tilted α-stable random variable X. Given the representation
(25) we can perform a Monte Carlo evaluation of Vn,kn by simply sampling from
the Beta random variable Y and from the random variable X with distribution
(26).
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Sampling form the Beta random variable Y is straightforward. The random
variable X can be sampled by using an augmentation argument that reduces the
problem of sampling X to the problem of sampling a Gamma random variable
and, given that, an exponentially tilted α-stable random variable, i.e. a random
variable with density function exp{cα− cx}fα(x), for some constant c > 0. The
problem of sampling exponentially tilted α-stable random variables has been
considered in Devroye [13] and Hofert [21]. Specifically, we can write (26) as
follows

Γ(knα+ 1)

Γ(kn + 1)
x−knαfα(x) =

α

Γ(kn)

∫ +∞

0

cknα−1 exp{−cα}exp{−cx}fα(x)

exp{−cα}
dc

=

∫ +∞

0

fC(c)fX|C=c(x)dc,

where fX|C=c is the density function of an exponentially tilted positive α-
stable random variable, and fC is the density function of the random variable
C = G1/α, where G being a Gamma random variable with parameter (kn, 1).
We use the rejection sampler of Hofert [21] for sampling the exponentially tilted
positive α-stable random variable with density function fX|C=c. Note that, as

kn grows, the tilting parameter C = G1/α gets larger in distribution. As a re-
sult, the acceptance probability decreases and the Monte Carlo algorithm slows
down. Let Be, Ga and tSt respectively denote Beta, Gamma and exponentially
tilted positive α-stable distributions, and let Γl represents the logarithm of the
Γ function. Hereafter is the step-by-step pseudocode for the Monte Carlo eval-
uation of the Vn,kn ’s:

1. Set M = 104, n, kn, α, τ ;
2. Sample Y ∼ Be(αkn, n− αkn) of size M ;
3. Sample G ∼ Ga(kn, 1) of size M ;
4. Sample X ∼ tSt(α,G1/α) of size M ; (27)
5. Set v = (kn − 1) logα+ Γl(kn)− Γl(n) + τα − τX/Y ;
6. Set V = exp(v).

We perform a numerical study in the same setting described for the two pa-
rameter Poisson–Dirichlet process. That is, 500 data points are sampled inde-
pendently and identically distributed from the Zeta distribution with parameter
σ = 1.5. We consider the following pairs of parameters (α, τ): (0.25, 1), (0.25, 3),
(0.25, 10), (0.5, 1), (0.5, 3), (0.5, 10), (0.75, 1), (0.75, 3) and (0.75, 10). For these
pairs of parameters the predictive weight Vn+1,kn+1/Vn,kn is evaluated by means
of the above steps 1-6, and this evaluation is compared with the first order ap-
proximation and with the second order approximation of Vn+1,kn+1/Vn,kn given
by Theorem 1, i.e.

knα

n
(28)

and
knα

n
+

τ

k
1/α
n

, (29)
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respectively. Figure 3 shows that the Monte Carlo evaluation of Vn+1,kn+1/Vn,kn
lays between the first order approximation and the second order approximation
of Vn+1,kn+1/Vn,kn . As n moves, the difference between the resulting Monte
Carlo curve and the approximate curves is imperceptible for α = 0.25; such
a difference is also very small for τ = 1. Larger values of α and/or τ lead
to larger discrepancies between the Monte Carlo curve and the approximate
curves. The second order approximation is consistently closer to the Monte
Carlo value than the first order approximation. In particular we observe that
for n = 500 the second order approximation and the Monte Carlo value are
indistinguishable, whereas the first order approximation may still be far from the
Monte Carlo value for several choices of the parameters, e.g. (α, τ) = (0.75, 3)
and (α, τ) = (0.75, 10).

Figure 3 about here

We conclude by motivating the use of the second order approximation in-
stead of the Monte Carlo evaluation. First of all, for pairs of parameters with
large α and large τ , e.g. (α, τ) = (0.75, 10) in our numerical study, the Monte
Carlo evaluation is extremely noisy, although we have used a large number of
iterations, i.e 104. In particular, as shown in Figure 3, the noise does not vanish
as n grows. On the contrary, the second order approximation has a more sta-
ble behavior, and for (α, τ) = (0.75, 10) it converges to the bulk of the Monte
Carlo curve, which makes it more reliable than the latter for large values of n.
Furthermore, evaluating the second order approximation is fast. On the other
hand, the computational burden of the Monte Carlo evaluation is very heavy,
e.g. 35 hours were required for the nine configurations of Figure 3, with 104

iterations for each weight. This is because of the sampling of the exponentially
tilted α stable random variable. Indeed the rejection sampler originally pro-
posed by Hofert [21] has an acceptance probability that decreases as n grows,
making this approach prohibitive for large sample sizes. Although our Monte
Carlo code could certainly be fastened, our empirical study suggests that the
computing time increases exponentially with the sample size n. See the average
Monte Carlo running time in Figure 4, as well as the running time and cumu-
lated running time for each of the nine parameter configurations in Figure 5 and
Figure 6.

Figure 4 about here

Figure 5 about here

Figure 6 about here

4. Discussion

Gibbs-type priors form a flexible class of nonparametric priors parameterized by
α ∈ (0, 1) and a function h. According to the definition of Gibbs-type random
probability measures in terms of α-stable Poisson-Kingman models, the func-
tion h has the primary role of enriching the parameterization of the normalized
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α-stable process by introducing additional parameters other than α. See, e.g.,
Example 1 and Example 2. In this paper we introduced a first order approxima-
tion (12) and a second order approximation (13) for the predictive probabilities
of Gibbs-type priors, for any α ∈ (0, 1) and any function h. In particular we
showed that at the level of the first order approximation the function h has
no impact on the predictive probabilities. Indeed Equation (12) coincides with
the predictive probability of the normalized α-stable process, i.e. a Gibbs-type
random probability measure with α ∈ (0, 1) and h(t) = 1. However, it is suf-
ficient to consider a second order approximation in order to take into account
h. Indeed, Equation (13) coincides with the predictive probability of the two
parameter Poisson–Dirichlet process in which the parameter θ is replaced by
a suitable function of h. The proposed approximations thus highlight the role
of the function h from a purely predictive perspective, and at the same time
provide practitioners with a way to easily handle the predictive probabilities of
any Gibbs-type prior.
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Fig 1. Predictive weights Vn+1,kn+1/Vn,kn in the two parameter Poisson–Dirichlet process
case with data generated from a Zeta(1.5) distribution. In black: the “exact” value (22).
In blue: the first order approximation (23). In red: the second order approximation (24).
The following values for the parameters are considered: α = 0.25, 0.5 and 0.75 in the top,
middle and bottom rows respectively; θ = 1, 3 and 10 for the left, middle and right columns
respectively. The sample size on the x-axis in log scale runs from n = 50 to n = 500. The
points are connected by straight lines only for visual simplification.
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Fig 2. Predictive weights Vn+1,kn+1/Vn,kn in the normalized generalized Gamma pro-
cess case with data generated from a Zeta(1.5) distribution. In black: the “exact” value (6)
evaluated using Mathematica. In blue: the first order approximation (28). In red: the sec-
ond order approximation (29). The following values for the parameters are considered:
(α, τ) = (0.5, 1), (0.5, 3) and (0.5, 10) for the left, middle and right panels respectively. The
sample size on the x-axis in log scale runs from n = 20 to n = 100. The points are connected
by straight lines only for visual simplification.
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Fig 3. Predictive weights Vn+1,kn+1/Vn,kn in the normalized generalized Gamma process
case with data generated from a Zeta(1.5) distribution. In black: the “exact” value evaluated
by the Monte Carlo procedure (27). In blue: the first order approximation (28). In red: the
second order approximation (29). The following values for the parameters are considered:
α = 0.25, 0.5 and 0.75 in the top, middle and bottom rows respectively; τ = 1, 3 and 10 for
the left, middle and right columns respectively. The sample size on the x-axis in log scale
runs from n = 50 to n = 500. The points are connected by straight lines only for visual
simplification.
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Fig 4. Left panel: running time (in seconds) averaged over all nine parameter configurations,
and right panel: cumulated running time (in hours) averaged over all nine parameter config-
urations, for the Monte Carlo evaluation (27) of the predictive weights Vn+1,kn+1/Vn,kn in
the normalized generalized Gamma process case. The sample size on the x-axis in log scale
runs from n = 50 to n = 500. The points are connected by straight lines only for visual
simplification.
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Fig 5. Running time (in seconds) for the Monte Carlo evaluation (27) of the predictive
weights Vn+1,kn+1/Vn,kn in the normalized generalized Gamma process case. The following
values for the parameters are considered: α = 0.25, 0.5 and 0.75 in the top, middle and
bottom rows respectively; τ = 1, 3 and 10 for the left, middle and right columns respectively.
The sample size on the x-axis in log scale runs from n = 50 to n = 500. The points are
connected by straight lines only for visual simplification.



J. Arbel and S. Favaro/Approximating predictive probabilities of Gibbs-type priors 21

α = 0.25, τ = 1 (4.2 h)

T
im

e 
(h

)

50 100 200 500

0

1

2

3

4

α = 0.25, τ = 3 (4.3 h)

50 100 200 500

0

1

2

3

4

α = 0.25, τ = 10 (4.4 h)

50 100 200 500

0

1

2

3

4

α = 0.5, τ = 1 (3.6 h)

T
im

e 
(h

)

50 100 200 500

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

α = 0.5, τ = 3 (3.6 h)

50 100 200 500

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

α = 0.5, τ = 10 (3.7 h)

50 100 200 500

0

1

2

3

α = 0.75, τ = 1 (4.3 h)

n

T
im

e 
(h

)

50 100 200 500

0

1

2

3

4

α = 0.75, τ = 3 (4.4 h)

n

50 100 200 500

0

1

2

3

4

α = 0.75, τ = 10 (4.3 h)

n

50 100 200 500

0

1

2

3

4

Fig 6. Cumulated running time (in hours) for the Monte Carlo evaluation (27) of the pre-
dictive weights Vn+1,kn+1/Vn,kn in the normalized generalized Gamma process case. The
following values for the parameters are considered: α = 0.25, 0.5 and 0.75 in the top, middle
and bottom rows respectively; τ = 1, 3 and 10 for the left, middle and right columns respec-
tively. The sample size on the x-axis in log scale runs from n = 50 to n = 500. The points
are connected by straight lines only for visual simplification.
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