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Abstract Trajectory mining is a challenging and cru-

cial problem especially in the context of smart cities

where many applications depend on human behaviors.

In this paper, we characterize such behaviors by pat-

terns, where each pattern type represents a particular

behavior, e.g. emerging, latent, lost, etc. From GPS raw

data, we introduce algorithms that allow computing

a formal concept lattice which encodes optimal corre-

spondences between hidden patterns and trajectories.

In order to detect behaviors, we propose an algorithm

that analyses the evolution of the discovered formal

concepts over time. The method generates tagged city

maps to easily visualize the resulting behaviors at dif-

ferent spatio-temporal granularity values. Refined or

coarse analysis can thus be performed for a given situa-

tion. Experimental results using real-world GPS trajec-
tory data show the relevance of the proposed method

and the usefulness of the resulting tagged city maps.

Keywords Formal concepts · Frequent patterns ·
Behavior · Trajectories · Visualization

1 Introduction

The concept of Smart City has become essential due

to its concern of improving everyday technology in ur-

ban life, developing city network infrastructures, build-

ing better intelligent transportation systems to opti-

mize traffic and transportation flows, and providing in-

novative services for citizens. In this context, a lot of

positioning technologies, sensor networks, and online

social media are used and deployed in cities. These
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devices and applications generate, by nature, spatio-

temporal data which are collected from smartphones

carried by people, GPS tracking systems on cars, air-

planes, and location-based services provided by social

media. Analyzing such data is very important to un-

derstand user behaviors for applications such as human

mobility understanding, smart transportation, and ur-

ban planning [28]. Trajectory analysis [40] is one of the

mining tools that are used for this purpose. The analysis

of trajectories is suited for a wide range of applications,

for instance, monitoring, tracking, territorial manage-

ment, and security. The handled spatio-temporal data

are complex, rich and huge. They also inherit the geolo-

calization imprecision. Thus, they need to be analyzed

by suitable methods based on clustering, classification,

frequent patterns, etc. [23]. Moreover, these methods

generate reports and visualize the results for easily un-

derstanding.

In this paper, we propose a new method based on

formal concept analysis to detect behaviors over time

and visualize them on tagged city maps automatically

generated. In order to achieve this goal, we segment and

label the GPS trajectories according to the specified

spatio-temporal granularity values. Then, each trajec-

tory is transformed and represented in a georeference

area as a set of grids. After that, this discrete represen-

tation of trajectory is used to extract the hidden pat-

terns. From these data, we construct a formal concept

lattice to encode the correspondence between the dis-

covered frequent patterns and trajectories. Thus, a for-

mal concept is a pair (Y,X), where X is a pattern and

Y is the set of trajectories that pass through the grids

belonging to X. Using this relationship between tra-

jectories and grids, we define different types of behav-

iors (latent, emerging, decreasing, jumping, and lost)

to statistically characterize the dynamics and diversity
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of mobility in relation to urban spaces. Finally, we use

these results to automatically generate maps which are

tagged by different colors, whereas each color represents

a given behavior. These maps can be generated at dif-

ferent spatio-temporal level to refine the users mobility

analysis in a given area of the city. We have evaluated

our method using the T-drive data set, which is a GPS

real taxi trajectories collected by Microsoft Research

Asia [36,34]. Our method is generic regarding the ap-

plication domain of trajectories and can be applied to

smart city problems related to moving objects informa-

tion, e.g., smartphones, bicycles, animals, etc.

The rest of the paper is organized as follows. Sec-

tion 2 defines notations and basic notions necessary for

understanding the paper. Related works are discussed

in Section 3. The proposed method that allows an au-

tomatic tagging of city maps using patterns is detailed

in Section 4. The experimental results are presented in

Section 5. Finally, we conclude and present some future

work in Section 6.

2 Background

A trajectory is a sequence of geographical locations

of a moving object on a defined time period. A set

of n moving object trajectories Trjs={Trj1, T rj2, ...,
T rjn−1, T rjn}, where each trajectory Trji has a dif-

ferent length, and can be defined as a sequence of geo-

graphical points returned at a specific time stamp t [39].

A trajectory Trji is equal to {p1,p2,...,pk−1,pki
} and

each point pk ∈ Trji is defined in three-dimensional

space, i.e., pk=(latitudek, longitudek, tk), where (lati-

tudek, longitudek) defines the geographical coordinate

location pair at specific time tk.

2.1 Frequent Patterns

The discovery of frequent patterns is an important task

in data mining which has been discussed in [1]. It corre-

sponds into finding the sets of items (i.e. attribute val-

ues) which appear simultaneously in at least a certain

given number of transactions (i.e. objects) recorded in

a database. The latter is represented by the formal con-

text D = (T , I,R), where T consists of a set of transac-

tions, I is a set of items, andR ⊆ T ×I is a binary rela-

tion. Each pair (t, i) ∈ R means that transaction t ∈ T
has a relation with item i ∈ I. A pattern is a subset of

I. We used a string character notation for the patterns,

for example AB for {A,B}. They are implicitly sorted

according to the lexicographic order. The cover of a pat-

tern X is the set of transactions of D that are related

to the items of X (i.e., transactions that contain X):

Table 1: Example of transactional database

tid items
t1 A B D E
t2 A B D
t3 A B C D
t4 B C D
t5 A B C

Table 2: Example of transactional data in different datasets

tid items tsid
t1 A B D E D1t2 A B D
t3 A B C D

D2t4 B C D
t5 A B C

cover(X) = {t ∈ T | ∀i ∈ X, (t, i) ∈ R}. The support of

pattern X, i.e., support count, represents the number of

transactions that contain X: support(X) = |cover(X)|.
Let us remark that we can also express the support as

a percentage of the total number of transactions in D,

i.e., |cover(X)|
|T | ×100. Pattern X is frequent if its support

exceeds (or is equal to) a minimum threshold denoted

minsup. The set of all-frequent patterns is denoted FI
and is equal to {X ⊆ I | support(X) ≥ minsup}. The

notion of frequent closed pattern has been proposed by

[30]. The pattern X is closed if none of its supersets

have the same support as X: ∀Y ⊃ X, support(Y ) <

support(X). The frequent closed pattern is a pattern

both closed and frequent. Let us note that the set of

frequent closed patterns (denoted FCI) can be used to

generate all the frequent patterns and their supports,

and FCI ⊆ FI.

Example 1 Table 1 shows an example of a transac-

tional database representing a formal context with 5

transactions and 5 items (denoted as A . . .E). If the

minsup value is set to 3 (i.e., 60%) then pattern D

is frequent because its support is 4 (t1, t2, t3 and t4).

AE is not frequent since its support is 1 (t1). We have

FI={A, B, C, D, AB, AD, BC, BD, ABD}. C is fre-

quent but not closed. BC is frequent and closed because

it corresponds to the maximum set of items shared by

t3, t4 and t5. ABDE is closed but not frequent. We

have FCI = {B, AB, BC, BD, ABD}.

2.2 Emerging Patterns

Emerging patterns have been introduced in [8] as pat-

terns whose support increased in a significant way from

one dataset to another. The data represented in Ta-

ble 2 contains 5 items (denoted A. . .E) and 5 trans-

actions (denoted t1. . . t5) distributed in 2 datasets (D1
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and D2). Let us remark that these datasets can be seen

as classes. The support of a pattern in a dataset D,

denoted by supp(X,D), is the number of transactions

which contain X in D. The quantitative evaluation of

the contrast between data sets brought by a pattern

is measured by its growth rate. The growth rate of a

pattern X from Dj to Di is defined by (1).

GRj,i(X) =
|Dj |
|Di|

× supp(X,Di)

supp(X,Dj)
. (1)

The more GRj,i(X) is high, the more X characterizes

Di compared to Dj . Given a threshold value mingr > 1,

a pattern X is an emerging pattern from Dj to Di if

GRj,i(X) ≥ mingr. If GRj,i(X) = ∞, X is said to be

a jumping emerging pattern (JEP) from Dj to Di.

Example 2 Let us consider the example of Table 2

with mingr = 3 and verify if the D, ABD and ABDE

are emerging from D2 to D1 or not. D is not an emerg-

ing pattern (GR2,1(D) = 1.5). ABD is an emerging

pattern because GR2,1(ABD) = 3. ABDE is a JEP

(GR2,1(ABDE) = ∞).

2.3 Formal Concepts

Formal concept analysis (FCA) is a theory of data anal-

ysis identifying the conceptual structures within data

sets. The closure properties and its capability of dis-

covering inherent hierarchical structures give it an ad-

vantage to be used to analyze the different pattern re-

lationships and build better mining algorithms [16,31].

Given a formal context D, there is a unique or-

dered set which describes the inherent lattice structure

defining natural groupings and relationships among the

transactions and their related items. This structure is

known as a concept lattice or Galois lattice [12]. Each

element of the lattice is a couple (T, I) which consists

of a set of transactions (i.e., the extent) and a set of

items (i.e., the intent). Each couple (called formal con-

cept) must be a complete couple with respect to R,

which means that the following mappings (noted f and

g) hold. For T ⊆ T and I ⊆ I, we have: (1) f(T ) =

{i ∈ I|∀t ∈ T , (t , i) ∈ R} and (2) g(I) = {t ∈ T |∀i ∈
I , (t , i) ∈ R}. f(T ) returns items common to all trans-

actions t ∈ T , while g(I) returns transactions that have

at least all items i ∈ I. The idea of maximally extend-

ing the sets is formalized by the mathematical notion

of closure in ordered sets. The operators h1 =f ◦g and

h2 = g◦f are the Galois closure operators. Let X be a

pattern of items, if h1(X)=X, then X is a closed pat-

tern. A formal concept is composed of a closed pattern

of items and of the set of transactions containing this

closed pattern.

Fig. 1: Example of concept lattice.

The concept lattice, denoted by L, is the set of for-

mal concepts organized by the subsumption relation ≤.

Given two formal concepts (T1, I1) and (T2, I2), (T1, I1)

≤ (T2, I2)⇐⇒ T1 ⊆ T2 et I2 ⊆ I1. (T1, I1) (respectively

(T2, I2)) is a subconcept (respectively superconcept) of

(T2, I2) (respectively (T1, I1)). The frequent concept

lattice is formed using the formal concepts that have at

least minsup transactions in their extent.

Example 3 The line diagram in Figure 1 is an exam-

ple of visual representation for the concept lattice com-

puted from Table 1. Each node corresponds to a for-

mal concept. The nodes upwards in this diagram are

labeled by the attributes used to name the concept, and

the nodes downwards are labeled by the objects used to

name the concept. Note that the information reading for

this diagram can be as follow: an object o is described

by an attribute m if and only if there is an ascending

path from the node named o to the node named by m.

For example, the node labeled by t5 corresponds to the

formal concept ({t3, t5}, ABC). The node labeled by D

represents ({t1, t2, t3, t4}, BD).

In this paper, we propose a new method to detect

and visualize user behavior by analyzing trajectories

over time. The originality of our method is to lever-

age formal concepts, frequent patterns and emerging

patterns. Before presenting our method, we present the

related work in the next section.

3 Related Work

In this section we first review some of the existing work

about trajectory analysis by focusing on pattern mining

methods. Then, in order to encode the correspondence

between the discovered patterns and trajectories, we

study existing work on formal concepts in the context
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of trajectory analysis. Finally, we review some work re-

lated to emerging patterns which capture trends over

time, and are considered as particular behaviors.

3.1 Trajectory Analysis

Recently, a lot of studies focused on GPS trajectory

analysis and providing extensive details about it [40,

39]. Other works [15,3] benefit from trajectory analysis

and mining techniques to build better social networks

and travel recommendation systems. Authors in [25]

provided a survey that discusses recent results on min-

ing mobility patterns from GPS data. In [7], the authors

give a general view for recent publications that discuss

trajectory analysis methods and patterns mining issues,

by reviewing the methods and algorithms recently used

in this field in detail and comparing their different ap-

proaches. From literature, trajectory analysis methods

can be summarized as clustering method, which con-

cern to find a group of trajectories that share common

sub-traces to measure the closeness using distance mea-

sures between trajectories, then use density-based clus-

tering methods in order to cluster the trajectories [20,

19]. In [14], the authors defined T-patterns (Trajectory

patterns) as concise descriptions of frequent behaviors,

in terms of both space (i.e., the regions of space visited

during movements) and time (i.e., the duration of move-

ments). They also proposed a method for extracting

them using a sequential pattern mining algorithm. Al-

ternatively, there is a growing interest in using semantic

trajectory analysis techniques and methods which give

a meaning to moving objects trajectory in terms of why,

how, and for which purpose they move. [29] provided a

survey that focuses on this term. Many tools and frame-

works have also been developed to help in analyzing

trajectory. An interesting tool, called MoveMine intro-

duced in [24], integrates functions that include moving

objects pattern mining and trajectory mining.

In the literature there are many work proposed ex-

tracting trajectory patterns using spatial information

and the aim differs according to the research goal. In

[17], the authors used a graph-based mining algorithm

to extract the frequent trajectory patterns in a spatial-

temporal database by scanning the database to gener-

ate a mapping graph and trajectory information list.

Then, they use a depth first algorithm to mine fre-

quent patterns. We can note that this method out-

performs two classes of algorithms: Apriori-based and

PrefixSpan algorithms. In another way, the authors of

[4] discussed mining flock patterns which are a type

of spatio-temporal patterns that represent moving ob-

ject groups close to each other in a certain time seg-

ment. They discussed algorithms related to extract this

type of patterns [13] and proposed a modified algorithm

called FPM . However, the limitation in such research

was that it depends on the type of trajectory that we

deal with as the users do not know which type of pat-

terns they deal with. One of the works that has to

be mentioned and solves this limitation is the work of

[18] where the authors proposed a unifying framework

for extracting trajectory patterns from asynchronous

movement. It has the potential of navigating the pat-

terns at all different levels of temporal tightness based

on location, time, or both and defines what they called

a UT − pattern that helps in understanding the inter-

action between moving objects and group dynamics. In

another way, in [6], the authors mine the frequent user’s

behavior from the socio-geographic data by finding fre-

quent regions and change its representation from move-

ments between points into movement between dense re-

gions. Then, they extract trajectory patterns from these

dense regions in the form of associative rules. It is im-

portant to mention that most of the previous discussed

research use clustering and pattern discovery methods

to extract frequent behavior, while in our method we

extract the proposed behavior types by leveraging for-

mal concept analysis and emerging pattern discovery.

In order to discretize the trajectory data and to es-

tablish areas, i.e., regions, we use the grid partitioning

concept. Several studies have been conducted to pro-

cess spatial data using grids. For example, in [22], the

authors proposed a trajectory data clustering method

based on dynamic grid division-merger limit. They map

the trajectories into equal sized squares determined by

experimental analysis. The authors of [33] divided the

map of a city into uniform grids and compare their par-

titioning method within other methods. They conclude

that the best prediction result is given by k-d tree based

partitioning strategy due to the even distribution of

points. Furthermore, the authors of [38] proposed a spa-

tial iterative grid partition algorithm. The space is par-

titioned into uniform grids multiple times recursively

until a desired grid granularity is reached, resulting in

a more balanced number of points in each cell and bet-

ter predictions. Unlike the previous work, we use uni-

form grids because we perform a spatio-temporal anal-

ysis by extracting the frequent closed patterns to detect

changes and evolution between two time periods.

Finally, the paper [35] introduces a new concept

called latent activity trajectory which captures differ-

ent urban socio economic activities in different loca-

tions and a chronological order. The authors segment

the regions according to the major roads, then cluster

them into functional zones based on a topic modeling

approach. More precisely, they used a kernel density

estimation to identify the intensity for each functional
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zone. Thus, only latent behaviors are discussed. Our

work defines new types of behaviors, e.g., emerging, de-

creasing, lost, etc.

3.2 Formal Concepts and Trajectories

Formal concept analysis has been used in many appli-

cations and disciplines, such as knowledge discovery,

information retrieval, etc. In [31], the authors give an

extensive survey of all the papers that apply FCA in

different domains such as biology, chemistry, etc. Our

concern in these works is trajectory analysis. In [5], the

authors provide a framework for analyzing sequential

data structure based on FCA and they applied it on a

data set of patient trajectories in a health-care system.

The work in [16] also presented an approach for clus-

tering trajectories of care for breast cancer using FCA.

However, this work does not concern moving object tra-

jectory analysis.

To the best of our knowledge, there is no research

work that is based on FCA for analyzing moving ob-

jects. Our proposition is based on FCA in order to cap-

ture the maximal relations between trajectories and re-

gions that they pass through.

3.3 Emerging Patterns and Applications

Emerging patterns have different applications. They are

highly used for building classifiers. In [21], the authors

proposed the DeEP classifier, which is an instance-

based classifier using the concept of emerging patterns.

Researchers try to define new notions related to emerg-

ing patterns. For example, in [32], the authors define an

exact condensed representation for the emerging pat-

terns in a data set. They proposed their method of ex-

tracting emerging patterns that has the best growth

rates and they called them strong emerging patterns

(SEPs). In [11], the authors proposed adopting closed

emerging patterns (CEPs) for characterizing classes.

This method has been applied on hepatitis data to char-

acterize the stage of liver fibrosis. Authors in [2] pre-

sented a hybrid classification method in the context of

FCA, where each formal context has been augmented

according to a class of objects. The class information

is used to characterize the concepts whose extents in-

clude objects of a single class which allows extracting

closed JEP. This approach has been applied in chem-

istry for classifying biological inhibitors. Our method is

more general in terms of using the class of objects to

specify the type of patterns. We also define other types

of patterns and study the corresponding moving object

behaviors.

4 FCA-based Behavior Discovery

In this section we present a novel method of trajectory

analysis that generates moving object behavior tagged

maps over time. The proposed method is based on fre-

quent concept extraction and pattern evolution type de-

tection. It is composed of three main steps: (1) Spatio-

temporal preprocessing, (2) Pattern and behaviors ex-

traction, and (3) Visualization of geolocalized behaviors

(see Figure 2). In Step 1, trajectories are segmented,

labeled, and mapped on a raster area G using local

georeference according to time and spatial granularity

values specified by the user. These discretized data are

then used to extract hidden patterns and detect behav-

iors in the next step. In Step 2, for each time windows

∆t (i.e., a pair of time granularity values (ti−1, ti)), we

compute the frequent concept lattice L according to the

minimal support threshold value minsup. Each node of

L, i.e., formal concept, encodes the correspondence be-

tween a pattern (set of grids) and the set of trajectories

that pass through the grids of this pattern. Then, for

each formal concept, we analyze the evolution of the

pattern by computing an indicative value K. By given

K, a minimal threshold value of emergence θ, and an

error tolerance value ε, we detect the type of the pat-

tern that belongs to a predefined set of types: {latent,
emerging, decreasing, jumping, lost}. Each pattern

type corresponds to a behavior of trajectories. Let us

note that Steps 1 and 2 correspond to the off-line pro-

cess (i.e., precomputed). Step 3 corresponds to the on-

line process, where for user specified time windows ∆t,

we use the previous results to automatically generate

maps which are tagged using colors, whereas each color

represents a given behavior. Table 3 summarizes the

important symbols.

4.1 Spatio-Temporal Preprocessing

Preprocessing the spatial trajectories is an important

step in our methodology. It is performed on raw trajec-

tory data to overcome the size problem. It is also needed

to simplify and reduce the number of points with neg-

ligible error. These reduced trajectories are used later

for improving the efficiency of the visualization process,

also for the purpose of mining and analyzing trajecto-

ries to extract hidden patterns. In addition to that, the

preprocessing step includes detecting and removing in-

complete, inaccurate, incorrect, and out of range data

points to generate vectors for the moving objects. It is

also important to detect a certain time if this object

stopped or moved. Therefore, stopping detection can

be defined as, the observing of where an object spends

a relatively large time without leaving a spatial area,
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Fig. 2: Overview of the proposed approach.

Table 3: Important symbols

Symbol Explanation
Trjs Set of trajectories
trj A trajectory
p Geographical point
longp, latp Longitude and latitude of p
LongD Longitude and latitude distance
LatD covered in degrees
Longk Longitude and latitude distance
Latk covered in kilometers
C Set of time granularity values
G Raster area
Gheight Dimensions of one grid
Gwidth (according to spatial granularity)

∆t
Time window
(a pair of time granularity values)

Gtrj Set of grids corresponding to trj
D Formal context
minsup Minimum support threshold value
θ Minimal emergence threshold value
ε Error tolerance value
L Frequent concept lattice
X A pattern of grid cells
FC = (Y,X) A formal concept

Ki(Y,X)
Evolution indicator value of X
between time i-1 and time i

which is detected by having a sequential redundant spa-

tial position on the generated vector over large period

of time. A redundancy of spatial location (i.e., grid in-

dex, see Section 4.1.2) means either that the object is

not moving or it is moving through the spatial defined

coordinates. Thus, in this case we normalize the redun-

dant spatial grid by one grid index in the generated

vector. Our main motivation behind the elimination of

the redundant grid index is that, in most cases, analysts

are interested in the actual movement of an object. In

addition, it will affect the pattern extraction later on.

The main steps to process the raw data are (1) Seg-

mentation and labeling trajectories according to time

granularity and (2) Mapping trajectories on a raster

area according to spatial granularity.

4.1.1 Segment and Label Trajectories according to

Time Granularity

Generally, GPS trajectory data are returned every 5-

10 seconds and saved in servers. The problem is that

the data to be analyzed are huge. So, we perform a

trajectory segmentation by predefined time granularity,

and we label each segment by its corresponding time

class.

The time granularity value is chosen in order to seg-

ment each trajectory on set Trjs. It can be for instance

minutes, hours, days, year, etc. Each value of granular-

ity is called a class. We note C = {c1, c2, ...., ck−1, ck}
the set of classes values where cj < cj+1 for 1 ≤ j ≤
k− 1. Using the specified time granularity, each trajec-

tory is segmented according to the defined classes. The

trajectory of object n after segmentation by C can be

defined as follow: Trj = {Trjc1n , T rjc2n , ..., T rjckn }. If

Trj
cj
n is empty then this trajectory is deleted.

Example 4 Assume that we have n = 100 moving ob-

jects in trajectory data Trjs = {Trj1, T rj2, T rj3, . . . ,

Trj100} collected for a duration of a month, for exam-

ple in October. The time granularity value is the day.

The trajectories by class obtained will be Trj
cj
n where

(1 ≤ n ≤ 100) and 1 ≤ j ≤ 31. For instance, the class

c3 corresponds to the 3rd of October, which means that

we keep the natural order of time sequence between the

days of the month.
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Fig. 3: Georeference system area according to spatial granu-
larity.

Algorithm 1 Georeference area generation according

to spatial granularity
Require:

pointmin : (latitudemin, longitudemin) // Minimum ge-
ographical coordinate that covers the area we want to
map
pointmax : (latitudemax, longitudemax) // Maximal ge-
ographical coordinate that covers the area we want to
map
Gheight : Spatial granularity grid height dimension in
kilometers
Gwidth : Spatial granularity grid width dimension in kilo-
meters

Ensure:
G: Raster area containing (Columns*Rows) cells, also its
latitude, longitude distance covered in degree (LatD and
LongD)

1: Create a new raster area G ;
2: G.LongD ← longitudemax - longitudemin; //Longitude

distance covered in degree
3: G.LatD ← latitudemax - latitudemin; // Latitude dis-

tance covered in degree
4: Latk ←LatD ∗ 111.320; // Latitude distance covered in

kilometer
5: Longk ← 111.320 ∗ longD ∗ cos((latD ∗ π)/180); // Lon-

gitude distance covered in kilometer
6: G.Columns ← Longk/Gwidth ; // Total number of

columns in the grid area.
7: G.Rows ← Latk/Gheight ; // Total number of rows in

the grid area
8: return G;

4.1.2 Mapping Trajectories on a Raster Area according

to Spatial Granularity

The conversion of the geographic coordinates (latitude,

longitude) values for the collected trajectories to an

image of trajectory area map scale grid points can be

achieved by applying two steps: (1) Generate a local

georeference system area G for the purpose of mapping

(see Algorithm 1), and (2) Map each trajectory to G

(see Algorithm 2). Figure 3 illustrates the generated

area.

Algorithm 2 Mapping a trajectory on a raster area

according to spatial granularity
Require:

Trj : {p1, p2, ..., pk−1, pk} // each point contains
(latpk, longpk)
pointmin : (latitudemin, longitudemin) // Minimum ge-
ographical coordinate in the raster area.
G : Raster area

Ensure:
Gtrj : Set of grid indexes corresponding to Trj

1: longstep ← G.LongD/G.Columns ; // The longitude
distance between each column in raster area in degree

2: latstep ← G.LatD/G.Rows ; // The latitude distance
between each row in raster area in degree

3: Gtrj ← {};
4: for i = 1 to k do
5: LatDpi ← latpi−latitudemin; // Latitude distance in

degree from the minimum point in raster area to latpi
6: LongDpi ← longpi− longitudemin; // Longitude dis-

tance in degree from the minimum point in raster area
to longpi

7: gi ← bLatDpi/latstepc ∗ G.Columns +
bLongDpi/longstepc + 1 ; // Grid index in the
raster area for the corresponding geographical point

8: Gtrj ← Gtrj ∪ gi ;
9: end for

10: return Gtrj ;

Algorithm 1 has the following input values: two points

(pointmin and pointmax) that cover the geographical

area, we want to map (these points are diagonal and

can be extracted from the trajectory real data set),

also a spatial granularity width (Gwidth) and height

(Gheight) for the grid dimension in kilometers. Lines

2 and 3, calculate the latitude and longitude degrees

that cover the mapping area. A conversion of degrees

into kilometer map scale is performed in lines 4 and

5 in order to divide the raster area by applying gen-

eral calculation for distance measure above or below

the equator. For example, the general calculation for

distance measure in kilometers for country like China

which is above east the equator as shown in Figure 3 are

as follow: Latk = LatD ∗ 111.320; Longk = 111.320 ∗
LongD∗cos((LatD∗π)/180). Finally, lines 6 and 7 cal-

culate the number of columns and rows in the generated

raster area according to a given grid dimension (spatial

granularity) in kilometers, width and height. The algo-

rithm returns the detail of the G raster area (Columns

* Rows) cells and its position.

Algorithm 2 shows the way to map a trajectory

that contains geographical points into spatial grids in

the generated raster area. As input, we need a pointmin

which is the minimum point in the generated raster

area, and also a trajectory Trj which we want to map.

First, the algorithm calculates the grid step distance

longstep and latstep value in degree for the covered lon-
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Fig. 4: Geo-mapped trajectory example.

Fig. 5: Example of mapping.

gitude and latitude in the raster area (lines 1 and 2).

Assuming that (latpi, longpi) is a point from trajectory

Trj, lines 5 and 6 show how to calculate the distances

(in degree) that cover the area of mapping, based on

the minimum point in the original local georeference

discussed above. Then, line 7 calculates the grid index

based on the columns and rows number of the whole

raster area. The same steps are applied for each point

of the trajectory. Finally, the algorithm returns the set

of grid indexes Gtrj .

Example 5 Let us assume that we want to generate a

local georeference for the following inputs: pointmin =

(36.2355, 106.65184), pointmax = (36.2380153,

106.653277), and a spatial granularity Gheight = Gwidth

= 0.04km. Using Algorithm 1, we obtain 4 columns and

7 rows for the raster area as shown in Figure 4. Now,

let us consider 4 points from Trj1 as shown in Figure

4: p1 = (36.23639831, 106.6520197), p2 = (36.2364881,

106.6524688), p3 = (36.2366678, 106.6526485), and p4
= (36.237117, 106.652738). In order to return the cor-

responding grid indexes for these points we follow the

steps in Algorithm 2. Let us take p1 and p2. We know

that G.Columns = 4, G.Rows = 7, G.LongD = 0.001437

and G.LatD = 0.0025153, which are previously calcu-

Table 4: Example of trajectory data presented within grid
indexes and their corresponding classes (the time granularity
is the day)

Trajectory Grid indexes (G) Class (C)
trj1 9 10 15 19 Sunday
trj2 9 10 15 Sunday
trj3 9 10 11 15 Monday
trj4 10 11 15 Monday
trj5 9 10 11 Monday

lated using Algorithm 1. From these values, we calcu-

late latstep, longstep which are the values of distance in

degree according to the spatial granularity given in our

georeference system. Here, latstep = 0.000359324 and

longstep = 0.000359329. Then, we calculate the latitude

and longitude degrees that cover the area corresponding

to the given points p1 and p2: LatDp1=0.000898311,

LongDp1=0.000179664, g1 = 9 ; LatDp2=0.000898311,

LongDp2=0.000538993, g2 = 10. By applying the same

procedure to the rest of the points we will get the follow-

ing values: g3 = 15 and g4 = 19. The trajectory will be

defined according to the generated grid indexes as fol-

low Trj = {9, 10, 15, 19}. Let us note that in case of

having redundancy occurrence of the grid index in the

same trajectory sequentially, this means that either the

object is stopped or its moving in the same spatial gran-

ularity coordinates. In this case, we keep only one of the

redundant grid index.

Figure 5 and Table 4 show an example of 5 trajecto-

ries after mapping using the local georeference system,

within its corresponding class time in two specified la-

bels as {Sunday,Monday}.

4.2 Patterns and Behaviors Extraction

The behaviors detection associated to the trajectories

over the time windows is performed in two main steps:

(1) Extraction of the frequent concept lattice and (2)

Detection of behavior type for each frequent formal con-

cept. Algorithm 3 summarizes these steps. The next two

sections discuss in detail the algorithms.

4.2.1 Frequent Concept Lattice Computation

The computation of the frequent concept lattice (see

section 2.3) allows to obtain both the grid closed pat-

terns and their corresponding sets of trajectories. The

first step to compute this lattice is to create the formal

context D = (T ,G,R) for a specified time windows

∆t (see Algorithm 3, line 1). T is the set of trajecto-

ries for the studied time window. I a set of grid index
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Algorithm 3 Extraction of frequent concept lattice

and detection of patterns type
Require:

∆t: Time window
G :

⋃l
j=1Gj which is consists of grid indexes, where l =

1. . .n∗m (m is the number of classes, and n is the number
of initial trajectories)
minsup: Minimum support threshold value
θ: Minimal emergence threshold value
ε: Error tolerance value

Ensure:
L: Frequent concept lattice
St: Set of detected types for the formal concepts of L

1: Creation of formal context D =(T ,G,R) according to the
time window ∆t;

2: Computation of frequent concept lattice L for D accord-
ing to minsup;

3: Detection of the type of each pattern contained in the
formal concepts of L according to θ and ε;

4: return L and St ;

G =
⋃m

i=1Gi. For each trajectory t and each grid in-

dex g ∈ Gt, (t, g) is added to R to indicate that the

trajectory t has a relation with grid index g. Then,

the frequent concept lattice is computed according to

the specified minimal threshold minsup (see Algorithm

3, line 2). Let us remark that CHARML algorithm

[37] coming from the pattern community is especially

adapted for this computation.

Example 6 Let us consider the example of Table 4 as

the binary relation R of a formal context D = (T ,G,R)

where T = {trj1, trj2, trj3, trj4, trj5}, G = {9, 10, 11,

15, 19}. The time granularity value is one day (Sunday,

October 11, 2016 and Monday, October 12, 2016), and

each trajectory is labeled by a time class C ∈ {Sunday,
Monday}. Table 5 presents the formal concepts of the

frequent concept lattice obtained with minsup = 2 (i.e.,

40%). For example, the formal concept (trj1, trj2, trj3,

trj5, ; 9 10) means that the trajectories trj1, trj2, trj3,

and trj5 all pass through the grid indexes 9 and 10 (9

10 is a frequent closed pattern).

4.2.2 Detection of Behavior Types

After the computation of the frequent concept lattice

for the specified time window, we detect the type of the

closed pattern (i.e., the intent) of each frequent formal

concept by studying the time classes of the correspond-

ing trajectories (i.e., the extent). The type of a closed

pattern reflects the behavior of users who have gen-

erated the corresponding trajectories. We define five

types: emerging, decreasing, latent, jumping and lost.

During the studied time window, the emerging type

means that the presence of the pattern increased in

the trajectories. The decreasing type means that the

presence of the pattern decreased in the trajectories.

The latent type means that the presence of the pattern

is quite similar. The jumping type means the pattern

which is absent, appeared. The lost type means that

the pattern disappeared.

Let FC = (Y,X) be a formal concept, θ be the min-

imal threshold value of emergence, and ε be the error

tolerance. For the time window [ti−1, ti], the type of the

grid index pattern X (i.e., the intent of FC) is detected

by computing Ki (see Equations 2 and 3).

Ki(Y,X) =
count(Y, ti)

count(Y, ti−1)
(2)

Where count(Y, tj) is the number of trajectories of

Y (i.e., the cardinality if the extent of FC) labeled by

the class corresponding to tj .

Type =



If Ki(Y,X) = 0± ε
then the type of X is lost.

(If ((Ki(Y,X) > θ) ∧ (θ = 1))

∨ ((Ki(Y,X) ≥ θ) ∧ (θ > 1)))

then the type of X is emerging.

If Ki(Y,X) < θ

then the type of X is decreasing.

If Ki(Y,X) = 1± ε
then the type of X is latent.

If Ki(Y,X) = +∞
then the type of X is jumping.

(3)

Example 7 Table 5 presents the result of computing

Ki and of the behavior type detection for the frequent

formal concepts obtained from the example of Table 4

with minsup = 2 (i.e., 40%), θ = 1 and ε = 0. Here,

ti corresponds to Monday and ti−1 to Sunday. Let us

consider the first frequent formal concept (trj1,trj2,trj3,

trj5 ; 9 10). Two trajectories are in the Sunday class

(trj1 and trj2) and the other two are in the Monday

class (see Table 4). Thus, Ki is equal to 1 and the type

of the pattern {9 10} is latent. There are two latent pat-

terns ({9 10} and {10 15}), three jumping patterns ({10

11}, {9 10 11} and {10 11 15}), one emerging pattern

({10}), and one decreasing pattern ({9 10 15}).

4.3 Visualization of Geolocalized Behaviors

This section explains the method that we proposed in

order to visualize the behaviors identified for a spec-

ified time window (see Section 4.2). The visualization

method is based on the spatial granularity value in kilo-

meters, the number of columns and rows in the raster

area generated in Algorithm 1.
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Table 5: Frequent formal concepts and type obtained for the example of Table 4 (minsup = 2 (40%), θ = 1, ε = 0)

Formal Concept #Sunday #Monday K Type
( trj1 trj2 trj3 trj5 ; 9 10 ) 2 2 1 LATENT
( trj1 trj2 trj3 trj4 ; 10 15 ) 2 2 1 LATENT

( trj3 trj4 trj5 ; 10 11 ) 0 3 +∞ JUMPING
( trj3 trj5 ; 9 10 11 ) 0 2 +∞ JUMPING
( trj3 trj4 ; 10 11 15 ) 0 2 +∞ JUMPING

( trj1 trj2 trj3 trj4 trj5 ; 10) 2 3 1.5 EMERGING
( trj1 trj2 trj3 ; 9 10 15 ) 2 1 0.5 DECREASING

Algorithm 4 Grid geographical dimension extraction

in raster area
Require:

fcty : Formal concept containing three parts (intentfc,
extentfc,Type)
G: Raster area contain (columns*rows) cells, also its lat-
itude, longitude distance covered in degree (LatD and
LongD)

Ensure:
LGdim: Ordered list containing the grid dimension min,
max for formal concept intent values

1: LGdim ← {};
2: longstep ← G.LongD/G.Columns; //longitude distance

between each column in raster area in degree
3: latstep ← G.LatD/G.Rows; //latitude distance between

each row in raster area in degree
4: for all g ∈ intentfc do
5: rowg ← b(g−1)/G.Columnsc+1; //calculate the grid

row position
6: colg ← ((g−1) mod G.Columns)+1; //calculate the

grid column position
7: latgmin ← G.latmin+(latstep∗(rowg−1)); //calculate

the grid g latitude min value
8: latgmax ← latgmin + latstep; //calculate the grid g lat-

itude max value
9: longgmin ← G.longmin + (longstep ∗ (colg − 1)); //cal-

culate the grid g longitude min value
10: longgmax ← longgmin + longstep; //calculate the grid

g longitude max value
11: add(LGdim, {(latgmin,longgmin), (latgmax,longgmax)});

// add the pair grid min max longitude, latitude values
to the end of the list LGdim

12: end for
13: return LGdim;

Algorithm 4 shows the steps that we follow in or-

der to extract the geographical dimensions for certain

grid patterns of the formal concept (see Section 4.2),

which we will use later for the visualization method.

Let fcty be a frequent formal concept extended by its

type, (intentfc, extentfc, Type). In order to start the

visualization method we need to extract the real dimen-

sion for each grid in the formal concept. Each grid g in

the intentfc is defined by min, max dimensions based

on the raster area. Then each detected type is assigned

to a specific color. Hence, when reading the grid index

and the type, the color is given to the mapped grid di-

mension area in real map. It is important to note that

the type of each grid item is chosen according to the

majority vote value, which is calculated by considering

all the formal concepts that contains this item in its

intent. In the case of equality, several strategies can be

used. For instance, we can randomly choose from the

obtained types or we can give a special type color. Let

us remark that we can use the neighbors of the grid

item to pick the type according to the majority vote,

but we may also face the equality problem within the

item neighbors. We chose to use a special color to indi-

cate ambiguous type.

Example 8 In order to compute the grid dimensions

for the concept (trj1, trj2, trj3, trj5 ; 9 10) in Table 4

in the raster area of Figure 5, we do: Grid 9 : rowg = 3,

colg = 1. The (latgmin, long
g
min) , (latgmax, long

g
max) val-

ues for 9 are: {(36.23621865,106.65184), (36.23657797,

106.6521993)} and for grid 10 we have: {(36.23621865,

106.6521993), (36.23657797,106.6525587)}. So, LGdim

is equal to {(36.23621865, 106.65184), (36.23657797,

106.6521993)}, {(36.23621865, 106.6521993),

(36.23657797, 106.6525587)}.

5 Experiments

In this section, we summarize the experimental results

obtained on a real world data set. We present informa-

tion about this data and about the followed protocol.

The results and discussion are then exposed.

5.1 Data

We have used a real data set (T-drive) which contains

a large amount of taxi GPS trajectories collected by

Microsoft Research Asia. These data have been used in

[34,36]. The original data set contains the GPS trajec-

tories for 10,357 taxis during the period of one week

from Feb2 to Feb8 in 2008. Each file of the data set

contains the trajectories of one taxi. Each line in a file

has the following fields separated by comma: TaxiID,

Date, Time, Longitude and Latitude. The total num-

ber of points in this data set is about 15 million and
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the total distance of the trajectories reaches 9 million

kilometers. The (longitude,latitude) was returned ev-

ery 5 to 10 seconds and the coordinate system used for

the returned longitude latitude was the Decimal De-

gree coordinate system (DD). In order to perform our

experiments, we choose 222 taxis randomly.

5.2 Experimental Protocol

For the experiments, the methodology has been applied

based on three factors, time granularity, minsup value,

and spatial granularity. The protocol in general can be

summarized as follows, the trajectories have been seg-

mented according to time granularity, all the inaccu-

rate, redundant data have been deleted, then the tra-

jectories were mapped in raster area G by applying Al-

gorithm 1 using the spatial granularity value. Each tra-

jectory has been mapped on the raster area for finally

having a vector which contains information about the

grid numbers that each trajectory passes through its

time window journey (see Algorithm 2). For each pair

of time ∆t, and for certain minsup value, we extracted

the frequent formal lattice using CHARML algorithm

[37]. Then, the type of the pattern contained in each

formal concept has been identified (see Algorithm 3).

Let us recall that the type of a pattern corresponds

to a certain behavior. Finally, we visualized the moving

object behavior on a real map by applying Algorithm 4.

Several experiments were applied by changing time

granularity (24 hours, 12 hours, 2 hours), spatial gran-

ularity (20, 40, 60 meters), and minsup (10, 20, 30, 40).

For the type detection we set ε to 0 and θ to 1 in Algo-

rithm 3.

In order to show the relevance and the interest of

our method, we compare our results with those of a

baseline method which uses only statistics instead of

patterns. The baseline method computes, for each grid,

the total number of the trajectories passing through it.

The type detection and the visualization are performed

as our method.

All the algorithms were implemented in Java, and

all the experiments were performed on a Intel Core i7

2.50 GHz with 16 GB of memory.

5.3 Experimental Results

As mentioned before, a study according to different spa-

tial granularities and zones within different pairs of days

or half a day and different minsup values has been done

to evaluate the proposed method. We present the quan-

titative and qualitative results of our method, and the

comparison with the baseline method. Let us note that

the corresponding days in the data are as follow: Feb2

= Saturday, Feb3 = Sunday, Feb4 = Monday, Feb5

= Tuesday, Feb6 = Wednesday, Feb7= Thursday, and

Feb8 = Friday.

5.3.1 Quantitative Results

Tables 6, 7, and 8 and Figures 7, 6 and 8 show the

statistical and graphical representation for our exper-

imental results using different spatial granularities 20,

40, 60 meters respectively, for minsup = 10 (i.e, 2.3%).

We observe that when we have high spatial granularity

dimensions, we have a high number of patterns. This

is clearly shown in Figure 9 where the total number of

patterns increases whenever we have a high granularity

value. Thus, if the spatial granularity value increases,

the total number of grids decreases and the data den-

sity increases. Consequently, there are more possible

common grids between the trajectories, so the proba-

bility to find patterns increases. We can conclude that

there is a relation between spatial granularity and the

total number of generated patterns. Moreover, we ob-

serve that the number of lost and jumping patterns is

low compared to those of the other types. This is due

to the time granularity which is coarse and does not

allow to capture fast evolution of behaviors. A pattern

is lost or jumping if it is not detected during both the

two compared time intervals.

In order to study the effect of minsup values and

types, we did another experiment where we change the

minsup value for same spatial granularity for one week

as shown in Tables 9, 10, and 11. We note from these

statistics that when ever the minsup value increases the

number of generated pattern decrease and some types

may disappear. For example, if we compare the results

in Table 8 with those in Table 9, we can notice that

whithin minsup=20 (i.e., 4.5%) we have no jumping or

lost patterns.

We have also applied the same protocol by chang-

ing the time segmentation. Instead of using 24 hours,

we have set the time granularity value to 12 hours and

2 hours, while keeping spatial granularity value as 60

meters and minsup value as 2.3%. This percentage cor-

responds to 10 trajectories in the case of 12 hours (same

as 24 hours), and 6 for 2 hours (because the total num-

ber of trajectories is lower). Tables 12 and 13 show

the statistical results for 12 hours and 6 hours, respec-

tively. In Table 13, Feb3(0:00-2:00) means from 0:00:00

to 1:59:59. If we compare these statistics within the ones

in Table 8, we can conclude that when ever we decrease

the time granularity, we get less total number of pat-

terns. For example, in time window (Feb3,Feb4) Table

8, the total number of patterns is equal to 88,719 while
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Table 6: Number of patterns according to the type, one week, granularity 20 meters and minsup = 10 (2.3%)

Time window Emerging Decreasing Latent Lost Jumping Total
(Feb2,Feb3) 1,699 363 252 0 15 2,329
(Feb3,Feb4) 2,810 2,011 846 1 3 5,671
(Feb4,Feb5) 1,674 2,755 819 2 0 5,250
(Feb5,Feb6) 323 1,594 238 4 0 2,159
(Feb6,Feb7) 105 289 74 1 0 469
(Feb7,Feb8) 7 95 18 0 0 120

Table 7: Number of patterns according to the type, one week, granularity 40 meters and minsup = 10 (2.3%)

Time window Emerging Decreasing Latent Lost Jumping Total
(Feb2,Feb3) 8,184 1,195 1,074 0 41 10,494
(Feb3,Feb4) 11,439 9,072 3,642 4 14 24,171
(Feb4,Feb5) 7,664 11,221 3,094 19 5 22,003
(Feb5,Feb6) 1,422 7,605 1,107 21 0 10,155
(Feb6,Feb7) 555 2,043 278 8 1 2,885
(Feb7,Feb8) 109 685 88 0 0 882

Table 8: Number of patterns according to the type, one week, granularity 60 meters and minsup = 10 (2.3%)

Time window Emerging Decreasing Latent Lost Jumping Total
(Feb2,Feb3) 20,729 2,220 2,041 0 312 25,302
(Feb3,Feb4) 40,442 34,797 13,431 9 40 88,719
(Feb4,Feb5) 20,767 40,327 10,118 55 3 71,270
(Feb5,Feb6) 2,658 15,668 1,933 90 0 20,349
(Feb6,Feb7) 1,290 3,105 524 1 1 4,921
(Feb7,Feb8) 237 1,421 148 1 0 1,807

for the same period of time on Table 12 it is equal to

18,444. The decreasing of the number of patterns oc-

curs because the data density is lower. Let us remark

that decreasing the minsup leads to more patterns.

5.3.2 Qualitative Results

In order to analyze the results, we captured a different

interesting areas shown in Figure 10 in a real map, and

visualized the detected behaviors. We give explanation

for the results. For the purpose of clarity, we give each

pattern type a key letter in the figures where each let-

ter related to a color and type of pattern as follows:

(R:Red, decreasing, (G:Green, emerging), (B:Blue, la-

tent), (Y:Yellow, lost), (GR:Gray, jumping and (P:Pink,

ambiguous). It is important to say that the percentage

of ambiguous patterns (see Figure 11) which are the

grids that hold two types of behavior at the same time

was very low. For example, the percentage of ambiguous

type is 2.24% for (Feb2(pm),Feb3(am)).

Some emerging patterns have been captured in the

airport area (see Figure 12) and in the Administration

area (see Figure 13) during the period of (Feb2,Feb3),

and (Feb3,Feb4) respectively. This means that these re-

gions face a higher taxi movement in the second day

compared to the first day. The result in airport area

can be clarified by the fact that Chinese New Year was

in this week, where most of Chinese go back to cel-

ebrate the holiday. Taxi movement in administrative

area was also higher in Feb4 compared to Feb3 and

this can be explained by the fact that Feb4 is a work-

ing day while Feb3 is weekend. The majority of patterns

shown in the temple of heaven area (see Figure 16) dur-

ing (Feb6,Feb7) were also emerging, which means that

in Feb7 more taxis passed this area comparing to the
one in Feb6 where there was a worshiping ceremony at

this temple for the Chinese New Year celebration.

In another way, some decreasing patterns have been

identified in the Beijing railway station area during

(Feb4,Feb5) (see Figure 14). We got the same observa-

tion for the Chaoyang golf club area during (Feb5,Feb6)

(see Figure 15). It means that these areas have been fac-

ing a higher taxi movement in the first day compared

to the one in the second day. For example, this behav-

ior can be clarified in Beijing railway area by the fact

that Feb4 is the first day of the week so the transporta-

tion used will be higher than any other day through the

week.

Finally, a latent pattern has been discovered in the

region of Temple of heaven during (Feb7,Feb8) (see Fig-

ure 17). It means that the taxis movement is approxi-

mately similar in these two days. This can be explained

by the fact that in these two days temple of heaven

(Tiantan park) which is the largest building for religious
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Fig. 6: Number of patterns for one week and spatial granularity
= 20 meters.

Fig. 7: Number of patterns for one week and spatial granularity
= 40 meters.

Fig. 8: Number of patterns for one week and spatial granularity
= 60 meters.

Fig. 9: Total number of patterns for one week and different
spatial granularities.

Fig. 10: Beijing areas of interest. Fig. 11: Ambiguous pattern example.

Fig. 12: Tagged map for the Airport area in (Feb2,Feb3). Fig. 13: Tagged map for the Administrative area (Feb3,Feb4).
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Table 9: Number of patterns according to the type, one week, granularity 60 meters and minsup = 20 (4.5%)

Time window Emerging Decreasing Latent Lost Jumping Total
(Feb2,Feb3) 1,678 99 57 0 0 1,834
(Feb3,Feb4) 2,304 1,872 447 0 0 4,623
(Feb4,Feb5) 1,328 2,516 444 0 0 4,288
(Feb5,Feb6) 148 1,544 96 0 0 1,788
(Feb6,Feb7) 115 300 30 0 0 445
(Feb7,Feb8) 12 124 10 0 0 146

Table 10: Number of patterns according to the type, one week, granularity 60 meters and minsup = 30 (6.8%)

Time window Emerging Decreasing Latent Lost Jumping Total
(Feb2,Feb3) 389 9 5 0 0 403
(Feb3,Feb4) 587 422 75 0 0 1,084
(Feb4,Feb5) 261 618 76 0 0 955
(Feb5,Feb6) 26 303 10 0 0 339
(Feb6,Feb7) 23 36 3 0 0 62
(Feb7,Feb8) 0 13 0 0 0 13

Table 11: Number of patterns according to the type, one week, granularity 60 meters and minsup = 40 (9%)

Time window Emerging Decreasing Latent Lost Jumping Total
(Feb2,Feb3) 103 1 0 0 0 104
(Feb3,Feb4) 197 140 22 0 0 359
(Feb4,Feb5) 69 207 18 0 0 294
(Feb5,Feb6) 4 66 1 0 0 71
(Feb6,Feb7) 2 4 0 0 0 6
(Feb7,Feb8) 0 0 0 0 0 0

worshiping in China also a tourist attraction where hav-

ing the chinese new year ceremonies.

To study the effect of time granularity, we compare

Figure 18 which shows the behavior in the region of

Beijing Railway during the period of (Feb3,Feb4) where

time granularity equals day, within Figures 19 and 20

where the time granularity value is 12 hours. We do not

visualize the results obtained for 2 hours because the

total number of discovered patterns is too low with no

important conclusion.

It is clear that when ever we have a smaller time

granularity value, we will get more homogeneous be-

haviors. For example, in Figure 18, the whole behavior

of the area is not really clear compared to Figure 19

where the majority of the patterns are emerging. This

means that the area face higher taxi movements after-

noon compared to the morning period. This can also be

verified by Figure 20. We can observe a decreasing be-

havior which confirms that the traffic on Feb3 pm was

higher compared to the morning period of Feb3 and

Feb4. We can explain that by, Feb3 is Sunday pm and

all the citizens use transportation at the end of weekend

or holiday.

5.3.3 Comparative Results

Tables 14, 15 and 16 present the distribution of the grids

according to behavior types computed by the baseline

method. We observe that the number of jumping and

lost grids is very high compared to the number of the

other types. These two types are dominant and do not

allow to identify the others. Moreover, the total number
of grids to visualize is high, which does not help to

analyze the results. As we can see in Figure 21, a lot of

grids are tagged as ”lost” and the other behavior types

are hidden. If the number of labeled grids is too high,

the map can be impractical to compute and exploit.

In fact, our method avoids these problems as the

discovery of frequent closed patterns, i.e., contained in

formal concepts, allows us to tune the importance of the

considered trajectories by using the minsup threshold

value. The more the minsup value is high, the more

the discovered patterns are important and in the same

time their number is smaller. In conclusion, our method

thus detect only the important behavior types and not

all types.

6 Conclusion

Trajectory analysis is a challenging problem especially

in the urban context as the world’s population will in-
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Table 12: Number of patterns according to the type, one week, spatial-granularity 60 meters, time granularity 12 hours and
minsup = 10 (2.3%)

Time window Emerging Decreasing Latent Lost Jumping Total
Feb2(am),Feb2(pm) 0 0 0 0 797 797
Feb2(pm),Feb3(am) 394 2,135 206 33 0 2,768
Feb3(am),Feb3(pm) 4,276 267 171 0 128 4,842
Feb3(pm),Feb4(am) 833 6,087 653 69 1 7,643
Feb4(am),Feb4(pm) 4,557 796 515 2 89 5,959
Feb4(pm),Feb5(am) 135 3,767 174 125 1 4,202
Feb5(am),Feb5(pm) 4,339 144 161 2 48 4,694
Feb5(pm),Feb6(am) 24 3,358 35 153 0 3,570
Feb6(am),Feb6(pm) 78 889 66 5 0 1,038
Feb6(pm),Feb7(am) 11 695 17 21 0 744
Feb7(am),Feb7(pm) 356 24 15 0 12 407
Feb7(pm),Feb8(am) 6 275 7 24 0 312
Feb8(am),Feb8(pm) 63 6 8 0 1 78

Table 13: Number of patterns according to the type, Feb3, spatial-granularity 60 meters, time granularity 2 hours and minsup =
6 (2.3%)

Time window Emerging Decreasing Latent Lost Jumping Total
Feb3(0:00-2:00),Feb3(2:00-4:00) 10 38 2 0 4 54
Feb3(2:00-4:00),Feb3(4:00-6:00) 7 36 5 2 0 50
Feb3(4:00-6:00),Feb3(6:00-8:0) 4 7 0 0 0 11

Feb3(6:00-8:00),Feb3(8:00-10:00) 13 0 0 0 4 17
Feb3(8:00-10:00),Feb3(10:00-12:00) 14 8 1 0 0 23
Feb3(10:00-12:00),Feb3(12:00-14:00) 23 12 5 0 0 40
Feb3(12:00-14:00),Feb3(14:00-16:00) 44 24 7 0 0 75
Feb3(14:00-16:00),Feb3(16:00-18:00) 47 47 13 0 0 107
Feb3(16:00-18:00),Feb3(18:00-20:00) 23 23 11 0 0 57
Feb3(18:00-20:00),Feb3(20:00-22:00) 21 13 3 0 0 37
Feb3(20:00-22:00),Feb3(22:00-00:00) 41 53 7 0 0 101

Fig. 14: Tagged map for the Beijing Railway station area
(Feb4,Feb5).

Fig. 15: Tagged map for the Chaoyang Golf club area
(Feb5,Feb6).

crease significantly in the next few decades. The auto-

matic generation of on demand reports, that aggregate

results of trajectory analysis and the visualization of ge-

olocalized information, is an important issue that will

support urban management, adapted policy definition,

public security, etc.

In this paper, we have proposed a new method based

on frequent formal concept extraction and the analysis

of their evolution over time in order to detect behaviors.

We have proposed five types of behavior: emergent, la-

tent, decreasing, jumping, and lost. Our method gener-

ates tagged city maps at different spatio-temporal gran-

ularity values. Therefore, refined or coarse analysis can

be performed for a given situation. Experimental results

using real-world GPS trajectory data have shown the

relevance of the proposed method and the usefulness of

the resulted tagged maps.

In future work, we will extend our system by pre-

dicting user behavior in a given area during the next

time window. We will also use our recent works on ap-

proximation of frequent itemset borders [10,9] and on

probabilistic topic models [27,26] for enrichment and

trajectory recommendation purposes.
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Fig. 16: Tagged map for the Temple of heaven area
(Feb6,Feb7).

Fig. 17: Tagged map for the Temple of Heaven and Danbi
Bridge area (Feb7,Feb8).

Table 14: Distribution of the grids according to the type, one week, spatial-granularity 60 meters, and time granularity 24
hours (Baseline method)

Time window Emerging Decreasing Latent Lost Jumping Total
(Feb2,Feb3) 12,687 3,613 6,437 11,650 26,465 60,852
(Feb3,Feb4) 10,388 9,546 8,830 20,438 21,590 70,792
(Feb4,Feb5) 7,514 11,538 9,150 22,152 25,244 75,598
(Feb5,Feb6) 3,501 11,357 7,477 31,111 18,827 72,273
(Feb6,Feb7) 3,885 6,157 7,096 24,024 18,445 59,607
(Feb7,Feb8) 2,517 5,063 5,659 22,344 16,747 52,330

Table 15: Distribution of the grids according to the type, one week, spatial-granularity 60 meters, and time granularity 12
hours (Baseline method)

Time window Emerging Decreasing Latent Lost Jumping Total
Feb2(am),Feb2(pm) 0 0 0 0 34,372 34,372
Feb2(pm),Feb3(am) 2,055 7,156 4,454 20,707 10,808 45,180
Feb3(am),Feb3(pm) 8,997 1,523 4,248 9,705 24,791 49,264
Feb3(pm),Feb4(am) 2,214 9,555 4,984 22,806 11,373 50,932
Feb4(am),Feb4(pm) 9,145 2,277 4,871 11,833 22,339 50,465
Feb4(pm),Feb5(am) 1,504 8,681 4,256 24,191 11,173 49,805
Feb5(am),Feb5(pm) 7,837 1,736 4,659 11,382 27,908 53,522
Feb5(pm),Feb6(am) 658 6,506 3,294 31,682 8,961 51,101
Feb6(am),Feb6(pm) 1,104 3,993 4,096 21,827 10,226 41,246
Feb6(pm),Feb7(am) 458 3,316 2,975 24,271 7,144 38,164
Feb7(am),Feb7(pm) 2,984 530 2,779 7,600 21,707 35,600
Feb7(pm),Feb8(am) 414 2,721 2,568 22,297 7,655 35,655
Feb8(am),Feb8(pm) 1,715 558 2,452 8,633 16,761 30,119
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