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from simple site parameters using generalized 
regression neural networks: implications 
for relevant site proxies
Ahmed Boudghene Stambouli1* , Djawad Zendagui1, Pierre‑Yves Bard2 and Boumédiène Derras1

Abstract 

Most modern seismic codes account for site effects using an amplification factor (AF) that modifies the rock accelera‑
tion response spectra in relation to a “site condition proxy,” i.e., a parameter related to the velocity profile at the site 
under consideration. Therefore, for practical purposes, it is interesting to identify the site parameters that best control 
the frequency‑dependent shape of the AF. The goal of the present study is to provide a quantitative assessment of 
the performance of various site condition proxies to predict the main AF features, including the often used short‑ 
and mid‑period amplification factors, Fa and Fv, proposed by Borcherdt (in Earthq Spectra 10:617–653, 1994). In this 
context, the linear, viscoelastic responses of a set of 858 actual soil columns from Japan, the USA, and Europe are com‑
puted for a set of 14 real accelerograms with varying frequency contents. The correlation between the corresponding 
site‑specific average amplification factors and several site proxies (considered alone or as multiple combinations) is 
analyzed using the generalized regression neural network (GRNN). The performance of each site proxy combination 
is assessed through the variance reduction with respect to the initial amplification factor variability of the 858 profiles. 
Both the whole period range and specific short‑ and mid‑period ranges associated with the Borcherdt factors Fa and 
Fv are considered. The actual amplification factor of an arbitrary soil profile is found to be satisfactorily approximated 
with a limited number of site proxies (4–6). As the usual code practice implies a lower number of site proxies (gener‑
ally one, sometimes two), a sensitivity analysis is conducted to identify the “best performing” site parameters. The best 
one is the overall velocity contrast between underlying bedrock and minimum velocity in the soil column. Because 
these are the most difficult and expensive parameters to measure, especially for thick deposits, other more conveni‑
ent parameters are preferred, especially the couple (Vs30, f0) that leads to a variance reduction in at least 60%. From a 
code perspective, equations and plots are provided describing the dependence of the short‑ and mid‑period ampli‑
fication factors Fa and Fv on these two parameters. The robustness of the results is analyzed by performing a similar 
analysis for two alternative sets of velocity profiles, for which the bedrock velocity is constrained to have the same 
value for all velocity profiles, which is not the case in the original set.
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Introduction
It is recognized that site effects have a great impact on 
seismic ground motion and could thus cause increased 
damage to structures. For instance, during the Michoa-
can Earthquake of Mexico (e.g., Anderson et  al. 1986; 
Hall and Beck 1986; Esteva 1988; Singh et  al. 1988a, 
b; Bard et  al. 1988; Romo et  al. 1988; Seed et  al. 1988; 
Sanchez-Sesma et al. 1988; Kawase and Aki 1989; Singh 
and Ordaz 1993; Chávez-García and Bard 1994; Cruz-
Atienza et  al. 2016) amplification induced from site 
effects has been recognized as the major cause of struc-
tural collapse.

In this study, seismic amplification is measured with an 
amplification factor (AF), defined as the ratio of response 
spectra between soil surface and outcropping reference 
rock. Among many other parameters characterizing the 
intensity of ground motion, response spectra are the 
most used in engineering practice. Most building codes 
use response spectra to define design earthquake loads 
on engineered structures. Most hazard assessment stud-
ies use acceleration response spectra to define the seis-
mic motion through ground motion prediction equations 
(GMPEs) that correlate the spectral ordinates to magni-
tude, distance, and site parameters. In most GMPEs, the 
site conditions are described with a single-site proxy; 
currently, the most common is the “Vs30” parameter, cor-
responding to the harmonic average of S-wave velocity 
over the top 30 m, first introduced by Borcherdt (1994), 
which has, since then, been widely used (see, for instance, 
Martin and Dobry 1994; Dickenson and Seed 1996; 
Dobry et  al. 2000; Rodríguez-Marek et  al. 2001; Pitila-
kis et  al. 2001). Almost all recent GMPEs, for instance, 
the NGA (Abrahamson et al. 2008), NGAWest2 (Gregor 
et  al. 2014; Ancheta et  al. 2014), and GMPEs derived 
from the RESORCE database (Douglas et  al. 2014) still 
rely on  Vs30 to describe site conditions. It is sometimes 
complemented or replaced by other site parameters, such 
as the fundamental frequency f0 (Castellaro et  al. 2008; 
Luzi et  al. 2011; Cadet et  al. 2012; Pitilakis et  al. 2012, 
2013) or depth to a hard bedrock level defined with a 
threshold velocity (from 1 to 2.5 km/s; see Ancheta et al. 
2014). The terms associated to such site proxies provide 
a mechanism for quantifying the frequency-dependent 
“amplification factor” with respect to “standard rock” 
(usually characterized by Vs30 = 760 to 800 m/s). The 
same proxies are also used in regulatory codes to tune the 
characteristics of design spectra, i.e., peak ground accel-
eration (PGA), plateau bandwidth and level, and long-
period decay, to the site conditions. For instance, this is 
the case for the major building codes used at the interna-
tional level, i.e., International Building Code (IBC 2012), 
Uniform Building Code (UBC 1997), and Eurocode 8 
(EC8 2004).

However, these site proxies are too simple and too 
few to capture the entire physics of site amplification, 
and distinct sites with similar site proxy values (e.g., 
Vs30) could have different amplification characteristics. 
This has at least two consequences. First, it significantly 
impacts the aleatory variability of GMPEs by increasing 
the within-event term, which in turn increases the hazard 
estimates, especially at long return periods. Second, cor-
responding site terms may exhibit significant variations 
from one GMPE to another, depending on the strong 
motion data used for their derivation. For instance, the 
relationship between Vs30 and deeper velocity structure is 
not identical in the Los Angeles basin, Japanese coastal 
plains, or intra-mountain basins in the Alps or the Apen-
nines; therefore, the associated long- or short-period 
effects may differ. The issue addressed in this paper is to 
identify the best site parameters that optimally explain, 
and therefore predict, the actual site-specific amplifica-
tion factor. The aim is to derive “stand-alone” site terms, 
which could be applied as a post-processing step to any 
rock GMPEs.

With that aim in mind, the focus here is on the 1D 
response of horizontally stratified soil columns, and on 
investigating the relationships between corresponding 
amplification factors on response spectra, and limited 
number of “site proxies” describing the overall character-
istics of the soil profile. A series of 858 real soil profiles 
are considered, and their linear viscoelastic responses 
to vertically incident S waves are computed for 14 dis-
tinct, real input waveforms spanning a wide range of 
frequency contents. For each site, the geometric aver-
age amplification factor is derived from these 14 differ-
ent loadings, and an artificial neural network approach 
is used to investigate the correlation between this aver-
age amplification factor and various sets of soil charac-
teristics. Sensitivity studies are performed to identify 
the relative performance of several site proxies, with the 
goal of proposing optimal combination sets offering a 
good compromise between physical relevancy and prac-
tical affordability. The robustness of the results is tested 
by conducting the same analysis on two additional sets 
of soil profiles, termed normalized soil profiles (NP) and 
truncated soil profiles (TP), modified to correspond to a 
uniform bedrock velocity of 800 m/s.

Derivation of amplification factors (AF)
Introduction
This section describes the overall procedure to obtain a 
set of amplification factors for several hundreds of real-
istic soil profiles. For a particular soil profile and input 
motion, the amplification factor is computed as the ratio 
of response spectra at the soil surface to response spectra 
at the outcropping reference rock.
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where SA(T )s and SA(T )b are, respectively, the 5% 
response spectra at the site surface and outcropping ref-
erence bedrock, while T is the structural period. They are 
obtained as follows:

1. Choose a soil profile S and use the 1D viscoelastic 
analysis to derive the corresponding Fourier transfer 
function T

(

f
)

2. Select a reference rock motion b(t) and compute its 
Fourier transform B(f ) together with its 5% accelera-
tion response spectrum SA(T )b

3. Compute the Fourier transform of motion at the soil 
surface As

(

f
)

 by multiplying B(f ) by T
(

f
)

4. Perform an inverse Fourier transform on As

(

f
)

 to 
obtain the surface motion in time domain as(t).

5. Derive the 5% acceleration response spectrum 
SA(T )s from as(t).

Once SA(T )s and SA(T )b are derived, the amplification fac-
tor for site s and input b can be readily obtained from Eq. (1).

(1)AF(T ) =
SA(T )s

SA(T )b

The next sections provide additional information for 
selected input accelerograms, followed by a short indi-
cation on the way transfer functions, and thus, amplifi-
cation factors are computed using classical concepts of 
wave propagation in horizontally stratified media. The 
considered site profiles are finally briefly described, from 
original soil profile information to selecting a small num-
ber of site proxies, and providing their statistical distri-
bution to assess the relevancy and validity domain of the 
study.

Seismic input SA(T)b
Fourteen input waveforms (S1–S14), recorded on out-
cropping rock, are selected from the RESORCE data-
base (Akkar et al. 2014). Their characteristics are listed in 
Table 1. The amplification factor defined in Eq. (1) depends 
on the frequency content of the seismic motion (see, for 
instance, Biro and Renault 2012; Renault et al. 2014; Bora 
et  al. 2015, 2016). Therefore, it was decided to select real 
accelerograms, corresponding to near-source rock record-
ings, with a wide range of spectral contents, and derive the 
geometrical mean of the amplification factors obtained 
for each accelerogram. As illustrated in Fig. 1, the spectral 

Table 1 Main characteristics of the 14 reference acceleration time histories

Identification RESORCE 
Waveform Id

PGA (m/s2) Earthquake Station Mw Distance Site  
conditions

Peak frequency 
(highest PSA)

S1 16,149 1.269 Manjil (Iran) 
20/06/1990

Zanjan 7.7 56 A f < 2 Hz

S2 16,351 1.288 Olfus (Iceland) 
29/05/2008

Ljosafoss‑Hydroelec‑
tric Power Station

6.1 11 A f < 2 Hz

S3 16,352 3.190 Olfus (Iceland) 
29/05/2008

Selfoss City Hall 6.1 3 A f < 2 Hz

S4 15,537 2.074 South Iceland 
17/06/2000

Thjorsarbru 5.0 10 A 2 Hz < f<4 Hz

S5 6756 3.106 South Iceland 
17/06/2000

Flagbjarnarholt 6.6 15 A 2 Hz < f<4 Hz

S6 6765 3.140 South Iceland 
17/06/2000

Thjorsarbrun 6.6 4 A 2 Hz < f<4 Hz

S7 583 1.003 Lazio‑Abruzzo 
11/05/1984

Villetta Barrea 5.3 2 A 4 Hz < f<8 Hz

S8 16,974 1.474 L’Aquila 07/04/2009 
(aftershock)

Pescomaggiore 5.3 10 A 4 Hz < f<8 Hz

S9 15,905 3.006 Firouzabad (Iran) 
20/06/1994

Zarrat 5.8 11 A 4 Hz < f<8 Hz

S10 188 1.496 Basso Tireno 
15/04/19878

Naso 5.5 16 A 4 Hz < f<8 Hz

S11 17,116 1.023 L’Aquila aftershock 
09/04/2009

Montereale 4.9 10 A 8 Hz < f<16 Hz

S12 6802 4.260 South Iceland after‑
shock 21/06/2000

Thjorsartun 6.4 3 A 8 Hz < f<16 Hz

S13 16,996 1.393 L’Aquila aftershock 
07/04/2009

L’Aquila Via Aterna—Il 
Moror

4.2 2 A 8 Hz < f<16 Hz

S14 6789 0.803 South Iceland after‑
shock 21/06/2000

Hveragerdi‑Church 6.4 23 A 8 Hz < f<16 Hz
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shapes corresponding to each selected accelerogram, i.e., 
the response spectra normalized by the corresponding 
PGA, exhibit peak periods ranging from 0.07 s to slightly 
beyond 1  s, with four motions with peak periods in the 
range [0.0625–0.125  s], four in the range [0.125–0.25  s], 
three in the range [0.25–0.5 s], and three >0.5 s. The cor-
responding PGA values are also listed in Table  1 (rang-
ing from 0.8 to 4.2 m/s2), but actual PGA values have no 
importance in the present computations because only the 
linear response is considered. The main goal is to ensure a 
representative average amplification factor that is unbiased 
by spectral contents too rich in either short or long periods.

Theoretical derivation of the transfer function T
(

f
)

For a particular soil profile, the AF is computed once the 
transfer function T

(

f
)

 is known. In this study, 1D vis-
coelastic soil behavior is considered. The soil is ideally 
composed of n horizontally layered soils deposit resting 
on a substratum that is termed bedrock (see Fig. 2). Each 
layer i is fully known by its thickness hi, shear modulus 
Gi or shear wave velocity Vi, damping ratio ζi, and mass 
density ρi. The underlying half-space has a shear wave 
velocity Vn+1 that is termed Vbedrock. The vertical z-axis 
is oriented downwards, and its origin is taken at the free 
surface. The top of each layer i is located at the depth zi−1, 
and its bottom at depth zi = zi−1 + hi. The response of the 
soil column to harmonic, vertically incident plane shear 
waves is governed by the equation (Kramer 1996):

(2)(1+ 2i ζi)
∂2ui

∂z2
= −

ω2

V 2
i

ui

where ui is the horizontal displacement in the ith layer, ω 
is the angular frequency, and ζi is the damping ratio.

In each layer, the wave field can be described as the 
summation of an up-going and a down-going plane wave 
with unknown amplitudes Ai and Bi. Solving the stress 
and displacement continuity equations at each interface 
establishes the relationships between these amplitudes 
for two adjacent layers. These relationships can thus be 
propagated from the bottom (unit up-going amplitude) 
to top layer. Using the free surface condition, the wave 
amplitudes in the top layer can be derived, and the trans-
fer function with respect to the motion at outcropping 
bedrock.

Since the pioneering work of Thomson (1950) and 
Haskell (1953), many codes such as SHAKE (Schnabel 
et  al. 1973), DEEPSOIL (Hashash et  al. 2012), or EERA 
(Bardet et  al. 2000) have been developed that provide 
the transfer function in the linear domain. However, 
we developed our own  MATLAB® code and verified its 
accuracy against DEEPSOIL and EERA.

In addition, the damping is estimated in relation to the 
quality factor  QSi using the well-known equation:

(3)

ui(z,ω) =
[

Aie
iω(z−zi−1)/Vi + Bie

−iω(z−zi−1)/Vi

]

eiωt

(4)T
(

f
)

= u1(z = 0,ω)/2 = A1
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Fig. 1 Spectral content for the 14 input waveforms considered for 
the computation of amplification factors. Each thin curve represents 
the normalized acceleration response spectrum Sa,j(T )bedrock/pgaj of 
the jth acceleration waveform (j = 1–14), the thick solid line represents 
their geometrical mean Fig. 2 Schematic representation of the 1D site response analysis 

method for a site consisting of n horizontal layers soils overlying 
bedrock. The parameters for each layer i are its thickness hi, shear 
modulus Gi, shear wave velocity Vi, damping ratio ζi, unit mass ρi, and 
thickness hi = zi − zi‑1
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The S-wave quality factor Qi is estimated here as related 
to the S-wave velocity through a scaling factor SCQ, as 
described in Aki and Richards (1980) and Fukushima 
et al. (1995):

where  SCQ is taken equal to 10 in the absence of meas-
urements for all the profiles considered in this study.

Soil profiles, database, and site parameters
Overview of soil profiles

a. Set 1: Real Profiles (RP)
We consider three sets of soil profiles. The first one, 

termed RP, is composed of nP = 858 soil profiles. It was 
originally compiled by C. Cornou (Salameh 2016; Sala-
meh et  al. 2017) and consists of about 600 Japanese 
KiK-net sites, more than 200 sites from the USA, made 
available by D. Boore (http://quake.usgs.gov/~boore), 
and 22 European sites measured during the NERIES pro-
ject (Di Giulio et  al. 2012). The main characteristics of 
this set of site profiles are presented in Salameh (2016), 
Almakari et al. (2016) and Salameh et al. (2017): They are 
primarily usual (i.e., normally soft, with S-wave velocities 
generally >200 m/s) and stiff soils, with shallow to inter-
mediate thicknesses,  <200  m in most cases, with only 
few sites—about 50—with fundamental frequency below 
1  Hz. They generally have “normally hard” to very hard 
underlying bedrock; the “bedrock” velocity, i.e., the veloc-
ity of the underlying half-space, varies from  <500  m/s 
to >3 km/s.

Such variability in “bedrock” velocity is due to the 
velocity profile having been measured over a limited 
depth, not always reaching the underlying hard rock. 
Because part of the amplification is controlled by the 
velocity contrast, this variability may significantly bias 
the site response and assessment of the respective influ-
ence of the various site proxies considered here. It is 
usually considered within the earthquake engineering 
community that amplification should be measured with 
respect to a “standard rock” reference site with a velocity 
around 800 m/s. Consequently, the real soil profiles have 
been modified to have a normalized bedrock velocity of 
800 m/s.

b. Set 2: Normalized profiles (NP):

The second data set is termed NP and is derived from 
the RP set using a homothetic transformation; all veloci-
ties are scaled by a factor of 800/Vbedrock so that the 

(5)
ζi =

1

2Qi

(6)QSi = Vi/SCQ

bedrock velocity is equal to 800  m/s for each profile in 
this “normalized profile” set, while the thickness of each 
layer is also scaled with the same factor to maintain an 
unchanged transfer function.

More specifically, for a site j with a bedrock velocity 
Vbedrock,j, the scaling is applied to the velocities and thick-
nesses of all layers i (i = 1, Nj) as follows:

For real sites with very hard bedrock, e.g., 
Vbedrock = 2500 m/s, the scaled velocities may become 
unrealistically small at shallow depths; for instance, 
if V1 = 120 m/s, then, according to (7), V ′

1 = 40 m/s. 
Therefore, only normalized soil profiles with minimum 
scaled velocities exceeding 80 m/s are retained in this NP 
set, which reduces their number from 858 to 570.

c. Set 3: Truncated profile (TP)

The third set of soil profiles, termed TP, is derived sim-
ply by performing a “truncation” of each real soil pro-
file; velocities are kept unchanged from surface until 
the depth  Z800, where the velocity first exceeds 800 m/s, 
and beyond this depth the velocity is set to 800  m/s. 
Whenever the bedrock velocity of the real soil profile is 
smaller than 800 m/s, the bedrock velocity is increased to 
800 m/s. Therefore, this third TP set also consists of 858 
soil profiles.

Site parameters
Each soil profile in each of the three sets can be partially 
described with a few site parameters, often called site 
proxies. In the present study, we investigate six of them, 
which have already been proposed by various authors 
in view of site classification (see, for instance, Castellaro 
et al. 2008; Cadet et al. 2012; Pitilakis et al. 2012, 2013), 
and provide information on the stiffness and/or thick-
ness of soil columns. These parameters are the depth to 
bedrock (Depth); average shear velocity (Vsm) over that 
depth, where subscript sm stands for mean value of the 
shear wave velocity; average shear wave velocity over the 
upper 30 m (Vs30); shear wave velocity of bedrock (Vbed-

rock); velocity contrast, i.e., ratio between shear wave 
velocities in bedrock and at the surface (Cv); and soil pro-
file fundamental frequency ( f0). The exact definition of 
each of these six parameters is detailed below:

(7)V ′
i,j = Vi,j · 800/Vbedrock,j

(8)h′i,j = hi,j · 800/Vbedrock,j

(9)Depth =
n

∑

i=1

hi

http://quake.usgs.gov/%7eboore
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Here, “bedrock” is the last known unit, which we con-
sider as an underlying infinite half-space, while n is the 
number of layers above bedrock (see Fig. 2).

where Vi =
√
Gi/ρi is the shear wave velocity in layer (i).

where l30 is the number of distinct layers found in the top 
30 m.

f0  =  fundamental soil frequency corresponding to the 
first peak (not necessarily the highest in amplitude) in the 
transfer function. In this study, for the sake of simplicity, 
f0 is determined using the Simplified Version of the Ray-
leigh Procedure (method # 7 in Dobry et al. 1976). Briefly, 
this approach is based on an approximation of the modal 
shape at the fundamental frequency, leading to the fol-
lowing Eqs. (13) and (14).

where (zi+1 + zi)/2 is the depth of midpoint of layer (i) 
and Xi values correspond to the estimated fundamental 
mode shape at the top of each layer (i), derived according 
to Dobry et al. (1976):

Distribution of site parameters
The cumulative distributions of the log values of these six 
parameters are summarized in Fig.  3 for profile sets of 
RP, NP, and TP (more details can be found in Additional 
Files 1, 2, and 3, for each profile set, respectively). There 
is no distribution of Vbedrock for NP and TP sets, because 
it has a fixed value of 800 m/s. Most parameters follow a 
quasi-lognormal distribution, except for Vbedrock, which is 
significantly skewed with a mode at 3.2 km/s (Fig. 3 and 
Additional file 1), and is characterized by large variability.

Moreover, as these parameters are not fully independ-
ent, the coefficient of determination (R2) between each 
pair of parameters has been computed and is listed in 
Table  2 for the three RP, NP, and TP sets. There is an 
overall tendency for some correlation between velocity 

(10)Vsm =
n

∑

i=1

hi

/

n
∑

i=1

hi

Vi

(11)Vs30 = 30

/

l30
∑

i=1

hi

Vi

(12)Cv =
VBedrock

V1

(13)

f0 =

√

(

4

(

∑n
i=1

(zi+zi+1)
2

V 2
i

hi

)/

(
∑n

i=1
(Xi + Xi+1)

2hi
)

)

2π

(14)Xn = 0. ; Xi−1 = Xi +
zi + zi−1

V 2
i

hi

parameters, especially Vsm and Vs30, but also the bedrock 
velocity VBedrock and Vsm, Vs30 and Cv, while much weaker 
correlations  (R2 between 0.1 and 0.02) are observed for 
the parameter pairs 

(

Cv , f0
)

, (Depth,VS30), (Depth,Cv) 
and (Depth,VBedrock). These correlation indicators are 
useful for selecting independent site parameters for the 
models relating site amplification to site characteristics.

Computed amplification factors: main statistical 
characteristics
General background
This section presents on overview of the computed sets 
of frequency-dependent AF, and their short- and mid-
period average values (i.e., the Borcherdt factors Fa and 
Fv). This is essential as they constitute the learning set to 
identify the key parameters controlling the characteris-
tics of site response.

AF values (Eq. 1) are calculated for the soil profiles RP, 
NP, and TP subjected to 14 seismic excitations. They may 
be written AF(Pk , θ , Sl ,Ti), where:

  • Pk , k = 1, . . . nP is introduced to identify the soil 
profile. Note that for RP and TP nP = 858 and for 
NP nP = 570 because we have imposed the minimal 
value of V ′

1 as 80 m/s
  • θ = 0 for RP, θ = 1 for NP, and θ = 2 for TP.
  • Sl , l = 1, 14 is the lth excitation. Note that, as indi-

cated below, the geometrical average of the 14 ampli-
fication factors has been computed for each site.

  • Ti, (i = 1, . . . 271) is the ith structural period. AF 
values are systematically computed for 271 values, 
equally spaced between 0.01 and 10 s on a logarith-
mic period axis, i.e., also equally spaced between 0.1 
and 100 Hz on a logarithmic frequency axis.

For instance, AF(P20, 2, S8,T55) stands for the AF 
obtained at the 50th period T55 for the truncated soil pro-
file P20 subjected to seismic excitation S8. After the AF is 
calculated for a particular profile k, and 14 seismic excita-
tions, the site average amplification factor is computed as 
the geometrical average of the 14 individual amplification 
factors:

Hereafter, the abridged notation AF will stand for the 
average value AFm(Pk , θ ,Ti).

Simultaneously, for each profile Pk, AF variability 
derived from the 14 different time histories is quantified 
using the corresponding standard deviation:

(15)

log [AFm(Pk , θ ,Ti)] =
(

1

14

) 14
∑

l=1

log [AF(Pk , θ , Sl ,Ti)]
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(16)σAF(Pk , θ ,Ti) =

√

∑14
l=1 [log (AF(Pk , θ , Sl ,Ti))− log (AFm(Pk , θ ,Ti))]

2

14

Table 2 Correlation between the various site parameters for the three profile sets (RP, NP, and TP, from top to bottom)

The values in the cells correspond to the coefficient of determination R2 between the corresponding site parameters)

RP

RP Depth f0 Cv Vsm Vs30 Vbedrock

Depth 1 0.3441 0.0903 0.2434 0.0388 0.0962

f0 1 0.0196 0.1858 0.4050 0.3102

Cv 1 0.1596 0.0559 0.5345

Vsm 1 0.8515 0.6784

Vs30 1 0.5531

Vbedrock 1

NP

NP Depth f0 Cv Vsm Vs30

Depth 1 0.4933 0.2137 0.4227 0.0299

f0 1 0.0300 0.3680 0.1218

Cv 1 0.5297 0.5333

Vsm 1 0.8423

Vs30 1

TP

TP Depth f0 Cv Vsm Vs30

Depth 1 0.4176 0.1973 0.2430 0.0664

f0 1 0.3864 0.0629 0.2529

Cv 1 0.3852 0.5436

Vsm 1 0.8811

Vs30 1
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Fig. 4 Variability of amplification factors with spectral contents of the 
reference rock motion. Each thin line corresponds to the variability 
of one of the 858 1D profiles considered here. The thick red line cor‑
responds to the average signal‑to‑signal variability for all profiles

The σAF values are displayed in Fig. 4 for all 858 sites; they 
exhibit a significant frequency dependence, decreasing 
from  ~0.1 at short period to  ~0.03 at intermediate and 
long periods. These values are quite significant, especially 
at short periods; it would thus be meaningless to seek 
extremely precise models with residuals between obser-
vations and predictions much below these values.

A few additional parameters are introduced to measure 
the variability of the results.

  • Average AF for all profiles, noted AF0(θ ,Ti) and 
defined as the geometrical average of the np average 
AF (AF(Pk , θ ,Ti)) noted for simplicity as  AF0: 

(17)log (AF0(θ ,Ti)) =
1

np

np
∑

k=1

[log (AFm(Pk , θ ,Ti))]
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  • Initial variability, defined as the initial standard devi-
ation of the site average amplification factor over all 
profiles 

  • Maximum initial variability, defined as the peak value 
of the initial variability σ0 over the whole period 
range: 

  • Overall initial variability, defined as the average over 
all periods of initial variability 

 where nT is the number of structural periods (or fre-
quencies) used, i.e., 271.

Means and variability of AF
For each profile set, we compute the nP × 14 AF: 
AF(Pk , θ , Sl ,Ti), the nP average amplification factors  AFm: 
AFm(Pk , θ ,Ti) together with their corresponding vari-
ability σAF(Pk , θ ,Ti). We then derive the mean amplifi-
cation factor AF0(θ ,Ti) and associated initial variability 
σ0(θ ,Ti) . The results are displayed in Fig. 5a, b, and c for 
each of the three RP, NP, and TP profile sets, respectively. 
The following observations are made.

  • The peak period, i.e., the period with peak amplifica-
tion, covers a broad range, from 0.08 s to about 3–4 s 
for the RP set, and from 0.1 s to about 1–2 s for the 
NP and TP sets.

  • The corresponding peak amplification ranges from 
less than 1.5 up to 15. The highest peak (almost 15) 
is observed for RP, whereas for NP and TP the peak 
is less than 4.

  • Some amplification factors exhibit a short-period 
de-amplification; a careful look at the correspond-
ing profiles indicates it corresponds to profiles with 
low-velocity zones at some depth that act as a (weak) 
seismic isolator.

  • The overall average amplification factor is close to 1 at 
long period (because long wavelengths do not “feel” 
the site structure over the first hundred meters), and 
it exhibits a very smooth and broad maximum with 
a value around 2 between 0.1 and 0.2  s. It is slightly 
below 2 at very short periods. It is significantly smaller 
than the peak values for individual profiles, which 
emphasizes the need to identify some relevant site 
parameters that may explain this site-to-site variability

(18)

σ0(θ ,Ti) =

√

√

√

√

1

np

np
∑

k=1

[

log
(

AFm(Pk , θ ,Ti)
)

− log
(

AF0(θ ,Ti)
)]2

(19)σOmax(θ) = MaxTi [σ0(θ ,Ti)]

(20)σ0m(θ) =
1

nT

nT
∑

i=1

σ0(θ ,Ti)

  • The corresponding “initial variability” σ(θ ,Ti) is 
listed in Table 3 for RP, NP, and TP. It is maximum at 
intermediate periods (0.1–0.4 s, up to 45%) and mini-
mum at long periods (around 10%).

Means and variability of AF in the normalized frequency 
domain
 As written in Eq.  (15), AF can be described as a func-
tion of period Ti, i.e., AF(Pk , θ ,Ti), or alternatively fre-
quency, fi = 1/Ti. As indicated in Cadet et  al. (2012), 
it may be helpful to normalize the frequency axis using 
the fundamental frequency of each site and compare all 
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Fig. 5 Average amplification factors as a function of real period for 
each set of soil profiles. a RP (top), b NP (middle), and c TP (bottom). 
Thin blue lines correspond to every site profile, the thick red line is the 
geometrical average over the whole profile set, and thick light blue 
lines are the average ± one standard deviation
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amplification factors as a function of the dimensionless 
normalized frequency ν = f /f0. Thus, AF can be rewrit-
ten as AF(Pk , θ , νi), where νi = fi/f0. The corresponding 
plots of all amplification factors, together with the aver-
age and average ± one standard deviation, are displayed 
in Fig. 6a, b, and c for RP, NP, and TP sets, respectively.

As shown, the starting and ending abscissas of the 
AF(Pk , θ , νi) curves vary between profiles because of 
the variability in f0 values. For instance, for two profiles 
1 and 2 with f0 values, respectively, 2 and 10 Hz, and an 
investigated “absolute frequency” range [fmin =  0.1  Hz, 
fmax =  100  Hz], the normalized frequency ranges [νmin, 
νmax] are, respectively, [0.05, 50] and [0.01, 10]. The num-
ber of available amplification factors thus varies with the 
normalized frequency ν, as displayed in Fig.  7 for the 
three sets of profiles. All curves exhibit a clear plateau 
centered on ν = 1, which systematically starts at ν = 0.1, 
but ends at varying values depending on the profile set, 
around ν = 10 for RP and NP, and around ν = 3 for TP. 
Within this range of normalized frequency values, about 
90% of the considered profiles provide amplification fac-
tor values. The corresponding average and variability, 
computed as indicated in Eqs. (15) to (20), have thus been 
calculated only for normalized frequencies ranging from 
0.03 to 30, which corresponds to the availability of at 
least half the total number of profiles for each set (Fig. 7).

As shown in Fig. 6, the main consequences of this fre-
quency normalization are to decrease the low-frequency 
scatter and slightly increase the mean AF values and 
associated scatter for ν =  1, while the “high-frequency” 
mean values and standard deviations are comparable 

to the short-period values shown in Fig.  5 and listed in 
Table  4. More explicitly, the widespread scatter of “real 
frequency” amplification factors, due to the combined 
variability of fundamental frequencies and amplifica-
tion values, is redistributed in the normalized frequency 
domain. This transfers the variability primarily around 
and beyond the fundamental frequency.

Focus on short and intermediate period (“Borcherdt 
factors” Fa and Fv)
For a building code perspective, special attention is given 
to the short- and intermediate-period factors introduced 

Table 3 Initial variability values for  the amplification fac-
tors in  the real frequency domain for  the RP, NP, and  TP 
profile sets

RP–RF NP–RF TP–RF

Total initial variability σ0m 0.1178 0.0846 0.0896

Maximum initial variability σ0max 0.1717 0.1232 0.1317

σ (T = 0.01 s) 0.1227 0.0811 0.0866

σ (T = 0.02 s) 0.1226 0.0809 0.0861

σ (T = 0.04 s) 0.1206 0.0756 0.0759

σ (T = 0.07 s) 0.1314 0.0883 0.0861

σ (T = 0.1 s) 0.1494 0.1062 0.106

σ (T = 0.2 s) 0.1623 0.1169 0.1242

σ (T = 0.4 s) 0.1446 0.1089 0.1188

σ (T = 0.7 s) 0.1200 0.098 0.1093

σ (T = 1.0 s) 0.1040 0.0873 0.0982

σ (T = 2.0 s) 0.0626 0.0503 0.0552

σ (T = 4.0 s) 0.0477 0.033 0.036

σ (T = 7.0 s) 0.0388 0.027 0.0296

σ (T = 10.0 s) 0.0412 0.0297 0.0329
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Fig. 6 Average amplification factors as a function of normalized fre‑
quency for each set of soil profiles. a RP (top), b NP (middle), and c TP 
(bottom). Thin blue lines correspond to every site profile, the thick red 
line is the geometrical average over the whole profile set, and thick 
light blue lines are average ± one standard deviation
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by Borcherdt (1994, 2002) to specify the short-period 
level (acceleration plateau) and intermediate-period level 
(velocity response). In the absence of any consensual, 
widely accepted definition, we defined them as follows:

  • Fa   is taken as the geometrical mean of AF for peri-
ods in the range [0.1 s, 0.2 s]

  • Fv  is taken as the geometrical mean of AF for periods 
in the range [0.75 s, 1.5 s]

The corresponding period ranges are displayed in 
Fig.  5. Considering that the amplification factors were 
derived for equally spaced values on a logarithmic period 
axis, these two average values thus correspond to exactly 
the same number of points.

Resulting sets of AF and Borcherdt factors
The methodology detailed in this section leads to three 
sets of amplification factors AF for RP, NP, and TP, which 
can be described as a function of real or normalized 
frequency. The three real frequency sets have also been 
summarized with the two Borcherdt factors, because 
these scalar values corresponding to the short and inter-
mediate periods are widely used to translate the impact 
of site effects in building codes. The main issue now is to 
understand the influence of site parameters on shaping 
the values of both the AF and Borcherdt factors. To reach 
this goal, we use the generalized regression neural net-
work (GRNN) approach, described in the next section.

Description of the neural network approach
Scope and principles of artificial neural networks
In general, the scope of the artificial neural network 
approach is to establish relationships, or classifications, 
between a set of output parameters and set of input 
parameters, which are too complex to be “guessed” using 
simple functional forms. It is based on a “learning phase,” 
where a large number of “known points,” with known 
input and output values, are used to train the neural net-
work system in an “optimal” way, so that it can be later 
used to predict (unknown) output values for a new set of 
input values, that should fall in the domain of the hyper-
space that is properly sampled by the learning data set. 
The flexibility of neural networks has fostered their use 
in many different disciplines for regression and classifi-
cation purposes, where they have proven very powerful. 
For instance, in engineering seismology, they have been 
applied to site amplification issues (Giacinto et al. 1997; 
Paolucci et  al. 2000), establishing GMPEs (see Derras 
et al. 2012 for a review of previous applications, and Der-
ras et al. 2014, 2016 for recent developments), and gener-
ating spectrum compatible time histories (Ghaboussi and 
Lin 1998; Lin and Ghaboussi 2001).

The objective of an ANN is to mimicking human brain 
behavior with interconnecting artificial neurons between 
input and output layers that contain input and output 
data, with very often hidden layers in between. Each neu-
ron is a kind of microprocessor that connects two layers 
l and l + 1 through accepting a set of inputs from layer l, 
performing a weighted sum of all these inputs, and pro-
cessing this weighted sum through an “activation func-
tion,” which may be linear or nonlinear, and essentially 
makes this neuron “fire” when the input weighted sum is 
large enough.

The main degrees of freedom of an ANN, in addition to 
its architecture (number of hidden layers, and number of 
neurons in each of them), are the weights for each neuron 
(together with another parameter named the “bias,” see 
Derras et al. 2012) and shape of the activation function. 
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Fig. 7 Variation in the number of available profiles as a function of 
the normalized frequency ν = f /f0 for the RP (blue), NP (green), and 
TP (red) profile sets

Table 4 Initial variability values for  the amplification fac-
tors in  the normalized frequency domain for  the RP, NP, 
and TP profile sets

Data set RP–NF NP–NF TP–NF

Total initial variability σm 0.1060 0.0724 0.0714

Maximum initial variability σmax 0.1736 0.1187 0.1268

σ (f/f0 = 0.05) 0.0261 0.0183 0.018

σ (f/f0 = 0.1) 0.0301 0.0215 0.024

σ (f/f0 = 0.2) 0.0373 0.0269 0.029

σ (f/f0 = 0.4) 0.0600 0.0378 0.0418

σ (f/f0 = 0.7) 0.1305 0.0904 0.1020

σ (f/f0 = 1.0) 0.1673 0.1149 0.1228

σ (f/f0 = 2.0) 0.1473 0.1101 0.1074

σ (f/f0 = 4.0) 0.1281 0.0912 0.0908

σ (f/f0 = 7.0) 0.1248 0.0829 0.0741

σ (f/f0 = 10.0) 0.1239 0.0794 0.0682

σ (f/f0 = 20.0) 0.1312 0.0833 0.0712
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The learning from the data set is stored in the weights 
and bias through some regression process that accounts 
for the distance between actual output data and pre-
dicted values. The architecture and selection of activation 
functions are the responsibility and “art” of the user.

In short, two main types of architecture, which are 
associated with two main types of summations and acti-
vation functions, exist. The multi-layer perceptron (MLP) 
architecture first performs distinct linear combinations of 
input variables that feed each hidden neuron, which then 
processes it with its specific “activation function” (linear 
ramp, threshold—“Heaviside” like, sigmoid, hyperbolic 
tangent, etc.). The outputs are then recombined in a simi-
lar way between the hidden and output layers. The con-
vergence scheme consists of back-propagating the error, 
i.e., distance between predictions and observations, to 
tune the weights and bias terms corresponding to each 
neural connection and minimize the overall error. Radial 
basis function (RBF) architecture starts with computing 
the “distances” between a given input value and repre-
sentative set of all the input data used for the training/
learning phase and then predicts the corresponding out-
put after “interpolating” the known output values on the 
basis of those distances. Additional details are given in 
Sect. 4.2.

The special case of generalized regression neural network 
(GRNN)
Specht (1991) proposed a method that he called “gener-
alized regression neural network” (GRNN), because it 
uses the artificial neural network approach to perform 
general linear or nonlinear regressions. The general idea 
is to extend classical regressions based on a priori func-
tional forms to an approach where no functional form 
is needed. GRNN draws the estimates directly from the 
“proximity” (distance) to training data. It is thus a special 
kind of radial basis neural networks (Cigizoglu and Alp 
2005; Kim et  al. 2004), where the “distance” dj to each 
data point in the training set Xj is used to estimate the 
relative weight wj of the corresponding output Yj through 
a “kernel” function having a bell shape (here, a Gauss-
ian function exp(−b2(dj)2)). For vectorial inputs (here 
we use up to six site parameters), the “distance” term dj 
for a given profile is considered the Euclidian distance 
derived from the considered site parameters, as detailed 
as follows.

The GRNN approach can thus be seen either as a rela-
tively straightforward interpolation algorithm, a “kernel-
based” approximation method, or as a special kind of 
neural network. We will start with presenting the simple 
equations corresponding to the former and then briefly 
explain its implementation in the general framework of 
neural networks.

Let (Xj, Yj) with j = 1, Q be the sample data set; Xi is 
a vector with R components, which are here the site 
parameters (up to six) for each soil profile considered 
in either data set (RP, NP, or TP), and Yi is a scalar equal 
to the corresponding amplification factor at a given fre-
quency (or Fa or Fv).

Let now x be a vector containing the same R site 
parameters, corresponding to a new soil profile, which 
has not been considered in the initial data set (RP, NP, or 
TP). The goal is to predict the corresponding amplifica-
tion factor y. This is achieved with the following formula: 

with wj being the weights of each training data, estimated 
from their Euclidian distance to the point of interest

with:

The output y is thus simply estimated as a weighted aver-
age of the amplification factors of the training set, with 
the weighting derived from the distance between the 
considered site and site proxies from the training set; 
thereby, nearby sites contribute most heavily to the esti-
mate. The only “free” parameter in this approach is the 
“b” value, which controls the width of the Gaussian func-
tion used for assigning interpolation weights wj. Larger b 
values result in sharper bell-shape functions around each 
point of the training data set.

The topology of a GRNN, as described in Fig. 8, con-
sists of four layers, with two hidden layers between the 
classical input and output layers: the first hidden layer is 
called the “pattern layer,” the second is the “summation” 
layer, which is explained as follows.

  • The input layer simply consists of the values of the 
selected site parameters (up to six in the present 
case)

  • The next “pattern” layer computes the weights wj 
from the distance of the considered site param-
eters to each site used in the training set (Eq.  23). 
The number of neurons in this layer, Q, is equal to 
the number of data in the training set (here, up to 
858). The function deriving the weights wj from the 
distance to each data point j is called a “radial basis 
function” and has a bell shape centered at 0 distance. 
As mentioned previously, here we used a Gaussian 

(21)y =
Q
∑

j=1

Yjwj/

Q
∑

j=1

wj

(22)wj = e
−
[

b dist
(

x,Xj

)]2

(23)dist
(

x,Xj

)

= x − Xj = 2

√

√

√

√

R
∑

k=1

(

xk − Xjk

)2
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RBF characterized by a width parameter b. In the 
neural network language, it is often called a “bias” 
(Wasserman 1993).

  • The third layer is the second hidden layer and is 
called the “summation layer.” It combines the dis-
tance-based weights computed in the previous layer 
to perform the summation required to estimate the 
output. It consists of two neurons, related to the Q 
neurons of the previous layer, which, respectively, 
perform two different summations, S =

∑Q
j=1 Yjwj 

and D =
∑Q

j=1 wj. In the neural network framework, 

the weights wj are seen here as the outputs of the 
previous layer, and the training set outputs Yj as the 
weights of the summation achieved by the first neu-
ron.

  • Finally, the output layer consists of one single neuron 
simply performing the division of S by D.

More detailed information about GRNN can be found 
in Specht (1991), Wasserman (1993), Kim et  al. (2004), 
Cigizoglu and Alp (2005) or Hannan et al. (2010).

Fig. 8 General architecture of a neural network in the GRNN approach. Four layers are displayed from bottom (input layer: site proxies) to top (output 
layer: predicted amplification factor)
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Present implementation
For the present application, the implementation is sepa-
rately completed on the three profile sets of RP, NP, and 
TP. These databases are described in Sect. 2.4.1. The ini-
tial set of data to feed the neural network is constituted of 
nP profiles and their corresponding amplification factors 
(i.e., AFm(Pk , θ ,Ti) or AFm(Pk , θ , νi)). The input vector 
consists of a subset of the six site parameters for the RP 
set, and five site parameters for the NP and TP sets, for 
which the bedrock velocity is constant. The output con-
sists of the calculated AF values for a given period or nor-
malized frequency (271 values), and the Borcherdt factors 
Fa and Fv. This output is labeled AFGRNN(Pk , θ ,Ti) and 
depends on the number of site proxies used. There is one 
GRNN model for each scalar output, i.e., 271 scalar mod-
els for each period Ti of AFm(Pk , θ ,Ti), 271 scalar models 
for each normalized frequency νi of AFm(Pk , θ , νi) , one 
for Fa and one for Fv. All sets of 544 GRNN models are 
labeled hereafter as xP-yF, according to the correspond-
ing profile set (RP, NP, or TP) and the type of frequency 
values (real or normalized), for instance, RP–RF for real 
profiles and real frequencies, TP–NF for truncated pro-
files and normalized frequencies. All possible combina-
tions of input site parameters were considered, so that, as 
listed in Table 5, 186 sets of GRNN models are obtained: 
63 for RP–RF (all possible combinations within six site 
parameters), 31 for RP–NF, NP–RF, and TP–RF (all pos-
sible combinations within five site parameters), and 15 
for RP–NF and TP–NF (all possible combinations within 
four site parameters).

In each case, the networks are trained by dividing the 
data set into a training set (75%) and a testing set (25%), 
the elements of which are randomly swapped from one 
set to another until the width of the Gaussian is robustly 

estimated. The Gaussian width is the only free parameter 
optimized. The full data set is then used to estimate the 
performance of the GRNN model using various non-
independent indicators, such as the coefficient of corre-
lation, standard deviation of residuals, and reduction in 
variance with respect to the initial variability.

Results
Comparisons between original AF and GRNN predictions
Our first goal is to test the ability of the GRNN models 
using only a limited number of site parameters to sat-
isfactorily predict AF values. To achieve that goal, we 
derived a large number of GRNN models using all possi-
ble combinations of input parameters and analyzed their 
respective performance by comparing the level of the 
standard deviation of residuals (predicted −  actual val-
ues) to the initial variability values for each period, i.e., 
σ0(θ ,Ti), and to the overall variability σ0m(θ) as previ-
ously defined.

Before discussing these performances, we provide in 
Fig.  9 an example comparison between AF predicted 
with a few GRNN models to actual AF (computed from 
the full 1D soil column, as described in Sect. 3) for two 
soil profiles SP1 and SP2 (see Table 6). These soil profiles 
have been selected arbitrarily: SP1 is part of the initial RP 
profile set, SP2 is not. The corresponding site proxies, as 
also listed in the same Table 6, fall within the “core” of the 
initial data set (see Fig. 3 and Additional Files 1, 2, and 3).

As shown in Fig. 9a for soil profile SP1 and Fig. 9b for 
soil profile SP2, the predicted AF values are clearly dif-
ferent from the actual ones, especially when only a small 
number of site proxies are considered. The differences 
between predictions and actual amplification factors 
vary between soil profiles. This difference indicates the 

Table 5 List of considered GRNN models

Output values Period/normalized frequency Set of profiles Set of explanatory variables (site 
parameters)

Combinations

AF(T), Fa, Fv Period RP 6: Depth, f0, Cv, Vsm, Vs30, Vbedrock 63 = 6 1‑parameter, 15 pairs, 20 triplets, 
15 quadruplets, 6 quintuplets, 1 (all 6 
parameters)

AF(f/f0) Normalized f/f0 RP 5: Depth, Cv, Vsm, Vs30, Vbedrock 31 = 5 1‑parameter, 10 pairs, 10 triplets, 
5 quadruplets 1 (all 5 parameters)

AF(T), Fa, Fv Period NP 5: Depth, f0, Cv, Vsm, Vs30 31 = 5 1‑parameter, 10 pairs, 10 triplets, 
5 quadruplets 1 (all 5 parameters)

AF(f/f0) Normalized f/f0 NP 4: Depth, Cv, Vsm, Vs30 15 = 4 1‑parameter, 6 pairs, 4 triplets, 1 
(all 4 parameters)

AF(T), Fa, Fv Period TP 5: Depth, f0, Cv, Vsm, Vs30 31 = 5 1‑parameter, 10 pairs, 10 triplets, 
5 quadruplets 1 (all 5 parameters)

AF(f/f0) Normalized f/f0 TP 4: Depth, Cv, Vsm, Vs30 15 = 4 1‑parameter, 6 pairs, 4 triplets, 1 
(all 4 parameters)
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importance of analyzing the standard deviation of resid-
uals to obtain a statistically meaningful insight into the 
relative performances of each considered site proxy in 
controlling the AF.

Analysis of the prediction residuals
The error between prediction and actual values (Eqs. 24–
26) is estimated and compared with the initial variabili-
ties (Eqs. 18–20).

  • For each period and each GRNN model, a period-
dependent error term representing the standard 
deviation of residuals is computed as follows for 
comparison with the initial variability term σ0(θ ,Ti) 
(Eq. 18): 

  • Similarly, in relation to the maximum initial vari-
ability σ0max(θ) (see Eq.  19), a “maximum error” is 
defined as the maximum over all periods/frequencies 
of εGRNN(θ ,Ti): 

  • Finally, similar to the overall initial variability term 
σ0m(θ) (see Eq. 20), an overall error is defined as the 
average over all periods of the error term: 

Examples of the period-dependent error term 
εGRNN(θ ,Ti) are displayed in Figs.  10, 11 for the real 
period and normalized frequency domains, respec-
tively, together with the initial variabilities, σ(θ ,Ti), of 
the amplification factor sets. In the former case, the few 
considered GRNN models are the same as those consid-
ered for Fig. 9, i.e., the pairs 

(

Cv , f0
)

 and 
(

f0,VS30

)

, triplet 

(24)

εGRNN(θ ,Ti)

=

√

√

√

√

1

nP

nP
∑

k=1

[log (AFGRNN(Pk , θ ,Ti))− log (AFm(Pk , θ ,Ti))]
2

(25)εGRNN,max(θ) = MaxTi [εGRNN(θ ,Ti)]

(26)εGRNN,m(θ) =
1

nT

nT
∑

i=1

εGRNN(θ ,Ti)
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Fig. 9 Comparison between AF calculated in the 1D analytical model 
and corresponding GRNN predictions for two example soil profiles. 
Top soil profile SP1, which is part of the RP set used in the training 
phase. Bottom soil profile SP2, which is not in the training set

Table 6 Velocity profile and site parameters for the two example soil profiles SP1 (part of the RP set) and SP2 (outside RP 
set)

Layer # Soil profile 1 Soil profile 2

Thickness hi (m) S-wave velocity Vi (m/s) Thickness hi (m) S-wave velocity Vi (m/s)

1 4 150 2 120

2 10 260 14 510

3 6 420 39 720

4 12 950 108 900

5 40 1470 Bedrock 1000

6 Bedrock 1850

Soil profile Depth (m) f0 (Hz) Vsm (m/s) Cv Vs30 (m/s) Vbedrock (m/s)

SP1 72 3.69 603 12.33 333 1850

SP2 163 1.44 746 8.33 472 1000



Page 16 of 26Boudghene Stambouli et al. Earth, Planets and Space  (2017) 69:99 

(

Cv , f0,VS30

)

, and “all parameter” case, plus three cases of 
one parameter GRNN, considering individual site prox-
ies Cv, VS30 and f0. In the normalized frequency domain 
case, the parameter “ f0” is replaced with the parameter 
“Depth,” which is fully independent from the velocity 
parameters. Figures 10 and 11 exhibit several noticeable 
features:

  • Cv alone allows a significant explanation of the AF, 
i.e., ε(θ ,Ti) is significantly smaller than σ0(θ ,Ti). 
It performs even better at short periods than when 
considering two other site proxies, such as 

(

f0,VS30

)

 
(Fig. 11a). The latter result, however, is not valid for 
profile sets NP and TP, because of the uniformity of 
bedrock velocity, which lowers the relative impor-
tance of Cv compared to VS30.

  • The three-parameter GRNN model, based on 
(

Cv , f0,VS30

)

, is very powerful to predict actual AF, 
with residual errors less than 15% of the initial vari-
ability. Notably, the “all parameter” GRNN models 
using “only” five to six parameters provide very sat-
isfactory predictions, with residual errors ε(θ ,Ti) less 
than 5% of the initial variability.

  • The largest root-mean-square errors are system-
atically found in the short- to intermediate-period 
range for the real period domain (Fig. 10) and around 
the fundamental frequency f0 for the normalized fre-
quency domain (Fig. 11). This actually corresponds to 
the frequency range of the largest initial variability.

  • The widely used VS30 parameter is found to have a 
notably good performance only when associated 
with the fundamental frequency and when bedrock 
velocity is uniform (Fig.  11b, c). For all other cases 
(Fig. 10), it performs significantly worse than the sin-
gle parameters Cv or f0.

These results are only partial as only seven of the many 
possible models (for instance, up to 63 for the RP–RF case, 
see Table 5) are considered. Figure 12 displays the evolu-
tion of overall error εm(θ) with the number of proxies 
for all combinations of site proxies. As listed in Table 5, a 
given number of explanatory site proxies are associated 
with many different models. For example, for the RP–RF 
case, there are 15 possible combinations involving pairs of 
proxies, 20 involving triplets, and 15 involving quadruplets 
of site proxies. The zero-proxy value of εm(θ) corresponds 
to the initial variability σ0m(θ). While it clearly decreases 
with an increasing number of explanatory site proxies, it 
also exhibits a significant scatter for a given number of 
proxies. This indicates that some site proxies perform bet-
ter than others in controlling the amplification factor.

Considering the large number of possible combinations 
(indicated in Table  5), we analyzed the respective per-
formances of each proxy by evaluating, for a given num-
ber of site proxies, the average value of εm(θ) for all the 
proxy combinations that involve the considered proxy. 
For instance, in the RP–RF case, there are 15 possible 
combinations of pairs of site proxies. Within all these 
pairs, we characterize the performance of a given proxy 
(for instance, VS30) using the average value εm(θ) for the 
five combinations involving that proxy, i.e., the five pairs 
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Fig. 10 Variation in root‑mean‑square error, standard deviation of 
residuals εGRNN(θ , Ti), for various GRNN models with various sets of 
input site parameters (indicated with different colors), compared to 
the initial variability σ0(θ , Ti) (solid green line) for the RP–RF (a, top), 
NP–RF (b, middle), and TP–RF (c, bottom). Data are displayed as a func‑
tion of real period
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(VS30,Cv), (VS30,Vbedrock), 
(

VS30, f0
)

, (VS30, Depth) and 
(VS30,Vsm). This allows us the possibility of identifying 
the importance of each site proxy using the following 
quantity: 

(27)RSm(θ) = 1−
εm(θ)

σm(θ)

 where RSm(θ) is the reduction in standard deviation.
Another way to measure the importance of each site 

proxy is the reduction in variance:

The procedure is repeated for all the possible number of 
site proxies, which culminates in the curves displayed in 
Fig. 13 for the three RP, NP, and TP sets. Similar results 
are obtained for the normalized frequency domain and 
are provided as additional files.

For the RP and NP sets, one parameter systematically 
performs better than the others to explain the ampli-
fication factor, the velocity contrast Cv (Fig.  13a). This 
result is not valid for the TP set (Fig. 13c), for which f0 
outperforms the other proxies as long as only one or two 
explanatory site proxies are considered.

(28)RVm(θ) = 1−
(εm(θ))

2

(σm(θ))
2
= RSm(θ)(2− RSm(θ))
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Fig. 11 Variation in root‑mean‑square error, standard deviation of 
residuals εGRNN(θ , νi), for various GRNN models involving various 
sets of input parameters (indicated with different colors) compared 
to the initial variability σ0(θ , νi) for RP–NF (a, top), NP–NF (b, middle) 
and TP–NF (c, bottom). Data are displayed as a function of normalized 
frequency ν = f /f0
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Fig. 12 Progressive reduction in the standard deviation of residuals 
for all GRNN with the number of explanatory site proxies. As listed 
in Table 5, a given number of site proxies are associated with many 
different models, except for the 0 proxy case (initial variability) and 
“all proxies” case (see text for further details). a RP–RF (top), b NP–RF 
(middle), and c TP–RF (bottom)
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Such results are easily understandable, as the veloc-
ity contrast does dominate the impedance contrast that 
in turn controls the actual amplification for the simple, 
single-layer case. All other parameters perform simi-
larly, however, with a slightly better performance for the 
fundamental frequency and a slightly worse one for the 
“whole thickness” parameters Depth and Vsm. As for the 
widely used VS30 proxy, it performs better than “Depth” 
and “Vsm” but worse than Cv, f0, and Vbedrock for the RP 
case, and it is one the two worst proxies (with Vsm) for the 

NP and TP sets. Notably, the Depth proxy performs satis-
factorily only for constant velocity bedrock.

Therefore, it would be desirable to measure the velocity 
contrast between bedrock and surface for any site where 
possible. Unfortunately, such measurements are chal-
lenging and/or expensive, and this “optimal” site proxy 
is almost never available. Therefore, what is the optimal 
“second choice”? When Cv is not available, it is most often 
because Vbedrock could not be measured. A careful look at 
Table 7 indicates that the pair 

(

VS30, f0
)

 provides predic-
tion errors similar to Cv alone and that the next relatively 
efficient site parameter to be considered in combination 
with others is “Depth.”

Another interesting result is the potential usefulness 
of considering the normalized frequency space to pre-
dict the amplification factor from a few site proxies. A 
comparison between the performances of real and nor-
malized frequency GRNN models (Fig.  13 and Addi-
tional File 4, respectively) clearly indicates that RSm(θ) 
is reduced slightly more when considering f0 directly as 
an input parameter, rather than simply for normalizing 
the frequency axis. For instance, RSm(1) is 79% with the 
parameter pair 

(

Cv , f0
)

 and 93% for the parameter tri-
plet 

(

Cv , f0,VS30

)

 for the RP–RF case, while it is only 38% 
with the parameter (Cv) and 68% for the parameter pair 
(Cv ,VS30) for the RP–NF case (see Table 7). The gain in 
simplicity of the normalized frequency approach, which 
provides less complex prediction formulae with one 
fewer parameter, is balanced by a significantly poorer 
performance.

Variation in Borcherdt factors using GRNN
As indicated previously, site effects can be simply char-
acterized with the two Borcherdt factors, Fa and Fv, 
especially from a regulatory perspective. Therefore, we 
compute the Borcherdt factors for the GRNN model 
based the pair of site proxies 

(

f0,VS30

)

, which proves to 
be fairly efficient. Figures 14 and 15 display the depend-
ence of these two factors as a function of VS30 and f0. For 
all cases, this dependence is considered within the 5–95% 
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Fig. 13 Reduction in standard deviation  RSm as performance indica‑
tor for various site proxies (different curves) for RP–RF (a, top), NP–RF 
(b, middle), and TP–RF (c, bottom)

Table 7 Standard deviation of model residuals for various GRNN models implying the initial, actual frequency amplifica-
tion factors (RP, NP, TP cases, last three columns) for various combinations of site parameters

Number of parameters Considered site parameters Error (RP) Error (NP) Error (TP)

All (6) Depth + f0 + Vsm + Cv +Vs30 + Vbedrock 0.0011 0.0032 0.0053

3 (best triplet) f0 + Cv + Vs30 0.0079 0.0079 0.0118

2 (best pair) f0 + Cv 0.0251 0.0233 0.0278

2 (convenient pair) f0 + Vs30 0.0782 0.0382 0.0339

1 (best) Cv 0.0725 0.0652 0.0622

1 (usual) Vs30 0.1038 0.0715 0.0733

1 f0 0.099 0.0678 0.0563

Overall initial variability term σm(θ) 0.1178 0.0846 0.0896
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Fig. 14 Variation in the short‑period Borcherdt factor Fa with VS30 (horizontal axis, log scale) and f0 (vertical axis, log scale) for RP–RF (a, top), NP–RF 
(b, middle), and TP–RF (c, bottom). Values of Fa are provided by the color scale on the right of each plot
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Fig. 15 Variation in the mid‑period Borcherdt factor Fv with VS30 (horizontal axis, log scale) and f0 (vertical axis, log scale) for RP–RF (a, top), NP–RF (b, 
middle), and TP–RF (c, bottom). Values of Fv are provided by the color scale on the right of each plot
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fractile range of each considered explanatory parameter. 
The [0.8, 14 Hz] interval is considered for f0 in all cases, 
even though it would be possible to consider higher fre-
quencies for the TP case. The considered VS30 interval is 
[200, 1000 m/s] for the RP case and [150, 550 m/s] for the 
NP and TP cases.

The corresponding distribution of soil profiles for any 
pair of site proxies 

(

f0,VS30

)

 is mapped in Fig. 16 for pro-
file sets of RP, NP, and TP. This distribution is rather uni-
form in the two latter cases, while there is a lack of data 
in the RP set in the lower left and upper right corners. 
Therefore, the RP–RF model is poorly constrained for 
high-frequency, low-velocity sites (typically f0 > 5 Hz 
and VS30 < 350 m/s) and for low-frequency, high-veloc-
ity sites (typically f0 < 2 Hz and VS30 > 600 m/s).

The behavior of Fa and Fv with f0 and VS30 is expressed 
with the following explicit equation associated with the 
GRNN models:

where wj are the weights of each training data, estimated 
from their Euclidian distance in the (log(f0), log(VS30)) 
plane (x1 = log

(

f0
)

 and x2 = log(VS30))

(29)log (Fa) =
Q
∑

j=1

(

log
(

Fa,j
)

wj

)

/

Q
∑

j=1

wj

(30)wj = exp



−

�

b

�

�

�

log
�

f0
�

− log(f0,j)
�2 +

�

log
�

VS30 − log(VS30,j)
��2

�

.

�2




f0 below 1.5–2  Hz, VS30 below 200  m/s (Fig.  15). Con-
versely, Fv remains small (below 1.4) for high-frequency 
sites ( f0 beyond 4 Hz) for all values of VS30. For RP, it may 
remain significant (between 1.4 and 1.6) for stiff sites 
(VS30 >400 m/s) and low frequency when the bedrock is 
deep and hard enough for the fundamental frequency to 
remain below 2 Hz. However, for NP and TP it is lower 
than 1.4 when VS30 exceeds 350 m/s.

Which among the RP–RF, NF–RF, and TP–RF rela-
tionships should be used for practical purposes? It 
should first be reminded that the present study only 
addresses the linear case as a preliminary, feasibility 
stage. This may explain for the relatively limited Fv val-
ues, which are often smaller than the Fa values. However, 
to obtain first-order estimates of Fa and Fv values for the 
linear response of a given site, the first step is to approxi-
mately identify the stiffness of underlying bedrock. For 
very hard bedrock, with S-wave velocities exceeding 
1.2–1.5  km/s, it is better to select the RP–RF relation-
ships. For bedrock that may be assumed to be close to 
a “standard” bedrock, with a S-wave velocity between 
600 and 1000 m/s, and when VS30 value is below 550 m/s, 
it is probably preferable to select the NP–RF or TP–RF 
relationships. As shown in Fig.  16 (and Table  2), the 

and similar relationships for Fv.
The optimal b value is derived during the training 

phase and found to be equal to 16.65.
An Excel file is provided as an additional file for the 

practical use of these equations.
Generally, the short-period amplification factor Fa 

(Fig.  14) reaches the highest values for sites with inter-
mediate to high fundamental frequency and low veloci-
ties at shallow depth. The maximum values exceed 2.5 
for all cases, but correspond to slightly different 

(

f0,VS30

)

 
combinations. Large Fa are found for the RP setup to VS30 
values of 550  m/s (and corresponding fundamental fre-
quencies around 6–9 Hz), while for the NP and TP sets, 
they are restricted to VS30 values below 300 m/s. Such dif-
ferences are related to the possibility of high amplitude 
resonance when a thin layer of stiff soil is underlain by 
very hard rock, a situation that is quite frequent in real 
profiles. It is impossible in normalized or truncated pro-
files because of the velocity reduction imposed by the 
800 m/s bedrock condition.

In parallel, the intermediate-period amplification 
factor Fv is found, as expected, to reach its highest val-
ues, above 2, for low-frequency and low-velocity sites: 

relationship may be considered reliable for the whole 
rectangular area described by the 5–95% fractile range of 
the two parameters for the NP and TP cases. In contrast, 
the RP model is poorly constrained for high-frequency, 
low-velocity sites and for low-frequency, high-velocity 
sites.

Finally, for the AF values, all possible combinations 
of site parameters are also considered, and associ-
ated GRNN models are derived and analyzed. The per-
formances of some are listed in Tables 8, 9, 10, and the 
average performance of each considered site proxy is dis-
played in Fig. 17, similar to in Fig. 13, for the two param-
eters Fa and Fv.

As expected from previous results, one parameter per-
forms almost systematically better than the others to 
explain the amplification factors, the velocity contrast Cv . 
However, it is superseded by the fundamental frequency 
for predicting  Fv values in all three RP, NP, and TP cases, 
and f0 proves to be a very relevant parameter for inter-
mediate- to long-period amplification. The widely used 
VS30 proxy performs better than the fundamental fre-
quency f0 only for Fa and in the NP case, and the perfor-
mance gain is only slight.
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Fig. 16 Distribution of the initial data in the (VS30, f0) plane (log–log 
axis) for profile sets RP (a, top), NP (b, middle), and TP (c, bottom)

Conclusions
The present study was a numerical investigation aim-
ing at identifying the key parameters controlling 1D site 
response, starting with the linear domain as the first 
stage. For 858 soil columns corresponding to measured, 
real sites profiles from Japan, the USA, and Europe, the 
1D linear (viscoelastic) response was computed for ver-
tically incident plane waves and a representative set of 

real input accelerograms spanning a wide range of peak 
frequencies. The geometric averages of the correspond-
ing amplifications were derived from the ratio of surface 
to input acceleration response spectra, both in terms of 
frequency-dependent amplification factors AF(f ) and 
in terms of “summary” short- and mid-period ampli-
fication factors Fa and Fv, averaged over period ranges 
[0.1 s, 0.2 s] and [0.75 s, 1.5 s], respectively. Generalized 
regression neural network (GRNN) models were used 
to investigate the relationships between these amplifica-
tion factors and several “usual” site proxies, i.e., VS30, f0 , 
sediment thickness, corresponding harmonic average 
sediment velocity, maximum velocity contrast, and bed-
rock velocity. Since real profiles exhibit a large site-to-site 
variability in bedrock velocity, two other sets of profiles 
with a constant bedrock velocity set to 800 m/s were con-
sidered. A common scaling was first applied to velocity 
and thickness values to normalize the real profiles to a 
uniform bedrock velocity of 800  m/s (without changing 
the transfer functions). The same real profiles were also 
truncated at the depth where their S-wave velocity first 
exceeded 800  m/s. GRNN models were then developed 
for these two additional sets of profiles. Many GRNN 
models were considered in each case, with all possible 
combinations of site proxies. This provided a mecha-
nism for comparing the performances of every proxy to 
explain (and predict) site amplification.

The results showed that the key characteristics of the 
frequency-dependent AF may be satisfactorily repro-
duced with a limited number of site proxies. The best 
performing site parameter is the overall impedance con-
trast between bedrock velocity and minimum surface 
velocity. Because it is one of the most difficult and expen-
sive parameters to measure, especially for thick deposits, 
other more convenient parameters are preferred, among 
them, the couple 

(

VS30, f0
)

 reduced the variance of resid-
uals by at least 60%. From a code perspective, equations 
and plots were provided describing the dependence of 
the short- and mid-period amplification factors Fa and Fv 
on these two parameters. Fa reached its highest value for 
sites presenting simultaneously low velocities and high f0 
values (i.e., thin, soft sites), while the largest values of Fa 
corresponded to low velocities and low f0 values.

These results open the way for improvements in site 
classification with a physical relationship between site 
proxies and site amplification. However, this work is only 
a first step, and the present results should be comple-
mented with further investigations.

  • First, the set of considered soil profiles is dominated 
by KiK-net sites, which are rather stiff. Although this 
bias was somewhat corrected with the set of “nor-
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malized profiles” or “truncated profiles,” it is not fully 
satisfactory because the normalization procedure 
also included a depth scaling to maintain unchanged 

frequencies. Adding softer sites would extend the 
applicability range of the results to softer and thicker 
sites.

Table 8 Evolution of the standard deviation of residuals for various GRNN models predicting Fa and Fv in the RP–RF case

Number of parameters Explanatory parameters Fa Fv

Standard deviation 
of residuals

Variance reduction Standard deviation 
of residuals

Variance reduction

All (6) Depth + f0 + Vsm + Cv + Vs30 + Vbed‑

rock

0.0020 99.9% 0.00023 99.9%

3 (best triplet) f0 + Cv + Vs30 0.0094 99.6% 0.0067 99.5%

2 (best pair) f0 + Cv 0.0349 94.9% 0.0173 97.0%

2 (convenient pair) f0 + Vs30 0.1083 50.7% 0.0515 73.2%

1 (best for Fa) Cv 0.0878 67.6% 0.0786 37.6%

1 (best for Fv) f0 0.1355 22.9% 0.0661 55.9%

1 (usual) Vs30 0.1419 15.4% 0.0752 42.9%

Initial σ 0.1543 0.0995

Table 9 Evolution of the standard deviation of residuals for various GRNN models predicting Fa and Fv in the NP–RF case

Normalized profiles Fa Fv

Number of param-
eters

Explanatory parameters Standard deviation 
of residuals

Variance reduction Standard deviation 
of residuals

Variance reduction

All (5) Depth + f0 + Vsm + Cv + Vs30 0.0055 99.74% 0.0011 99.98%

3 (best triplet) f0 + Cv + Vs30 0.012 98.7% 0.0034 99.8%

2 (best pair for Fa) f0 + Cv 0.0318 91.43% 0.0172 95.7%

2 (convenient pair) f0 + Vs30 0.0592 70.28% 0.0153 96.6%

1 (best for Fa) Cv 0.0783 48.02% 0.0733 21.8%

1 (best for Fv) f0 0.0944 24.44% 0.048 66.4%

1 (usual) Vs30 0.0926 27.3% 0.0709 26.8%

Initial σ 0.1086 0.0829

Table 10 Evolution of the standard deviation of residuals for various GRNN models predicting Fa and Fv in the TP–RF case

Truncated profiles Fa Fv

Number of param-
eters

Explanatory parameters Standard deviation 
of residuals

Variance reduction Standard deviation 
of residuals

Variance reduction

All 5 Depth + f0 + Vsmn + Cv + Vs30 0.0095 99.28% 0.0017 99.97%

3 (best triplet) f0 + Cv + Vs30 0.0185 97.2% 0.0061 99.57%

2 (best pair for Fa) f0 + Cv 0.0375 88.8% 0.0229 93.9%

2 (convenient pair) f0 + Vs30 0.0511 79.1% 0.0127 98.1%

1 (best, Fa) Cv 0.0734 57.05% 0.0736 37.9%

1 (best, Fv) f0 0.0764 53.47% 0.0428 79%

1 (usual) Vs30 0.0925 31.4% 0.0777 30.8%

Initial σ 0.112 0.0934
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  • Second, these results are limited to the linear 
case. An important next step will be to consider 
nonlinear site responses. Assigning nonlinear 
characteristics to different layers of each soil pro-

file (information that is presently unavailable) and 
adding at least one explanatory variable in the 
input layer, related to the loading level, will be 
required.
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Abbreviations
AF: amplification factor (ratio of site to “reference rock” acceleration response 
spectrum with 5% damping); Cv: velocity contrast between bedrock and the 
softest layers, which is generally at the surface, but not systematically; Depth: 
thickness down to the deepest (and hardest) geological unit; f0: resonance 
frequency; Fa: amplification factor at short period (computed as the geo‑
metrical mean of AF for periods equally spaced on a logarithmic axis in the 
range [0.1 s, 0.2 s]); Fv: amplification factor at mid‑period (computed as the 
geometrical mean of AF for periods equally spaced on a logarithmic axis in 
the range [0.75 s, 1.5 s]); GMPEs: ground motion prediction equations; GRNN: 
generalized regression neural network; hi: thickness of layer i; Mw: moment 
magnitude; RP: real profiles; NP: normalized profiles; TP: truncated profiles; 
NF: normalized frequency; RF: real frequency; PGA: peak ground acceleration; 
PSA: pseudo acceleration spectrum; Qi: quality factor for layer i; R2: coefficient 
of determination; SA(T )b: 5% response spectra at the outcropping reference 
bedrock; SA(T )s: 5% response spectra at the site surface; Vi: shear wave veloc‑
ity for layer i; VBedrock: shear wave velocity of bedrock; VS30: harmonic average 
of the shear wave velocity over the topmost 30 m; Vsm: harmonic average of 
shear wave velocity over the total soil column thickness; ξi: damping of layer i; 
ρi: mass density for layer i.
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