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Abstrat

We de�ne and study a family of generalized non-intersetion exponents for planar Brow-

nian motions that is indexed by subsets of the omplex plane: For eah A ⊂ C, we de�ne an
exponent ξ(A) that desribes the deay of ertain non-intersetion probabilities. To eah of

these exponents, we assoiate a onformally invariant subset of the planar Brownian path, of

Hausdor� dimension 2− ξ(A). A onsequene of this and ontinuity of ξ(A) as a funtion of

A is the almost sure existene of pivoting points of any su�iently small angle on a planar

Brownian path.

Résumé

Nous dé�nissons et étudions une famille d'exposants de non-intersetion généralisés en-

tre mouvements browniens plans, indexée par les parties du plan omplexe : pour haque

A ⊂ C nous dé�nissons un exposant ξ(A) dérivant la déroissane de probabilités de non-

intersetion. À haun de es exposants est assoiée une partie de la trajetoire brownienne

qui est invariante sous l'ation des transformations onformes et qui a une dimension de

Hausdor� égale à 2 − ξ(A). Une onséquene de e résultat et de la ontinuité de ξ(A)
omme fontion de A est l'existene presque sûre de points pivotants de tout angle assez

petit sur une trajetoire brownienne plane.
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Introdution

It has been onjetured for more than twenty years by theoretial physiists that onformal in-

variane plays an important role to understand the behaviour of ritial two-dimensional models

of statistial physis. They justify by a mathematially non-rigorous argument involving renor-

malization ideas that in the saling limit these models behave in a onformally invariant way;

they have been able to lassify them via a real-valued parameter orresponding to the entral

harge of the assoiated Virasoro algebra, and to predit the exat value of ritial exponents

that desribe the behaviour of these systems. Di�erent models (for instane, self-avoiding walks

and perolation) with the same entral harge have the same exponents.

Reently, Shramm [19℄ introdued new mathematial objets that give insight into these

onjetures. These are random set-valued inreasing proesses (Kt)t>0 that he alled Stohasti

Löwner Evolution proesses. For eah positive number κ, there exists one suh proess of param-

eter κ, in short SLEκ. He proved that for various models, if they have a onformally invariant

saling limit, then it an be interpreted in terms of one of the SLEκ's (the parameter κ is related

to the entral harge of the model). One an then interpret the onjetures from theoretial

physiists in terms of properties of this proess.

In partiular, Lawler, Shramm and Werner [13, 14℄ showed that for one spei� value of the

parameter κ (namely κ = 6) whih onjeturally orresponded to the saling limit of perolation

luster interfaes, the SLE6 has the remarkable restrition property that enables to relate its

ritial exponents to the so-alled intersetion exponents between planar Brownian motions.

This lead [13, 14, 15, 12℄ to the derivation of the exat value of the exponents between planar

Brownian paths. Furthermore, it turned out [23℄ that in fat, the outer boundary of a planar

Brownian urve has exatly the same law than that of an SLE6. In other words, the geometry

of ritial two-dimensional perolation lusters in their saling limit should be exatly that of a

planar Brownian outer frontier.

In a very reent paper Smirnov [20℄ showed that ritial site perolation in the triangular

lattie is onformally invariant in the saling limit so that the geometry of ritial two-dimensional

perolation lusters boundaries in their saling limit is idential that of a planar Brownian outer

frontier.

Before all these reent developments, geometri properties of planar Brownian paths had

already been subjet of numerous studies (see e.g. [18℄ for referenes). In partiular, the Hausdor�

dimension of various subsets of the planar Brownian urve de�ned in geometri terms had been

determined. For instane, Evans [4℄ showed that the Hausdor� dimension of the set of two-sided

one points of angle θ (i.e. points Bt suh that both B[0,t] and B[t,1] are ontained in the same

one of angle θ with endpoint at Bt) is 2 − 2π/θ. In a series of papers (see [9℄ for a review),
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Lawler proved that the dimension of various important subsets of the planar Brownian urve an

be related to Brownian intersetion exponents. In partiular [8℄, he showed that the dimension

of the set C of ut points (i.e. points Bt suh that B[0,1] \ {Bt} is not onneted) is 2− ξ where
ξ is the Brownian intersetion exponent de�ned by

pR = P (B1
[0,T 1

R
] ∩B2

[0,T 2
R
] = ∅) = R−ξ+o(1)

(1)

(for independent Brownian paths B1
and B2

starting respetively from 1 and −1, T 1
R and T 2

R

standing for their respetive hitting times of the irle C(0, R)).
In order to derive suh results and in partiular the more di�ult lower bound d > 2 − ξ,

the strategy is �rst to re�ne the estimate (1) into pR ≍ R−ξ
(we shall use this notation to

denote the existene of two positive onstants c and c′ suh that cR−ξ 6 pR 6 c′R−ξ
), to derive

seond-moment estimates and to use these fats to onstrut a random measure of �nite r-energy
supported on C, for all r < 2 − ξ. The determination of the value of the ritial exponents via

SLE6 [13, 14℄ then implies that the dimension of C is 3/4. Similarly, in [7℄ the Hausdor�

dimension of the outer frontier of a Brownian path an be interpreted in terms of another ritial

exponent, and the determination of this exponent using SLE6 then implied (see [16℄ for a review)

that this dimension is 4/3 as onjetured by Mandelbrot.

In the present paper, we de�ne and study a family of generalizations of the Brownian inter-

setion exponent ξ parameterized by subsets of the omplex plane. For eah A ⊂ C, we de�ne

an exponent ξ(A) as follows. Let B1
and B2

be two independent planar Brownian paths starting

from uniformly distributed points on the unit irle : then ξ(A) is de�ned by

pR(A) = P (B1
[0,T 1

R
] ∩A.B2

[0,T 2
R
] = ∅) = R−ξ(A)+o(1)

(2)

(with the notation E1.E2 = {xy : x ∈ E1, y ∈ E2}). Note that the ase A = {1} orresponds to

the usual intersetion exponent. In Setion 1, we �rst show that for a wide lass of sets A

pR(A) ≍ R−ξ(A). (3)

In Setion 2, we study regularity properties of the mapping A 7→ ξ(A). In partiular, we

prove uniform ontinuity (with respet to the Hausdor� metri) on ertain families of sets. One

important tool for this result is the fat that the onstants impliit in (3) an in fat be taken

uniform over these families of sets.

In Setion 3, we assoiate to eah set A a subset EA of the planar Brownian urve de�ned in

geometri terms:

EA = {Bt : ∃ε > 0, (B[t−ε,t] −Bt) ∩A.(B(t,t+ε] −Bt) = ∅}.

Using the strong approximation and ontinuity of the mapping A 7→ ξ(A), we then show that

the Hausdor� dimension of this subset of the planar Brownian urve is almost surely 2 − ξ(A)
(and 0 in ase ξ(A) > 2). For example, when A = {eiθ, 0 6 θ 6 α}, the orresponding subset Cα

of the Brownian urve is the set of (loal) pivoting points, i.e. points around whih one half of

the path an rotate of any angle smaller than α without interseting the other half.

When A ⊂ A′
, then EA′ ⊂ EA. In partiular, when A ontains 1, then EA is a subset of

the set of (loal) ut points, and therefore the shape of the path in a neighbourhood of suh a

point is the same as the Brownian frontier in the neighbourhood of a ut-point. This shows in
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partiular that (at least some of) the exponents ξ(A) desribe also the Hausdor� dimension of

sets of exeptional points of the saling limit of ritial perolation lusters.

In Setion 4, we derive some bounds on the exponents ξ(A) for small sets A in the same

spirit as the upper bounds for disonnetion exponents derived in [22℄. In partiular, for small

α, we show that the exponent ξ(Cα) is stritly smaller than 2, whih implies the existene of

pivoting points (of small angle) on the planar Brownian urve. We then brie�y present results of

simulations that suggest that there exist pivoting points of angle up to an angle lose to 3π/4.

Atually, it is easy to de�ne other �generalized� exponents in a similar fashion, by studying

non-intersetion properties between Brownian motions and some of their images under isometries

and salings, i.e. one an view A as a subset of the linear group. Also, one an onsider non-

intersetion properties between B and its image f(B) by a onformal map. It is easy to see using

the funtion z 7→ z2 that the exponent desribing the non-intersetion between B and −B is in

fat twie the disonnetion exponent. The methods of the present paper an then be adapted

to suh situations.

Similarly, one ould also extend the de�nitions to higher dimensions (the ases d > 4 an

also be interesting if the set A is su�iently large), but onformal invariane an not be used

anymore, so that some of the tools that we use in the present paper do not apply.

Aknowledgments

I thank WendelinWerner for suggesting me to look for pivoting points on the planar Brownian

urve and for never refusing help and advie.

Notations

Throughout this paper, we will use the following notations for the asymptoti behaviour of

positive funtions (and sequenes, with the same meaning):

• f ∼ g if lim
t→∞

f(t)

g(t)
= 1 � and f and g are said to be equivalent ;

• f ≈ g if log f ∼ log g, i.e. if lim
t→∞

log f(t)

log g(t)
= 1� f and g are then logarithmially equivalent ;

• f ≍ g if f/g is bounded and bounded by below, i.e. if there exist two positive �nite

onstants c and C suh that for all t, cg(t) 6 f(t) 6 Cg(t) � whih we all strong

approximation of f by g.

1 Generalized intersetion exponents

1.1 De�nition of the exponents

Proposition and De�nition :

Let A be a non-empty subset of the omplex plane and B1
, B2

be two independent

Brownian paths starting uniformly on the unit irle C(0, 1); de�ne the hitting time T i
R of
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C(0, R) by Bi
and let τ in = T i

exp(n),

En = En(A) = {B1
[0,τ1n]

∩AB2
[0,τ2n]

= ∅},

qn(A) = P (En) and pR(A) = P (ElogR).

Then, assuming the existene of positive onstants c and C suh that pR(A) > cR−C
, there

exists a real number ξ(A) suh that, when R → ∞,

pR(A) ≈ R−ξ(A).

//
This is a standard sub-multipliativity argument. If B is a Brownian path

starting on C(0, 1) with any law µ, then the law of Bτ1(B) on the irle C(0, e) has a
density (relative to the Lebesgue measure) bounded and bounded away from zero

by universal onstants (i.e. independently of µ). Combining this remark with the

Markov property at the hitting times of the irle of radius en shows that:

∀m,n > 1 qm+n 6 cqnqm−1.

Hene the family (cqn−1) is sub-multipliative and using Proposition 7 we have

qn ≈ e−ξn
, with ξ ∈ (0,∞), as well as a lower bound qn > c−2e−ξ(n+1)

. //
Remarks: For some hoies of A there is an easy geometri interpretation of the event En(A):

ξ({1}) is the lassial intersetion exponent; if A = (0,∞), the En(A) is the event that the paths
stay in di�erent wedges.

If A is suh that no lower bound pR(A) > cR−C
holds, we let ξ(A) = ∞. However, in most

of the results presented here, we will restrit ourselves to a lass of sets A for whih it is easy to

derive suh lower bounds:

De�nition :

A non-empty subset A of the omplex plane is said to be nie if it is ontained in the

intersetion of an annulus {r < |z| < R} (with 0 < r < R < ∞) with a wedge of angle

stritly less than 2π and vertex at 0.

Indeed, let A be suh a set and let α < 2π be the angle of a wedge ontaining A: B1
and

AB2
will not interset provided eah path remains in a well-hosen wedge of angle (2π − α)/2,

and then it is standard to derive the following bound:

pR(A) > cR−4π/(2π−α). (4)

The fat that A be ontained in an annulus will be needed in the following proof. The only

usual ase where this does not hold is when A is a wedge itself; but in this ase a diret study is

possible, based on the derivation of one exponents in [4℄ and the exat value of ξ is then known

(f. next setion for details).

We will often onsider the ase where A is a subset of the unit irle. For suh sets, A is

nie if and only if Ā  ∂U (it is in fat easy to prove that for A ⊂ ∂U, ξ(A) = ∞ if and only if

Ā = ∂U).

1.2 Strong approximation

This whole subsetion will be dediated to the re�nement of pR ≈ R−ξ
into pR ≍ R−ξ

. This is

not anedotial, sine this �strong� approximation will be needed on several oasions later.
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Theorem 1 :

For every nie A, pR(A) ≍ R−ξ(A)
, i.e. there exist positive onstants c(A) < C(A) suh

that

cR−ξ(A)
6 pR(A) 6 CR−ξ(A).

Moreover, the onstants c(A) and C(A) an be taken uniformly on a olletion A of subsets

of the plane, provided the elements of A are ontained in the same nie set.

//
Note that sine A ∈ A is nie, the exponents ξ(A) exists and is uniformly

bounded (for A ∈ A). The subadditivity argument showed that qn > ce−ξ(A).(n+1)
,

whih implies readily the lower bound in the theorem. It is more di�ult to derive

the upper bound. By Proposition 7, it will be su�ient to �nd a �nite onstant

c−(A) (that an be bounded uniformly for A ∈ A) suh that

∀n, n′ qn+n′ > c−qnqn′ . (5)

In order to make the proof more readable, it is arried out here for a �xed A;
however it is easy to see that, at eah step, the onstants an be taken uniformly

for all A ontained in some �xed nie set A
0
. Moreover, we shall �rst assume that

A
0
is a subset of the unit irle: We brie�y indiate at the end of the proof what

are the few modi�ations needed to adapt it to the general ase.

The basi method is adapted from Lawler's proof for non-intersetion exponents

in [10℄, with some tehnial simpli�ations made possible using the absene of the λ
exponent. The main idea is to obtain a weak independene between the behaviour

of the paths before and after they reah radius en. The �rst step is an estimate

onerning the probability that the paths are �well separated� when they reah

radius en (more preisely, that they remain in two separated wedges between radius

en−1
and radius en):

Lemma (Tehnial) :

Let η > 0 and α < 2π− η suh that A is ontained in a wedge of angle less

than α. De�ne
Wα =

{

reiθ : r > 0, |θ| < α

2

}

,

δn = e−n[d(B1
τ1n
, AB2

[0,τ2n]
) ∨ d(AB2

τ2n
, B1

[0,τ1n]
)] and the following events:

U1
n =

{

B1
[0,τ1n]

∩ {|z| > en−1} ⊂ −W2π−α−η

}

,

U2
n =

{

AB2
[0,τ2n]

∩ {|z| > en−1} ⊂ Wα

}

,

and Un = U1
n ∩ U2

n. Then:

∃c, β > 0 ∀ε > 0 ∀r ∈
[

3

2
, 3

]

P (En+r, Un+r|En, δn > ε) > cεβ .

///
This is an diret onsequene of lassial estimates onerning Brownian motion

in wedges; the value of β is not important, so not muh are is needed in �nding

the lower bound. Note that the existene of α requires that A be nie. ///
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If Fn stands for the σ-�eld generated by both paths up to radius en (so that

for instane En is in Fn), we now prove that paths onditioned not to interset up

to radius en+2
have a good hane to be well separated at this radius, uniformly

with respet to their behaviour up to radius en:
Lemma (End-separation) :

There exists c > 0 suh that, for every n > 0:

P (Un+2|En+2,Fn) > c

(i.e. the essential lower bound of P (Un+2|En+2,Fn), as an Fn-measurable

funtion, is not less than c).

///
The tehnial lemma states that start-separation ours if the starting points

are su�iently far from eah other; more preisely, we have for all ε > 0:

P (Un+2|En+2,Fn, δn > ε) > cεβ . (6)

Hene, what is to be proved is that two paths onditioned not to interset have

a positive probability to be far from eah other after a relatively short time. To

prove this fat, one has to use onditioning on the value of δn.
Fix k > 0, and assume that 2−(k+1) 6 δn < 2−k

; let τk be the smallest r suh

that one of the following happens: either δn+r > 2−k
, or En+r does not hold. It is

easy to use saling to prove that for some λ > 0,

P (τk > 2−k) 6 2−λ,

meaning that with positive probability (independent of k and n) the paths separate

or meet before reahing radius en+2−k
. Hene by the strong Markov property,

applying this k2 times leads to

P (τk > k22−k) 6 2−λk2 . (7)

The tehnial lemma states that P (En+2|δn > 2−(k+1)) > c2−βk
: ombining both

estimates then leads to

P (τk > k22−k|En+2, δn > 2−(k+1)) 6 c2βk−λk2 . (8)

Consider now a generi starting on�guration at radius en, satisfying En and

hene δn > 0. Fix also k0 > 0 and introdue the radii τk (for k0 6 k < ∞) de�ned

by

τk = Inf{r : δn+r > 2−k}
(so that τk = 0 as long as 2−k 6 δ). Equation (8) an be rewritten (using the fat

that the tehnial lemma is valid for all r > 3/2) as

P (τk − τk+1 > k22−k|En+2, τk+1 6
1

2
) 6 c2βk−λk2 .

Fix k0 suh that

∞
∑

k=k0

k22−k <
1

2
,
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and sum this estimate for k0 6 k < ∞: this leads to

P (∀k > k0, τk − τk+1 6 k22−k|En+2) > 1− c

∞
∑

k=k0

2βk−λk2 .

In partiular, if k0 is taken large enough, this probability is greater than 1/2, and
we obtain

P (τk0 6
1

2
|En+2) >

1

2
.

It is then su�ient to ombine this and Equation (6) to get

P (Un+2|En+2) > c2−βk0 > 0,

and is an be seen that the obtained onstant does not depend on the on�guration

at radius en � provided En is satis�ed. ///

The �rst onsequene of the end-separation lemma is P (En, Un) ≍ qn; but it is
easy to see, using estimates on Brownian motion in wedges again and the strong

Markov property, that

P (En+1|En, Un) > c > 0

(with c independent of n), and ombining both estimates leads to qn+1 > cqn,
i.e. qn+1 ≍ qn. Now if q̄n stands for the upper bound for the non-intersetion

probabilities, namely

q̄n
∧
= Sup

B1

0
,B2

0
∈U

P (En|B1
0
, B2

0
),

the previous remark onerning the law of Wτ1(W ) an be used to prove that q̄n 6
cqn−1: hene,

q̄n ≍ qn.

Now that we know that paths onditioned not to interset have a good hane

to exit a disk at a large distane from eah other, what remains to be proven is

that paths starting from distant points on C(0, en) remain well separated for a

su�iently long time and beome (in a sense to be spei�ed later) independent

from their behaviour before radius en.
Lemma (Start-separation) :

Let α and η be as in the tehnial lemma, η′ = η/2 and α′ = (2π + α)/2;
introdue

J1
n =

{

B1
[0,τ1n]

∩ B(0, 2) ⊂ −W2π−α′−η′ \ B(0, 1− η′)
}

,

J2
n =

{

AB2
[0,τ2n]

∩ B(0, 2) ⊂ Wα′ \ B(0, 1− η′)
}

,

and Ẽn = En ∩ J1
n ∩ J2

n. De�ne q̃n as

q̃n(x, y) = P (Ẽn|B1
0
= x,B2

0
= y).
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Then there exists c > 0 suh that, for all n > 2 and uniformly on all pairs

(x, y) satisfying U
0
(i.e. suh that U

0
holds when B1

0
= x and B2

0
= y):

q̃n(x, y) > cqn.

///
Introdue the following (�forbidden�) sets:

K1 =
(

B(0, e) \ −W2π−α′−η′
)

∪ B(0, 1− η′);

K2 = (B(0, e) \Wα′) ∪ B(0, 1 − η′).

For all n we have J1
n = {B1

[0,τ1n]
∩K1 = ∅} and J2

n = {AB2
[0,τ2n]

∩K2 = ∅}. For the
rest of the proof we shall �x n, and ondition the paths by their starting points;

introdue the following stopping times (for positive values of k):

T 1
0
= Inf{t > 0 : B1

[0,t] ∩ C(0, 3) 6= ∅},
S1
k = Inf{t > T 1

k−1 : B
1
[T 1

k−1
,t] ∩K1 6= ∅},

T 1
k = Inf{t > S1

k : B1
[S1

k
,t] ∩ C(0, 3) 6= ∅},

and S2
k, T

2
k similarly, replaing all ourrenes of B1

by AB2
and K1

by K2
. We

shall also use the notation N i
for the number of rossings by B1

(resp. AB2
)

between Ki
and C(0, 3), de�ned as

N i = Max{k : Si
k < τ in}.

With those notations, J i
n = J i

1 ∩ {N i
n = 0} and a.s. N i < ∞. Moreover, uniformly

on the starting points onsidered here (satisfying the ondition U
0
), we have J i

1 >

c > 0 by the tehnial lemma, where c depends only on η.
First, we split the event En aording to the value of, say, N

2
: we write P (En) =

∑

∞

k=0 P (En, N
2 = k). By the Beurling estimate, on {N > k}, the probability

that B1
[0,τ1n]

and AB2
[S2

k
,T 2

k
]
do not interset is bounded by some universal onstant

λ < 1 (whih an even be hosen independent of A), independently of B1
and

the two remaining parts of B2
. By the strong Markov property at time T 2

k , when

N2 = k the probability that AB2
after T 2

k does not interset B1
is bounded by

P (B1∩AB2
[T 2

0
,τ2n]

= ∅, N2 = 0) (i.e. the path after T 2
k when N2 = k is the same as

the entire path when N2 = 0). Introduing those two estimate in the sum leads to

P (En) 6
∞
∑

k=0

λkP (En, N
2 = 0) =

1

1− λ
P (En, N

2 = 0).

Doing this deomposition again aording to N1
(with the same onstant λ < 1)

we then obtain

P (En) 6
1

(1− λ)2
P (En, N

1 = N2 = 0),

i.e. P (N1 = N2 = 0|En) > (1 − λ)2 > 0. This, and the previous remark that

P (J i
n|N i = 0) is bounded by below by a onstant provided that the starting points

satisfy U
0
, gives:

P (Ẽn|B1
0
= x,B2

0
= y) > cP (En|B1

0
= x,B2

0
= y). (9)
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Conditioning on B2
shows that the map

f : x 7→ P (En|B1
0
= x,B2

0
= 1) (10)

is harmoni and does not vanish on the omplement of A. Moreover, its supremum

on the unit irle is equal to q̄n by de�nition: Applying the Harnak priniple then

proves that f is bounded by below by cqn on the set of x satisfying U
0
, whih

ompletes the proof. ///
Another estimate an be obtained using the very same proof: Only keeping the

onditions involving disks and relaxing those involving wedges, we obtain

P
(

B1
[0,τ1n]

∩B(0, 1 − η) = ∅, AB2
[0,τ2n]

∩ B(0, 1− η) = ∅
∣

∣

∣
B1

0
, B2

0
, En

)

> c > 0, (11)

where c does not depend on the initial positions B1
0
and B2

0
, nor on n (it learly

depends on η, though, and a loser look at the proof shows that we an ensure

c > ηβ as η → 0, for some β > 0). This estimate will be needed in the derivation

of Hausdor� dimensions, f. Setion 3.

We know have all the needed estimates to derive the lower bound in the sub-

additivity ondition, and hene the onlusion of the theorem. Take two paths with

independent starting points uniformly distributed on the unit irle and killed at

radius em+n
, onditioned not to interset between radii 1 and en. This happens

with probability qn. With large probability (i.e. with a positive probability, inde-

pendent of m and n) the paths up to radius en end up �well separated� in the sense

of the end-separation lemma. In partiular, the points where they reah radius

en, after suitable resaling, satisfy the hypothesis of the start-separation lemma:

Hene with probability greater that cqm, the paths between radii en and em+n

remain separated up to radius en+1
, do not reah radius (1− η)en anymore and do

not interset up to radius em+n
. Under those onditions, it is easy to see that the

paths do not meet at all. So qm+n > cqmqn for some positive c, and we get the

onlusion.

Some adaptations are needed if A is inluded in an annulus, say {r < |z| < R}
with r < 1 < R. First, replae all ourrenes of e by e

0
, with e

0
hosen larger

than 10R/r, and in the start-separation lemma, replae B(0, 1− η) by B(0, r/2R)
in the de�nition of the Jn. As long as r and R are �xed, this hanges nothing to

the proof, exept that the onstants we obtain will then depend on R/r � whih

itself is bounded provided A remains a subset of some �xed nie set.

A more serious problem arises if the omplement of A is not onneted, sine

the natural domain of the funtion f (as de�ned by Equation (10)) is itself not

onneted. However, sine A is nie, its omplement has exatly one unbounded

omponent, and it is easy to see that if x is not in this omponent then f(x)
vanishes for n > 1. Hene, nothing hanges (as far as non-intersetion properties

are onerned) when A is replaed by the omplement of the in�nite omponent of

its omplement (i.e. when �lling the �holes� in A). //

In fat, a stronger result an be derived: If the starting points B1
0
and B2

0
are �xed, then

P (En|B1
0
, B2

0
) is equivalent to ce−nξ(A)

, where c is a funtion of B1
0
and B2

0
satisfying c 6
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c
0
d(B1

0
, AB2

0
)β. This estimate is related to a strong onvergene result on the law of paths

onditioned by B1 ∩ AB2 = ∅. However, proving this result would be muh more involved

(f. [17℄ for the proof in the ase A = {1}).

2 Properties of the funtion A 7→ ξ(A)

We �rst list a few simple properties of the funtion A 7→ ξ(A). For p ∈ Z and A ⊂ C, introdue
Ap = {zp, z ∈ A} and let A∗ = {z̄, z ∈ A}.
Proposition 1 :

Is these statements, all sets are assumed to be non-empty but do not need to be nie:

(i). ξ is non-dereasing : if A ⊂ A′
then ξ(A) 6 ξ(A′);

(ii). ξ is homogeneous: if λ ∈ C∗
then ξ(λA) = ξ(A);

(iii). ξ is symmetri: ξ(A−1) = ξ(A∗) = ξ(A);

(iv). ξ has the following property: if n > 1 then

ξ
(

⋃

e2ikπ/nA
)

= nξ(An).

//
(i): This is a trivial onsequene of pR(A) > pR(A

′).

(ii): Applying the saling property with fator |λ| to B2
proves that one an

suppose |λ| = 1; in whih ase we have pR(A) = pR(λA) (beause the starting

points are uniformly distributed on the unit irle).

(iii): Simply exhange B1
and B2

for A−1
, and say that the omplex onjugate

of a Brownian path is still a Brownian path to get A∗
.

(iv): This is a onsequene of the analytiity of the mapping z 7→ zn (hene

the fat that ((Wt)
n) is a Brownian path if W is one) together with the remark

that the existene of s, t > 0 and z ∈ An
with (B1

s )
n = z(B2

t )
n
is equivalent to the

existene of z′ in
⋃

e2ikπ/nA with B1
t = z′B2

t � note that the mapping also has an

in�uene on R, hene the fator n. //

We now turn our attention toward regularity properties of the funtion A 7→ ξ(A) � the

following result being a key step towards the derivation of dimensions in the next setion. Intro-

due the Hausdor� distane between ompat subsets of the plane (f. Setion 5 for details). It

will be onvenient here to de�ne neighbourhoods by Vr(A) = {xez, x ∈ A, |z| < r} instead of the

usual A+ B(0, r) � leading to the logarithmi Hausdor� distane. The (logarithmi) Hausdor�

topology is the metri topology derived from this distane.

Proposition 2 :

ξ is ontinuous on the olletion of nie sets, endowed with the logarithmial Hausdor�

topology. For any nie set A0, ξ is uniformly ontinuous in {A : A ⊂ A0}.

//
The proof relies on the uniformity of the strong approximation in Theorem 1: �x

a nie set A
0
and assume all sets onsidered here are subsets of A

0
. The onstants

c, c− and c+ appearing during the proof may only depend on A
0
.
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First, �x R > 1 and ondition all events by B2
[0,T 2

R+1
]
� i.e. �x the seond path.

For all A ⊂ A
0
, let

dR(A) = d(B1
[0,T 1

R
], AB

2
[0,T 2

R
]) ;

for all ε > 0 introdue the stopping time

Sε = Inf{t : d(B1
t , AB

2
[0,T 2

R
]) < ε}.

Note that {dR(A) < ε} = {Sε < T 1
R}. On this event, the strong Markov property

shows that B1
Sε+·

is a Brownian path starting ε-lose to AB2
. By Beurling's theo-

rem, the probability that they do not meet before radius R+1 is smaller than the

orresponding probability for a path near a half line; hene,

P (B1
[Sε,T 1

R+1
] ∩AB2

[0,T 2
R+1

] = ∅|dR(A) < ε) 6
√
ε,

so that, onsidering the whole path, P (ER+1|dR(A) < ε) 6
√
ε. Apply the Bayes

formula:

P (dR(A) < ε|ER+1) =
P (dR(A) < ε)

P (ER+1)
P (ER+1|dR(A) < ε);

sine we know that P (ER+1) > c−(R+1)−ξ(A)
with ξ(A) 6 ξ(A

0
) we �nally obtain

P (dR(A) < ε|ER+1) 6 cRξ(A
0
)√ε.

From now on, we shall assume that ε is su�iently small to make the obtained

bound smaller that 1. Taking the omplement leads to

P (dR(A) > ε|ER+1) > 1− cRξ(A
0
)√ε.

Now, remark that when dR(A) > ε and dH(A,A′) < ε/R, we have B1
[0,T 1

R
]
∩

A′B2
[0,T 2

R
]
= ∅: from this and the previous equation follows that, as long as A and

A′
remain subsets of A

0
,

dH(A,A′) <
ε

R
⇒ pR(A

′) >
(

1− cRξ(A
0
)√ε

)

pR+1(A).

We an apply the estimates on pR we derived in Theorem 1 � i.e. pR(A) ≍
pR+1(A) ≍ R−ξ(A)

: still for dH(A,A′) < ε/R and A, A′
inside A

0
we get

c+R
−ξ(A′)

>

(

1− cRξ(A
0
)√ε

)

c−R
−ξ(A),

and taking the logarithm of eah side of the inequality leads to

log c+ − ξ(A′) logR > log c− + log
(

1− cRξ(A
0
)√ε

)

− ξ(A) logR,

hene after suitable transformations:

ξ(A′) 6 ξ(A) +
c

logR
− log

(

1− cRξ(A
0
)√ε

)

logR
. (12)
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Fix η > 0, and hoose R suh that c/ logR < η/2. It is then possible to take ε
su�iently small so that | log(1− cRξ(A

0
)√ε)| < (η logR)/2; for dH(A,A′) < ε/R

we then have ξ(A′) 6 ξ(A) + η, hene by symmetry |ξ(A′) − ξ(A)| 6 η. This

proves that ξ is uniformly ontinuous on Pc(A0
), for all A

0
, hene ontinuous on

the family of nie sets. //

Remark 1: Equation (12) allows the derivation of an expliit modulus of ontinuity for ξ
inside A

0
, of the form

|ξ(A′)− ξ(A)| 6 C(A
0
)

| log dH(A,A′)|

(take R = d−1/2ξ(A
0
)
). But sine C(A

0
) is not known, this does not provide numerial bounds

for ξ.

Remark 2: Inside a nie set, the usual and logarithmi Hausdor� topologies are equivalent, so

the introdution of �exponential neighbourhoods� in Proposition 2 an seem arti�ial; however, it

leads to onstants that do not vary when A is multiplied by some onstant (as in Proposition 1,

point (ii)), hene uniform ontinuity holds on the olletion of nie sets ontained in a �xed

wedge and in some annulus {r < |z| < cr} for �xed c � whih is wrong for the usual Hausdor�

topology, as a onsequene of the homogeneity of ξ applied for small |λ|.
Note that uniform ontinuity annot hold on the family of nie sets ontained in a given

annulus sine ξ would then be bounded (by a ompaity argument), whih it is not: the exponent

assoiated to a irle is in�nite.

3 Hausdor� dimension of the orresponding subsets of the path

3.1 Conformally invariant subsets of the Brownian path

It is well-known that the Brownian path is invariant in law under onformal transformations;

in this setion, we study subsets of the Brownian urve that are also invariant under onformal

maps. A �rst example is the set of so-alled Brownian ut-points, i.e. points Bt suh that B[0,t)

and B(t,1] are disjoint; these points form a set of Hausdor� dimension 2−ξ({1}) = 3/4. Related to
those are loal ut-points, i.e. points suh that there exists ε > 0 satisfying B[t−ε,t) ∩B(t,t+ε] = ∅
� the dimension is the same as for global ut-points. Other examples are given by Lawler in [9℄:

in partiular the set of pioneer points (suh that Bt lies on the frontier of the in�nite omponent

of the omplement of B[0,t]), related to the disonnexion exponent η1; frontier points (points of

the boundary of the in�nite omponent of the omplement of B[0,1]), related to the disonnetion

exponent for two paths in the plane. Another exeptional subset of the path is the set of one

points (suh that B[0,t] is ontained in a one of endpoint Bt), related to the one exponents

(studied in [18℄ for example).

We will use the exponent introdued in the previous setions to desribe a family of exep-

tional sets, indexed by a subset A of the omplex plane, having dimension 2 − ξ(A), and that

are invariant under onformal transformations, as follows. Fix a Brownian path B[0,1], a subset

A of the omplex plane, and introdue the following times for all t ∈ (0, 1) and r > 0:

Tr(t) = Inf{s > t : |Bs −Bt| = r}, Sr(t) = Sup{s < t : |Bs −Bt| = r}.
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De�nition :

If 0 < ε < R and t ∈ (0, 1), let

Z
[ε,R]
t (B) =

{

Bs −Bt

Bs′ −Bt
: s ∈ [Tε(t), TR(t)], s

′ ∈ [SR(t), Sε(t)]

}

;

and introdue E [ε,R]
A = {Bt : Z

[ε,R]
t ∩A = ∅}. Then, letting ε go to 0:

ZR
t = ↑

⋃

ε>0

Z
[ε,R]
t , Zt = ↓

⋂

R>0

ZR
t , Z̃t = ↓

⋂

R>0

ZR
t ;

de�ne ER
A , EA and ẼA aordingly.

We shall also use the notation TA = {t : Bt ∈ EA}, for the set of A-exeptional times, and

T̃A = {t : Bt ∈ ẼA}, for the set of A-strongly exeptional times.

Note that, sine 0 is polar for planar Brownian motion, Z is well-de�ned for almost any t.
For A = {1}, EA is the set of loal ut-points; more generally, t is in EA if, and only if, for some

ε > 0, we have
(B(t,t+ε] −Bt) ∩A.(B[t−ε,t) −Bt) = ∅,

so the setup looks similar to the de�nition of the exponent ξ(A). It is easy to see that for all

�xed t > 0, a.s. Zt = C
∗
and Z̃t = C, so that for A 6= ∅, P (t ∈ TA) = 0, leading to E(µ(TA)) = 0

i.e. µ(TA) = 0 almost surely � hene the term �exeptional points�.

The set EA of A-exeptional points is generally not onformally invariant. However, it is the

ase for strongly exeptional points:

Proposition 3 :

Let Φ be a onformal map on a neighbourhood Ω of 0, with Φ(0) = 0, and let BΩ
be

B stopped at its �rst hitting of ∂Ω. By onformal invariane of planar Brownian motion,

Φ(BΩ) is a Brownian path stopped at its �rst hitting of ∂Φ(Ω). Moreover, we have

ẼA(Φ(BΩ)) = Φ(ẼA(BΩ)).

//
We prove that Z̃ is invariant. It is su�ient to prove the following harateri-

zation:

z ∈ Z̃t(B) ⇐⇒ ∃(sn) ↓ 0, (s′n) ↓ 0 :
Bt+sn −Bt

Bt−s′n −Bt
→ z,

as onformal maps onserve the limits of suh quotients. Suh a sequene is easily

onstruted using the very de�nition of Z̃. //
Note that nothing in the preeding uses the fat that B be a Brownian path, exept for

the remark about P (t ∈ TA). The remaining of the present setion is dediated to deriving

the Hausdor� dimension of EA and ẼA. It will be more onvenient to work in the time set, so

introdue

T [ε,R]
A = {t ∈ [0, 1] : B1

[t−R,t−ε] ∩A.B2
[t+ε,t+R] = ∅}.

The saling property of Brownian motion an then be used to show, as in [8, lemmas 3.14�3.16℄,

that Theorem 1 implies the following:

P (t ∈ TA[ε,R]) ≍
( ε

R

)ξ(A)/2
. (13)
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3.2 Seond moments

Fix R > 0. The purpose of this subsetion is to give an estimate of the probability that two times

t and t′ are A-exeptional times, i.e. are both in T [ε,R]
A . To get an upper bound on this probability,

the idea will be to dissoiate the mirosopi and marosopi sales, giving respetively the �rst

and seond fator in the following estimate:

P (t, t′ ∈ T [ε,R]
A ) 6 c

[ ε

R

]ξ(A) [

1 ∧ |t− t′|−ξ(A)/2
]

.

If t and t′ are two times, introdue the �mesosopi� sale d = |t′ − t|, and separate the following

three ases:

• If d > 2R (long-range interation), the events Et
∧
= {t ∈ T [ε,R]

A } and Et′ are independent,

leading to the right seond-order moment;

• If d < 2R/3 (short-range interation), then Et and Et′ lead to three events involving

disjoint subsets of the path: t ∈ T [ε,d/2]
A , t′ ∈ T [ε,d/2]

A and t ∈ T [3d/2,R]
A thus leading to the

following bound:

P (Et, Et′) 6 C

(

2ε

d

)ξ(A)( 3d

2R

)ξ(A)/2

(in fat those events are not independent; however the dependene is only through the

positions of B at �xed times, so if the mesosopi radii are hosen as (1 − ε)d and (3 +
ε)d/2 respetively, for some ε > 0, this dependene only ontributes up to a onstant).

Considering R as a onstant we get preisely the needed estimate;

• Lastly, if 2R/3 < d < 2R (medium-range interation), the trivial bound P (Ex, Ey) 6
C(2ε/d)2ξ(A)

(obtained by forgetting what happens after radius d/2) gives the needed

ontribution.

So in the ase of exeptional points de�ned loally, bounds on seond moments are not di�ult

to derive (and this �sale separation� an be used in various setups). In ontrast, if the whole

path was to in�uene every single point, interations would not be that easy to lassify.

3.3 Hausdor� dimensions

The main result of this setion is the following:

Theorem 2 :

Let (Bt)t∈[0,1] be a planar Brownian path. If A is any nie subset of the omplex plane

suh that ξ(A) ≤ 2, then almost surely

dimH(EA(B)) = dimH(ẼA(B)) = 2− ξ(A).

In partiular, both subsets are a.s. non-empty and dense in the path if ξ(A) < 2. If ξ(A) > 2,
EA(B) = ẼA(B) = ∅ almost surely.

//
The �rst step in the proof is the statement of a zero-one law:
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Lemma 1 :

The dimension of the set of all A-exeptional points (resp. of A-strong
exeptional points) has an almost sure value. More preisely, there exist δA
and δ̃A in [0, 2] suh that

P (dimH(EA) = δA) = P (dimH(ẼA) = δ̃A) = 1.

Moreover, the following holds with probability 1 (and the same for ẼA also):

∀s < t dimH(EA(B[s,t])) = δA.

///
The proof is the same in both ases; we perform it here for δA.

Introdue the following random variables in [0, 2]: Z = dimH(EA), Z− =
dimH(EA(B[0,1/3])), Z+ = dimH(EA(B[2/3,1])). The saling property, assoiated

with the Markov property, shows that these three variables have the same law;

basi properties of the Hausdor� dimension imply that Z > Z− ∨Z+; and loality

proves that Z− and Z+ are independent.

0 6 Z− 6 Z 6 2 with the same mean value: from here follows that P (Z− =
Z) = 1. By the same argument P (Z+ = Z) = 1, hene P (Z− = Z+) = 1; Z− and

Z+ being independent, this is only possible if they are deterministi: thus giving

the existene of δA as their ommon almost sure value.

Now if 0 6 s < t 6 1 the dimension of EA(B[s,t]) is (almost surely) δA.
This holds at the same time for all rational s, t; then it su�es to note that

dimH(EA(BI)) is inreasing in I to extend the equality to all s < t. ///

From this lemma follows that as soon as EA has positive dimension it is dense

in the path.

For onveniene we will prove the result in the time set, i.e. we shall om-

pute the dimension of TA; it is known that planar Brownian motion doubles

Hausdor� dimensions (i.e. with probability 1, for any Borel subset I of [0, 1],
dimH(BI) = 2dimH(I) � f. [6℄), whene dimH(EA) = 2dimH(TA). Moreover,

to avoid problems near 0 and 1 we shall suppose that B is de�ned for t ∈ R � this

will not hange TA sine the de�nition is loal.

First step: lower bound. Fix R > 0 and let An be the following set:

An = {t : B[t−R,t−2−n] −Bt) ∩A(B[t+2−n,t+R] −Bt) = ∅}.

For shorter notations, let s = ξ(A)/2; moreover, assume from now on that s ∈ (0, 1)
(if s > 1 there is nothing to prove, and sine A 6= ∅ we have s > 0 anyway). From

the previous estimates for �rst- and seond-moments, we obtain

E(1An(x)) ≍ 2−sn E(1An(x) 1An(y)) 6 c2−sn

[

1 ∧ 2−sn

|y − x|s
]

.

Introdue the (random) measure µn having density 2sn1An with respet to the
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Lebesgue measure. It is not hard to derive the following estimates:

E(‖µn‖) =
∫

[0,1]
2snE(1An(x)) dx ≍ 1, (14)

E(‖µn‖2) =
∫∫

[0,1]2
22snE(1An(x) 1An(y)) dxdy

6 c2sn

[

∫ 1

0
dx

∫ x+2−n

x
dy +

∫ 1−2−n

0
dx

∫ 1

x+2−n

2−sndy

(y − x)s

]

6 c2(s−1)n + c

∫ 1−2−n

0

(

(1− x)1−s

1− s
− 2(s−1)n

1− s

)

dx

6 c+ c2(s−1)n + c2(s−2)n
6 c. (15)

Hene, ‖µn‖ has �nite expetation and �nite variane, independent of n: there

exists ε > 0 satisfying P (‖µn‖ > ε) > ε for all positive n. Consequently, it is

possible, with positive probability, to extrat a subsequene (µnk
) suh that, for

all k, ‖µnk
‖ > ε. By a ompatness argument, another extration leads to a

onverging subsequene, the limit µ of whih satis�es ‖µ‖ > ε. µ is supported on

the intersetion of the An, this intersetion is non-empty: hene P (
⋂

An 6= ∅) > 0.

Introdue then the notion of r-energy of a measure: if ν is some mass measure

supported on a metri spae X, let

Er(ν) ∧
=

∫∫

X2

dν(x) dν(y)

d(x, y)r
.

It is known that if X supports a mass measure of �nite r-energy, then its Hausdor�

dimension is not less than r (f. [5℄). Let then r ∈ (0, 1−s): a alulation analogous

to the derivation of (15) leads to

E(Er(µn)) 6 c+ c2(r+s−1)n + c2(r+s−2)n
6 c. (16)

Performing another subsequene extration, it is possible to obtain µ supported on

⋂

An and having �nite r-energy: hene

∀r < 1− s P (dimH(
⋂

An) > r) > 0.

By de�nition TA is the inreasing union, for R going to 0, of
⋂

nAn(R): hene for
all r < 1 − s we have P (dimH(TA) > r) > 0. Combining this and the zero-one

result (Lemma 1) then proves that almost surely dimH(TA) > 1− s.

Seond step: upper bound. This step is usually the easier one, but in

the present ase a ompliation arises due to the fat that the �non-intersetion�

event we onsider at Bt depends on the position of Bt � whih is not the ase

for instane in the ase of ut-points [9℄. This explains why we need one more

argument, namely the ontinuity of ξ : A 7→ ξ(A).

Fix a nie set A, ε > 0, R > 0 and a sequene (λn)n>0 of positive numbers,

tending slowly to 0 (in the following sense: for all positive η, 2−ηn = o(λn) �
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for instane, take λn = 1/n). Now suppose some time t is in An. With positive

probability, the following happens:



















B[t−λn2−n,t+λn2−n] ⊂ B(Bt, λ
1/2
n 2−n/2)

|Bt−2−n −Bt| > 2−n/2

|Bt+2−n −Bt| > 2−n/2

(B[t−R,t−2−n] ∪B[t+2−n,t+R]) ∩ B(Bt, (1− ε)2−n/2) = ∅

(the �rst three onditions are a onsequene of saling, and the fourth one is the

start-separation lemma, more preisely the weakened version of it as stated in

equation (11)). Introdue Aηn = {az : a ∈ A, z ∈ B(1, ηn): we have

P (B[t−R,t−2−n] −Bt) ∩Aηn(B[t+2−n,t+R] −Bt) = ∅ | t ∈ An)

≍ 2−nξ(Aηn )/2

2−nξ(A)/2
= 2−n[ξ(Aηn )−ξ(A)]/2. (17)

It is easy to see that under the previous onditions, if t ∈ TAηn , then every t′ ∈
[t − λn2

−n, t + λn2
−n] is in An, as soon as ηn > 18λn/(1 − ε). From now on we

shall assume that this holds, and that ηn → 0. Putting these estimates together,

we obtain the following (where l is the Lebesgue measure on R): for all interval I,

P (l(An ∩ I) > λn2
−n|An ∩ I 6= ∅) > c.2−n[ξ(Aηn )−ξ(A)]/2. (18)

The Markov inequality then states that

P (l(An ∩ I) > λn2
−n) 6

E(l(An ∩ I))

λn2−n
,

and E(l(An ∩ I)) ≍ 2−nξ(A)/2l(I). From this and (18) follows that

P (An ∩ I 6= ∅) 6 C
2−nξ(A)/2l(I)

λn2−n

1

2−n[ξ(Aηn)−ξ(A)]/2
. (19)

By ontinuity of ξ, for large n we have |ξ(Aηn) − ξ(A)| < ε; by the hypothesis on

λn, still for large n we have λn > 2−ε/2
. Hene for large n:

P (An ∩ I 6= ∅) 6 C 2εn 2−nξ(A)/2 l(I)

2−n
. (20)

Cover the interval [0, 1] with the Ink = [k2−n, (k+1)2−n], and let Xn be the number

of suh intervals interseting An. Then

E(Xn) =
∑

k

P (Ink ∩ TA 6= ∅) 6 2n C 2εn 2−nξ(A)/2 l(I
n
0
)

2−n
6 C 2εn 2n[1−ξ(A)/2].

By another appliation of the Markov inequality,

P (Xn > 2n[1−ξ(A)+2ε]) 6 C 2−εn.

Hene by the Borel-Cantelli theorem, for su�iently large n, An is overed by at

most 2n[1−ξ(A)+2ε]
intervals of length 2−n

� and this implies that dimH(
⋂

An) 6
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1−ξ(A)/2+2ε. Letting ε tend to 0 then leads to (a.s.) dimH(
⋂

An) 6 1−ξ(A)/2.
This is true for all R > 0, hene remains true in the limit R → 0: together

with the �rst step of the proof this gives (a.s.) dim(TA) = 1 − ξ(A)/2 hene

dim(EA) = 2− ξ(A).
Then, ẼA is ontained in EA and ontains every EAη

for positive η (with the

previous notations): another use of the ontinuity of ξ then gives dimH(ẼA) =
dimH(EA) = 2− ξ(A). //

As a onsequene, we get a seond result:

Theorem 3 :

If A is any nie subset of the omplex plane, then the set of globally A-exeptional points,
i.e. points Bt satisfying

(B[0,t) −Bt) ∩A.(B(t,1] −Bt) = ∅,

has Hausdor� dimension 2 − ξ(A) � and in partiular it is a.s. non-empty for ξ(A) < 2,
and a.s. empty for ξ(A) > 2.

//
Again, extend B to (Bt)t∈R de�ned on the entire real line. The set T 1

A of A-
exeptional times up to the sale R = 1 (as was introdued previously) in [0, 1] is
exatly the set of globally exeptional points. Therefore, the previous proof an be

applied diretly. The upper bound is immediate: sine every globally exeptional

point is loally exeptional we have dimH(T 1
A) 6 dimH(TA) 6 1− ξ(A)/2 a.s.

The lower bound requires a little more work, indeed we do not have a zero-

one law for the dimension of T 1
A . It an be seen that in fat Equation (16) an

be re�ned, the proof being exatly the same, into the following (with the same

notations as previously):

∃C > 0 ∀r ∈ (0, 1 − s) ∀n > 0 E(Er(µn)) 6
C

1− (r + s)
,

where C may only depend on A. Hene, with the same onstant and for all λ > 1:

P

(

Er(µn) 6
λC

1− (r + s)

)

> 1− 1

λ
.

one an then perform the subsequene extration (f. proof of Theorem 2) in a way

whih ensures that, for all r,

P

(

‖µ‖ > 0 and Er(µ) 6
λC

1− (r + s)

)

> c, (21)

with c > 0 and λ > 1 independent of r. Moreover, Er(µ) being a non-dereasing

funtion of r (sine the set [0, 1] is of diameter 1), we �nally obtain, with positive

probability, a mass measure µ supported on TA satisfying

∀r < 1− s Er(µ) 6
λC

1− (r + s)
< ∞.

Hene, with positive probability, dimH(TA) > 1− s = 1 − ξ(A)/2, and ombining

this to the previous paragraph leads to

P

(

dimH(TA) = 1− ξ(A)

2

)

> 0.
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It is then possible to onlude using the same method as in [8, pp. 8�9℄. //

3.4 Remark about ritial ases

In ases where ξ(A) = 2, the previous theorem is not su�ient to deide whether A-exeptional
points exist. We shall see in the next paragraph that ξ((−∞, 0)) = ξ((0,∞)) = 2. In fat these

two ases are very di�erent:

Proposition 4 :

Almost surely, EA is empty for A = ((0,∞)) and non-empty (with Hausdor� dimension

0 though) for A = ((−∞, 0)).

//
The seond point is easier: if t is suh that ℜ(Bt) is maximal in the path, then

B[0,1] lies inside a half-plane whose border goes through Bt. Sine a.s. Bt is the

only point having this real part, this proves that (Bs −Bt)/(Bs′ − Bt) is never in
(−∞, 0), whih is preisely what we wanted.

The �rst point is more problemati. The method used to derive the value of ξ
for a wedge with end-point at the origin (f. next paragraph) allows to prove the

following: Let α and β be in (0, 2π), then the probability that, given independent

paths B1
and B2

starting from the unit irle, there exist two wedges of angles α
and β, and ontaining respetively B1

and B2
up to radius R, dereases as

pR(α, β) ≈ Rπ/α+π/β .

Hene, as soon as π/α + π/β is greater than 2, there is a.s. no point Bt on the

path suh that B[0,t] lies in a wedge of angle α and B[t,1] lies in a wedge of angle β
(there is no �asymmetri two-sided one point� of those angles on the path).

For all α ∈ (0, π), introdue α1 = 2π − α and α2 as the biggest angle in (0, 2π]
satisfying π/α+ π/α2 > 2. Note that α2 > α1: denote then

β(α) =
α1 + α2

2
.

Note that π/α + π/β(α) > 2 and β(α) + α > 2π for all α ∈ (0, π). From this

follows that, almost surely, for all α ∈ (0, π)∩Q, there is no assymetri one point

with angles α and β(α).
Let now A = (0,∞) and suppose there is a point Bt in EA. That is, there exist

two half-lines starting from Bt whose reunion separates B[0,t] from B[t,1]. Then we

are in one of two ases:

• Either these half-lines form a straight line, i.e. there is a straight line utting

the path. This annot happen, as reently proved by Bass and Burdzy [2℄ �

and the proof is very di�ult.

• Or there are disjoint wedges of angles α ∈ (0, π) and 2π−α, eah ontaining

one part of the path. Then, there exists α
0
∈ Q suh that α

0
> α and

β(α
0
) > 2π − α, and Bt is an asymmetri one point with angles α

0
and

β(α
0
). We just saw that suh a point annot exist.

Hene EA = ∅. //
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4 Bounds and onjetures on the exponent funtion

4.1 Known exat values of ξ

Proposition 5 :

(i). ξ({1}) = 5/4, hene for all z 6= 0 and n > 0:

ξ
(

{ze2ikπ/n, k = 1, . . . , n}
)

= 5n/4;

(ii). Letting Wα be a wedge of angle 0 6 α < 2π:

ξ(Wα) =
4π

2π − α
;

in partiular ξ((0,∞)) = ξ((−∞, 0)) = 2;

//
(i): The value of ξ({1}) = 5/4 has reently been derived by Lawler, Shramm

and Werner [14℄, and the proof is far beyond the sope of this paper. The result

for all n is then a straightforward onsequene of Proposition 1, point (iv).

(ii): Suppose A = Wα is entered around the positive axis, so that A =
{reiθ, r > 0, |θ| < α/2}; introdue the symmetrial wedges W ′

β = {reiθ, r >

0, |θ − π| < β/2}. If B1
stays in Wπ−α/2 and B2

remains in W ′

π−α/2, then

B1 ∩ AB2 = ∅: The probability of staying in a wedge of angle β until radius

R being strongly approximated by R−π/β
(the exponent is obtained through the

gambler's ruin estimate ombined with the analytiity of the exponential funtion;

the strong approximation is true but in fat not needed here, f. [4℄), we get a

lower bound:

pR(Wα) > c
(

R−π/(π−α/2)
)2

,

hene ξ(Wα) 6 4π/(2π − α).
Now remark that the ondition B1 ∩AB2 = ∅ means that the omplement of

the paths ontains an �hourglass�, i.e. the union of two disjoint wedges of angle

α/2. So introdue η > 0 and a (�nite) family (Si)16i6N of hourglasses with angles

α/2−η, suh that any hourglass with angle α/2 ontains one of the Si. If qR(i) is the
probability that the paths are separated from eah other by Si, then pR(Wα) 6
∑

qR(i). Notiing that if βi and β′
i are the angles of the wedges forming the

omplement of Si, we obtain as previously qR(i) ≍ R−π/βi−π/β′

i
, and optimizing

this under the onstraint βi + β′
i = 2π− (α− 2η) � where the greatest value is for

β = β′
� we �nally get the following estimate:

pR(Wα) 6 CN R−2π/(π+η−α/2).

From this follows that ξ(Wα) > 4π/(2π +2η−α), and letting η go to 0 then gives

the onlusion � at least for α > 0. But in fat the same method still applies

for α > 0: simply in�ate the omplement of the hourglass instead of introduing

angle α/2 − η, the fat that the wedges to onsider may overlap does not hange

anything to the proof. //
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Remark: If we denote Aα = {zeiθ, z ∈ A, |θ| 6 α/2} (that is, A �thikened� by an angle α),
then it an easily be proven that

ξ(Aα) =
hA(α)

2π − α
, (22)

where hA is ontinuous (until the angle α
0
6 2π when ξ(Aα) tends to in�nity), non-dereasing,

and satis�es hA(0) = 2πξ(A); in the wedge ase, h is onstant.

4.2 An upper bound for the exponent

From ontinuity of ξ and the exat value ξ({1}) = 5/4 < 2, one an dedue that there are

�pivoting points� of any su�iently small angle on the Brownian path (that is, points around

whih one half of the path an rotate of a small angle without interseting the other half �

the assoiated A being Cα = {eiθ, θ ∈ [0, α]}). The following proposition gives a (bad but)

quantitative bound for suh values of α � without usage of the exat value for α = 0:
Proposition 6 :

For all positive α, we have the following upper bound:

ξ(Cα) 6
4π

2π − α

[

1− (log 2)2

4π2

]

.

//
The proof is adapted from [21℄, where an upper bound for the lassial dis-

onnetion exponent for one path, i.e. ξ(1, 0), was obtained. The method is the

following: First, estimate the extremal length of a strip bounded by Lipshitz fun-

tions; then desribe a su�iently large subset of ER, using suh strips, and use the

previous estimate to derive a bound for P (ER).
Lemma :

Let f be a ontinuous, M -Lipshitz funtion on R, satisfying f(x)+f(−x) =
2f(0) for all x, and let β > 0. Introdue the strip of width β and length 2r
around f as

Bβ
f (r) =

{

x+ iy : |x| < r, |y − f(x)| < β

2

}

;

let W be a planar Brownian path starting at if(0), and denote Aβ
f (r) the

event that the point x + iy where W �rst reahes ∂Bβ
f (r) satis�es |x| = r

(i.e. W exits B by one of the vertial parts of its boundary). Then

P (Aβ
f (r)) >

1

π
exp

[

−πr

β
(1 +M2)

]

.

///
This is an easy onsequene of the following estimate, whih an be found in [1℄

and is a onsequene of Proposition 9: If L is the extremal distane between both

vertial parts of ∂B in B, then

L 6
2r

β
(1 +M2);

using this together with the lassial estimate for Brownian motion in a strip pro-

vides the right estimate. ///
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For the rest of this proof, we shall onsider paths in the logarithmi spae,

denoted by the letter W ; the atual path B is obtained from W by applying the

exponential map � onformal invariane of Brownian motion then proves that B
is a Brownian path. Let f be a funtion suh as in the lemma: it is lear that if

W 1
remains in Bπ

f (r) and W 2
stays in Bπ

f+π(r), then B1
and B2

do not interset

up to the �rst time they reah radius er or e−r
. Together with the fat that

P (Aπ
f (r)) = P (Aπ

f+π(r)), this leads to P (ER({1})) > (P (Aπ
f (logR))/2)2, hene

using the lemma:

P (ER({1})) > cR−2(1+M2). (23)

Doing the same with strips of width β = π−α/2 (for whih it an be seen that B1

and B2
an rotate around 0 by an angle at least α/2 in eah diretion) leads to

P (ER(Cα)) > c exp

[

− 4π

2π − α
(1 +M2) logR

]

, (24)

hene, letting f = 0, a �rst bound on the exponent:

ξ(Cα) 6
4π

2π − α

(this is also a diret onsequene of Cα ⊂ Wα and the exat value of ξ(Wα), whih
happens to be preisely the upper bound we just obtained). Note that the bound

is never less than 2, hene we proved nothing useful yet.

We now want to onsider families of strips. Keep β = π − α/2 and �x γ > 0;
let UN = {±1}N and for u ∈ UN let fu be onstruted as follows:

• fu(0) = 0, and for 1 6 n 6 N , fu(nγ) =
β

2

n
∑

k=1

uk;

• f is a�ne on eah [nγ, (n+1)γ], satis�es fu(x) = fu(Nγ) for all x > Nγ and

fu(−x) = −fu(x) for all x.

Then for u 6= u′ the intersetion of Bβ
fu

and Bβ
fu′

is not onneted, hene Aβ
fu

and

Aβ
fu′

are disjoint. This leads to

P (ER(Cα)) > c
∑

u∈UN

exp

[

−2π

β
(1 + (β/2γ)2) logR

]

for all N , where R = eNγ
. Then using P (ER(Cα)) ≍ R−ξ(Cα)

, notiing that all the

terms of the sum are equal (there are 2N of them) and applying a logarithm:

ξ(Cα)Nγ 6
2π

β
(1 + (β/2γ)2)Nγ −N log 2− log c. (25)

Divide by Nγ and let N go to in�nity to obtain

ξ(Cα) 6
πβ

2

(

1

γ

)2

− log 2

(

1

γ

)

+
2π

β
. (26)
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This is true for all γ > 0; the optimal value is γ = πβ/ log 2, leading to

ξ(Cα) 6
4π

2π − α

[

1− (log 2)2

4π2

]

,

whih is preisely what we wanted. //

Remark: The same proof gives a bound on ξ(A) if A is inluded in a small ball entered at 1,
as a funtion of the radius. But sine it does not make use of the value of ξ({1}), no modulus of

ontinuity for ξ an be obtained this way. Cf. however equation (22) for another bound, whih

does provide suh a modulus but is not quantitative.

As a onsequene of this bound, we obtain the following

Theorem 4 :

For all α < log2 2/2π, the following holds: With probability 1, the set of loal pivoting

points of angle α on a planar Brownian path is non-empty and has a positive Hausdor�

dimension.

Remark: The bound given in the theorem (log2 2/2π ≃ 0.076) is ertainly not the best one;

simulations suggest that there are pivoting points of any angle less than 3π/4 ≃ 2.356 � f. next

subsetion for details and �gure 1 for a piture of a pivot of angle π/2. In partiular, the maximal

angle is onjetured to be greater than 2π/3, and this seems to indiate that a disrete analogue

of (loal) pivoting points will appear on the exploration proess of a ritial perolation luster

on the triangular lattie [19, 20℄.

Figure 1: A pivoting point of angle π/2
(in grey is the image of one half of the path by a rotation of angle +π/2)
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4.3 Conjetured and experimental values

Some exat values of ξ(A) are known, f. subsetion 2. However, heuristi arguments seem to

indiate that the formula giving the exponent for wedges is lose to apply in other ases suh as

notably the �weak pivot� exponent, namely:

ξ({1, eiθ}) ≃ 5π/2

2π − θ

for all θ ∈ [0, π] � orresponding to a ontinuous version of Proposition 1, point (iv). This is

on�rmed by simulations, at least for θ = π/2 and θ = arctg(3/4) (f. table 1), based on the

following

Conjeture

Let A be a bounded, non-empty subset of Z2\{0}; let B1
and B2

be independent Brownian

paths starting respetively from 0 and 1, and S1
and S2

be independent standard random

walks starting respetively from 0 and (a, 0) with a su�iently large (so as not to make the

probability in the formula equal to 0). Then,

P (B1
[0,T ] ∩AB2

[0,T ] = ∅) ≍ P (S1
[0,T ] ∩AS2

[0,T ] = ∅) ≍ T−ξ(A)/2.

//
There is no known diret proof of the existene of a non-intersetion exponent

for random walks, the only way to obtain the desired behaviour is oupling with

Brownian motion � f. [11℄. The present generalization an ertainly be obtained

in a similar way, note however that walks appear that are not standard simple

random walks but take steps in {a, ia,−a,−ia} for some a ∈ C ∩ Z2
; exponents

for suh walks are the same as for SRW's (f. [3℄), but strong approximation in not

yet proved. //

The most severe restrition is the assumption that A ⊂ Z2 \ {0}, in partiular simulations

annot (yet) be performed if A is onneted, exept for very speial ases suh as wedges (where

the exat exponent is known). However homogeneity an sometimes be used when A ∈ Q2
(as

for A = {5, 4 + 3i} whih has the same exponent as {1, eiθ} for θ = arctg(3/4)).

onjetured number omputed relative

A exponent of samples exponent error

{±1} ∼ 2.5 2.6 109 2.501293 +0.05%

{1, i} ∼ 5/3 3.0 108 1.662239 −0.27%
1.668242∗ +0.09%

{5, 4 + 3i} ∼ 1.392679 1.2 106 1.382311 −0.74%
1.394610∗ +0.14%

{5, 4 + 3i, 5i} ∼ 5/3 1.6 107 1.662964 −0.22%
1.665650∗ −0.06%

Table 1: Some simulated values of ξ
(100 000-step walks � exponents marked with a star

are obtained after a non-rigorous orretion)
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5 Appendix

5.1 Sub-additivity

The following proposition is well known and inluded here only for ompleteness (note however

that the bounds are not asymptoti and that the onstants are exatly known, whih is needed

to derive ontinuity of ξ).

Proposition 7 (Subadditivity) :

Let f : [1,∞) → (0,∞) be some funtion suh that:

• f is bounded and bounded away from 0 on any [0, l], l > 0;

• There exist ε, A, c and C in (0,∞) suh that for all t > 1, ct−A 6 f(t) 6 Ct−ε
;

• There exist 0 6 c− 6 c+ 6∞, at least one of whih �nite and positive, suh that

∀t, t′ ∈ [1,∞) c−f(t)f(t
′) 6 f(tt′) 6 c+f(t)f(t

′).

Then, there is a ξ > 0 suh that f(t) ≈ t−ξ
. Moreover, for all t > 1,

c−1
+ t−ξ

6 f(t) 6 c−1
− t−ξ.

In partiular, if both c− and c+ are in (0,∞) we get strong approximation: f(t) ≍ t−ξ
.

5.2 Extremal distane

Many of the known estimates for exponents (apart from ases where the exat value in known �

suh as the exponent of a one here, and the intersetion exponents in the half-plane in [13℄) ome

from the orresponding estimates for Brownian paths in retangles, using onformal invariane.

The introdution of extremal distane generalizes the notion of aspet ratio of a retangle and

hene provides a natural parameter in this proess.

Theorem and De�nition :

Let Ω be an open, bounded, simply onneted subset of C, the frontier of whih (oriented

in the usual diret sense) is a Jordan urve γ : [0, 1] → ∂Ω; �x four real numbers 0 < a < b <
c < d < 1. Then there exist a unique positive real number L and a unique onformal map

Φ : Ω → (0, L) × (0, 1), with natural extension to Ω̄, suh that Φ(γ(a)) = i, Φ(γ(b)) = 0,
Φ(γ(c)) = L and Φ(γ(d)) = L+ i.
L is alled extremal distane between ∂1 = γ([a, b]) and ∂2 = γ([c, d]) in Ω; it is denoted

dΩ(∂1, ∂2).

//
For the proof of this result, and muh more about onformal maps and related

topis (inluding the proofs of Propositions 8 and 9), f. [1℄. //

Examples: The extremal distane between both sides of length a in an a× b retangle is b/a.
By the analytiity of the logarithm in C \ (−∞, 0], if Ω = {ρeiθ : r < ρ < R, 0 < θ < α} with

0 < r < R < ∞ and 0 < α < 2π, then the extremal distane in Ω between both irle ars is

α−1 log(R/r). Finally, if L is the extremal distane in Ω between two onneted parts ∂1 and ∂2
of ∂Ω, then the extremal distane between the two omponents of ∂Ω \ (∂1 ∪ ∂2) is L

−1
.
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Proposition 8 :

Let ρ : Ω → [0,∞) be a ontinuous funtion, and denote Aρ(Ω) =
∫∫

Ω ρ2 and for any

ontinuous ar γ in Ω, Lρ(γ) =
∫

γ ρ(z)|dz| (this de�nes the Riemannian metri assoiated

with ρ). Then we have, thus giving a justi�ation to the term extremal length, the following

haraterization of dΩ:

dΩ(∂1, ∂2) = Sup
ρ

Inf
γ:∂1 ∂2

Lρ(γ)
2

Aρ(γ)

(where γ : ∂1  ∂2 means that γ is a ontinuous path in Ω with �rst and seond endpoints

respetively in ∂1 and ∂2).

In many ases, it is su�ient to apply this with a �nite family of ρ's to obtain a fairly good

lower bound for dΩ � usually even ρ = 1, i.e. taking the Eulidean metri, is su�ient. Another

estimate for dΩ is the following:

Proposition 9 :

Let L be a positive real number and f1, f2 : [0, L] → R be two ontinuous funtions suh

that for all t in [0, L] we have f1(t) < f2(t). Introdue Ω = {x + iy : 0 < x < L, f1(x) <
y < f2(x)}, and let ∂1 and ∂2 stand for the vertial omponents of ∂Ω. Then:

dΩ(∂1, ∂2) >

∫ L

0

dt

f2(t)− f1(t)
.

Moreover, if f1 has a ontinuous derivative and f2 = f1 + a, then

dΩ(∂1, ∂2) 6
L

a

[

1 + ‖f ′
1‖2∞

]

.

5.3 Some topologial tools

In this setion, all sets onsidered will be assumed non-empty.

De�nition :

If A is a subset of the set C of omplex numbers (or of any Banah spae), note

Vr(A) = {x ∈ C : d(x,A) < r} = A+ B(0, r);

if A and B are two bounded subsets of C, introdue the Hausdor� distane between A and

B as

dH(A,B) = Inf{r : A ⊂ Vr(B), B ⊂ Vr(A)}.
It is easy to see that dH is nonnegative and satis�es the triangular inequality (namely

dH(A,B) 6 dH(A,C) + dH(C,B) for any A, B, C); moreover dH(A,B) = 0 if and only if

Ā = B̄. Hene, dH de�nes a metri topology on the set of ompat subsets of C, known as

the Hausdor� topology.

We will need the following standard property about the Hausdor� topology on the subsets

of some �xed set, desribing the ompat ase:

Proposition 10 :

Let K be a ompat subset of C. Then the set Pc(K) of all (non-empty) losed subsets

of K, equipped with the topology indued by the Hausdor� distane, is ompat.

Remark: It is still true (and the proof is basially the same, exept in obtaining the fat that
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A is non-empty and losed) that for any omplete spae E the set Pc(E) is omplete. Moreover,

if E is loally ompat, so is Pc(E). However, it is generally not bounded, hene not ompat.
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