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HAUSDORFF DIMENSIONS FOR SLEg

BY VINCENT BEFFARA
Université Paris-Sud and Institut Mittag-Leffler

We prove that the Hausdorff dimension of the trace of §ifalmost
surely 74 and give a more direct derivation of the result (due to Lawler—
Schramm-Werner) that the dimension of its boundary/& ¥Ve also prove
that, for allx < 8, the SLE trace has cut-points.
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0. Introduction. It has been conjectured by theoretical physicists that various
lattice models in statistical physics (such as percolation, Potts model, Ising, uni-
form spanning trees), taken at their critical point, have a continuous conformally
invariant scaling limit when the mesh of the lattice tends to 0. Recently, Schramm
[16] introduced a family of random processes he called Stochastic Loewner Evolu-
tions (or SLE), which are the only possible conformally invariant scaling limits of
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random cluster interfaces (which are very closely related to all above-mentioned
models).

An SLE process is defined using the usual Loewner equation, where the driving
function is a time-changed Brownian motion. More specifically, in the present
paper we will be mainly concerned with SLE in the upper-half plane (sometimes
called chordal SLE), defined by the following PDE:

2
21(z) — VK By ’
where (B;) is a standard Brownian motion on the real line ands a positive
parameter. It can be shown that this equation defines a fa@iJyof conformal
mappings from simply connected domaii#% ) contained in the upper-half plane,
onto H. We shall denote by, the complement o#; in H, then for allr > 0,
K is arelatively compact subset Bf and the family(K;) is increasing. For each
valuek > 0, this defines a random process denoted by, S(dee, e.g., [19] for
more details on SLE).

Inthree cases, it has now been proven that SiksEEhe scaling limit of a discrete
model. Smirnov [17] proved that SigEwhich is one of the processes we will focus
on in the present paper) is the scaling limit of critical site percolation interfaces
on the triangular grid, and Lawler, Schramm and Werner [13] have proved that
SLE, and SLE are the respective scaling limits of planar loop-erased random
walks and uniform Peano curves. In fact, we will use Smirnov’s result as a key
argument in the present paper.

It is natural to study the geometry of SL.Eand in particular, its dependence
on k. It is known (see [15] forc # 8 and [13] forx = 8) that there almost
surely exists a continuous curye [0, co) — H (called thetraceof the SLE) that
generatesk,, in the following senseH, is the (unique) unbounded connected
component ofH \ y ([0, ¢]). Furthermore (see [15]) is a simple curve when
k <4, and itis a spacéling curve whenx > 8.

It is possible, for each € H, to evaluate the asymptotics whern- O of the
probability thaty intersects the disk of radius aroundx. Whenk < 8, this
probability decays like® for somex = a(x) > 0. This (loosely speaking) shows
that the expected number of balls of radiuseeded to cover[0, 1] (say) is of the
order ofe=2t¢_ and implies that the Hausdorff dimensionjois not larger than
2 — a. Rohde and Schramm [15] used this strategy to show that almost surely the
Hausdorff dimension of the SLEBrace is not larger than-t «/8 whenk < 8.

This exponentr and various other exponents describing exceptional subsets
of y are closely related to critical exponents that describe the behavior near the
critical point of some functionals of the related statistical physics model. Actually,
in the physicditerature, the derivation of thexponent is oftenrenounced irterms
of (almost sure) fractal dimension, thereby omitting to prove the lower bound on
the dimension. Indeed, it maypriori be the case that the value?* is due to
exceptional realizations of Sl.Evith exceptionally many visited balls of radigs

1) 0:81(2) = go(2) =z,
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while “typical” realizations of SLE meet many fewer disks. One usual way to
exclude such a possibility and to prove that 2 corresponds to the almost sure
dimension of a random fractal is to estimate second moments, that is,tgigen
balls of radiuse, to estimate the probability that the SLE trace intersects both of
them.

It is conjectured that for akt < [0, 8], the Hausdorff dimension of the trace of
SLE, is indeed almost surely ¥ «/8. Up to the present paper, this is known to
hold for « = 8/3 for reasons that will be described below. We prove that it is the
case for = 6:

THEOREM 1. Almost surelythe dimension of th8LEg trace is7/4.

Note that the discrete analog of this theorem in terms of percolation is an
open problem, while it is known that the expected number of steps of a discrete
exploration process i& //* (cf. [18] for further reference).

Another natural object is theoundaryof an SLE, namely K, N H. Fork < 4,
sincey is a simple curve, the boundary of the SLE is the SLE itselfxfer4, itis
a strict subset of the trace, and its dimension is conjectured toth2/k. Again,
the first-moment estimate is known to hold for @llbut the only value ok > 4
for which the dimension is known rigorously is= 6:

THEOREM?2 ([6]). Almost surelythe dimension of th8LEg boundary is4/3.

It is known that SLE is closely related to planar Brownian motion, so that
this theorem is equivalent to the same statement for the exterior boundary of a
Brownian path. It was first conjectured by Mandelbrot that the fractal dimension
of the boundary should be/8; the first mathematical proof is due to Lawler,
Schramm and Werner (cf. [6] for a review) and goes as follows.

First, note that to each point of the Brownian path, two independent Brownian
motions can be associated (the past and the future), and that this point is on
the boundary of the complete path iff the union of these two processes does
not disconnect it from infinity. This remark provides a relation between the
dimension of the boundary and the nondisconnection exponent for two paths.
It is then necessary to compute the value of this exponent, and this requires a
long and very technical proof. In particular, it uses the fact that the Brownian
intersection exponentsaanalytic [10] and sharp estimates for the probabilities of
nondisconnection events. (These estimates, up to the value of the exponents, were
obtained earlier by Lawler in a series of clever and technical papers.)

It is conjectured (see [15] for a discussion) that the boundary of, SkE- 4,
is very similar to the trace of Slfg/,, and a precise statement of thisality is
known fork = 6 (see [11]). This and Theorem 2 provide the dimension ofgx,E
namely: With probability 1, the dimension of the S Etrace is 43.
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In the present paper, we will reprove, without using the relation to planar
Brownian motion, that the dimension of the outer frontier of §LiE almost
surely 4/3. Combining this with the previously mentioned universality arguments,
this implies also that the dimension of the §d=trace and that of the outer
frontier of planar Brownian motion are almost sure84nd gives a shorter proof
of these results. We should also mention here thatgnd i the natural candidate
for the scaling limit of self-avoiding walks [12] and therefore also an interesting
object.

Theorem 1 can be related to the dimensiorpimineer pointson a Brownian
path (i.e., pointsB, that are on the boundary at timg It is known [8] that the
set of pioneer points has dimensio7 the same as the SgHrace, and this is
not surprising since they play similar roles. However, it can be proved that they
are different. (Note, e.qg., that Brownian motion can enter its past hull and the SLE
trace cannot.)

The method described here cannot be extended directly to other values of
Indeed, two properties that are specific to glae used, namely the chordal/radial
equivalence (in the computation of the hitting probabilities) and the locality
property (in the derivation of second moments). It should be possible to obtain
second moments using only the Markov property (at the cost of a more technical
proof); however, the derivation of the hitting probabilities will need a different
approach.

It is also possible to compute the dimension of exceptional time-sets. This is in
fact easier than for subsets of the upper-half plane, since the distortion of space due
to the past does not influence the probability estimates, and this makes it possible to
compute dimensions for eveky> 0. In the last section we compute the dimension
of the set of boundary times and that of the set of cut-times [i.e., tinsesh that
y (1) is, resp., a boundary point or a cut-point 1. In particular, we prove the
following:

THEOREM 3. Let (K;) be anSLE, for « < 8. Then almost surelyK, has
cut-points

A natural question is then the way subsets of the time interval are mapped into
the upper-half plane by the trace of an SLE process. It is known [4] that Brownian
motion in the plane doubles Hausdorff dimensions (i.eB, i§ a planar Brownian
motion, then with probability 1, for all Borelian subsetsof the real line, the
Hausdorff dimension of B, t € A} is equal to twice that ofA). Such a result does
not seem to hold in the general case for an SLE process.

1. Ingredients. We provide in this section several estimates and tools which
will be needed in the subsequent proofs, but are also (maybe) of more general
interest.
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1.1. Hausdorff dimension of random setd/Me will use the following result to
derive the value of Hausdorff dimensions from the values of exponents. It is stated
here in dimensiod > 1, but we will use it only ford = 1 (for time sets) ot/ = 2
(for subsets of the complex plane).

Suppose that denotes the Lebesgue measur®irL]?. Let (C,).-o be a family
of random Borelian subsets of the culfie1]¢. Assume that foe < ¢’ we have
C. C Cy, and letC = C,. Define the following conditions (wherg < g means
that there exist positive numbears andc, such that_g < f <cyg, and where
the constants do not depend grx or y):

1. Forallx € [0, 1]4,
P(xeC,) =x¢e’.
2. There exists > 0 such that, for alk € [0, 1]¢ ande,
P(M(Ce N B(x,8)) > cedlx € Cc) > ¢ > 0.
3. There exists > 0 such that, for alk, y € [0, 1]¢ ande,

P({x,y} C Ce) < ce¥|x —y| ™.

PrRoOPOSITIONL. (i) If conditionsl and2 hold, then as. dimg (C) <d — 5.
(ii) If conditions1 and3 hold, then with positive probabilitgdimg (C) > d —s.

PROOF A detailed proof of this proposition can be found in [3], Theorem 2.
The outline goes as follows. First, if conditions 1 and 2 hold, they provide an upper
bound on the expected number of balls of radiuseeded to covef,, henceC.

By Borel-Cantelli, this gives an upper bound on the Minkowski dimensiofi,of
which is valid with probability 1.

To derive a lower bound, one introduces the random meagyreaving density
e~ *1c, with respectto the Lebesgue measurfdirL]?. If conditions 1 and 3 hold,
with positive probability it is possible to extract a subsequengeconverging to
some measurg supported orC, and to prove that with positive probability
is a Frostman measure with dimensidn- s, which implies that the Hausdorff
dimension of the support ¢f is atleast/ —s. O

Each time we will derive an almost sure Hausdorff dimension, we will in fact
check these three conditions and use a zero—one law to conclude.

REMARK 1. A similar proposition can be found in [5], stated in a discrete
setup in which condition 2 does not appear. Indeed, in most cases, this condition
is a direct consequence of condition 1 and the definitiod' offor instance, if
C, is a union of balls of radius).
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1.2. An estimate for diffusions.We will need estimates for stochastic flows
in an interval, that we now state and prove. For background on this topic see, for
instance, [1].

Let (X;) be the diffusion process on the internval= [—1, 1] defined by the
following stochastic differential equation:

2) dX,=odB; + f(X,)dt,

whereo > 0 andf is a given smooth function satisfying < —a < 0 and
(3) —f(=14x)~ f(L—x)~—Co-x"},

4 (=140~ f'l=x)~—=C1-x7%,

(5) — (=140~ A=)~ =Co- x5,

asx — 0+ for some positive constantg, C», Cs.

Let (g;) be the stochastic flow associated to this stochastic differential equation;
that is,(g;);>0 is the family of random functions fromto itself such thag; (x) is
the value at time of the solution of (2) starting fromy atr = 0. Note thatX is
absorbed on the points 1 and.. This implies that, with probability 1, for all> 0,
there is an interval; C I such that

&) ={-11}Ul.

We want to estimate the lengthof I;. Consider the following family of partial
differential equations, indexed ly> 0O:

. 0'2
(Ep) h(t,x)= ?h”(t,x) + F(OR (t,x) —bf (Wh(t, x).
Assume that for each> 0, (E}) has a positive solutiohy (¢, x) satisfying

(6) hp(t,x) < [(1+x)(1— x)]Q(b)e—)»(b)z.

It is then possible, using the Feynman—-Kac formula (following exactly [8]), to
prove that ifb > 0,

(7 E((g,(0))") = e @ [(1 4 x)(L - x)]2®

wheneverr > 1 (where as usual we lgff (x) = 0 if the path starting fromx is
absorbed by the boundary before timeFor all x, let

7, =Inf{r:g,(x) € {(—1, 1}} = Inf{r: g/ (x) = 0}.
It will be sufficient for our purposes to provide an estimate in the easet, that
is, when we condition the path from 0 not to exit the interval by time
LEMMA 1. Inthe previous setyp
Vb>0,  E(l’1gs,)=<e O
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Note that this type of result does not seem to be standard in the literature on
diffusions. The natural way to obtain estimates on the lengthisfto use Jensen’s
inequality, and, depending on the valueoft can give a lower bound (# < 1) or
an upper bound (ib > 1) of the right form. Another way to obtain a lower bound
is given in [8], and consists in computing the length of the image of a small interval
around 0, thus giving a lower bound in termsgdf0) which is valid for allb > 0.
Hence, all that needs to be done to complete the proofis to derive the upper bound
in the case < 1.

PROOF OFLEMMA 1. A rough idea of the proof is as follows: Write the
length /, as the integral of; over I, and then obtain a uniform upper bound
on g;(x). Roughly speaking, two cases need to be considered (and they will be
treated quite differently):

() If g;(0) stays away from the boundary fer< r, then so doeg;(x) for
eachx; in this caseg; (x) is bounded above and it will be possible to compare
g, (x) to g/(0) and use (7).

(i) If g;(0) comes close to the boundary fok ¢, then so doeg; (x) for eachx
and in this casg, (x) becomes very small.

In the proof,C will stand for a generic positive constant, the value of which
may change from line to line.
We first consider the first case. The definitiongdmplies that, for allx € I,

®) g =ex] [ (8 0) as)

and differentiating this with respect #oleads to

1’ t
©) 80 _ / 2L (0) (2, (x)) ds.

g Jo
Moreover, sincef’ is bounded by-a < 0, (8) also proves that almost surely, for
allt > 0andforallx €1,

(10) g x)<e™™

and in particulat, < 2e=%',
Leta >0 andJ, = [—1+ ae /41— ae=®/4: If for all s > 0, g,(x) € Jg,
then condition (5) leads tof” (g, (x))| < Coa—3¢3%5/4, hence
g/ (x)
81 (x)
Assume that for alk € [0, ¢], g;(0) € J; (so that the previous estimate applies
for x =0). For allx € (—1, 0) such thatr, > ¢, write

[ r(eeyas= [ P8 () Lgyryes, ds + [ 71020, s
0 0 gS s O gS s

t
5/ Coa 3™ 4385/4 45 < ACoa a3,
0
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In the first integral, integrating” over[g,(x), g;(0)] (which is a subset afy) and
using (5) shows that

A1) | f (g ) — f(g5(0))| < Ce™ (@e™ /)3 = Ca3e /4,

In the second one, sincg is monotonousg,(x) can only be in[—1, —1 +
ae~®/4, on which f’ is negative and increasing. Hencg(g, (x)) < f'(—1+
ae~%/%), and integratingf” between-1 + ae~%/4 andg, (0) as previously leads
to

|f/ (=14 ae /% — f'(g5(0))| < Ca3e™/4,
In both cases we finally obtain

£(g5()) < f'(g5(0) + Ce™ (ae™*/%) 73,
and integrating over € [0, ¢] then proves that

t
g/ (x) < eXp[Coe‘3 + /0 f/(gs(O))ds} < Kg;(0).

A similar computation shows that this also holds foe (0, 1). Integrating this
inequality leads td; < 2K g;(0), hence to the desired conclusion—on the event
{Vs €[0,1], g;(0) € Js}. Together with our estimate dg’| [given by (7)], this can

be rewritten as

E[I} 1<t g,00es,] < Ce ™.

Note that the same upper bound would apply if we replaced everywhere 0 by any
given pointx; we would even get an additional factdr — x2)7, whereg = ¢ (b)
is the same as in (7). It would also apply if we considegedp) for some sub-
interval Iy of [—1, 1], in which caseg’ would only be integrated oy and we
would get yet another multiplicative factor of the forio)?.

Now let 11 < 72, and let¥;, be theo-field generated by the diffusion up to
time r1. Applying the Markov property at timg and then the previous argument
on the time intervalr, 2], we obtain the following estimate:

(12) E[I} Ivse(,1), 8000 | Fiy ) < C(1— g1, (0)2) 110 6702710,

We now have to consider the case whey€0) exits J; (and this will happen
in particular for small values of, for which J; can even be empty i is large
enough). For this, we shall count the number of times it does it and use the previous
estimate (12) between those times.
First, assume that for some stopping time 0 we haveg; (0) = —1 + ae~4//4
(i.e., it is on the boundary of;;). Assume thate was chosen large enough
so that the whole image of; (except maybe the poinfl}) is contained in
[—1, —1+20e~*/4] [this is possible by (10)], and assume also thatsufficiently
large so that@e /% < 1. Let(g,) denote the stochastic flow started at timéor



2614 V. BEFFARA

eachx satisfyingz, > r, we haveg,;(x) = ¢,(g:(x)) (but (¢,) is defined on the
whole interval[—1, 1]).

Up to the first timer when g, (—1 + 2ae~%/%) =0, f’ is increasing on the
image of[—1, —1 4 2ae™%"/4] by ¢, so we obtain,,; < [, (=1 + 2ae4"/%).
But without a lower bound om, we cannot apply (7) tg attimet A 1 directly.

Instead, make the following remark. Let- 0, and lets be a stopping time for
which g,(0) = —1+ u; let o be the first time aftes for which g, (0) = —1 + 2u.
Scaling shows that, with probability at leagt- 0 (independent ofi), we have
o —s > u?. In particular, this implies that with positive probabiligf, (0) < cg/.(0)
for somec < 1. Sinceg’ is decreasing anyway, we obtdiig’, (0)°| ;) < ¢’g/(0)
with ¢’ < 1. We can then apply the result for= 2ae=*/4; thenu = 2kae=4"/4
with k > 2, as long as?lae~%/* < 1. The number of steps we can perform is of
the order of Iog(e—”’/"'), that is, linear iry, thus providing the estimate

E(lf|~(f:}, gt(O) =-1+4+ ae—at/A) < 6_77/’[;7
with " > 0. Combining that with (7) at time 1, we finally obtain
(13) E(ll{?—i-(tAl) |%7 8t (0) =-1+ ae—az/4) < Cl;je_n,,t/‘l

with n” = (ga/4) An' > 0.

Now, let E;.x.,,,...n, b€ the event that before time g,(0) exits J, on each
of the [n;, n;+1] and none of the others (so that roughly speaking it gets close to
the boundary times). For each, let #; be the first time inn;, n; + 1] at which
g:(0) is on the boundary of;. We can apply the previous estimates (12) and (13)
at timest;, leading to

E(l,lle_’_z; Et;k;nl»'“»nk|}‘ni) S Cll’l;,e_n Vl,‘.
We can always assume that, for each; 1 > n; + 2. Recursive application of the

Markov property leads to
k

.....

i=1
Summing over all possible values for thg(note that we always have > i) and
overk > 0, we obtain
& k e_”//i > 71,2
E[ll1goi] <Ce Y CH [ 7——5 = Ce™ Y Cre /2
im0 i l—et k=0

This last sum being finite, we get the result we wantdd.
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LEMMA 2. Inthe same setyphe probability that a given point survives up
totimer > 0is

P(ty > 1) = P(g/(x) >0) < e MO

PROOFE  We know thatE (ho(0, g;(x))) = ho(t, x) < e @7 On the other
hand, sincehg is bounded, we havé (hq(0, g;(x))) < [|h0(0, )|lco P (Tx > 1).
Hence

Ce—A(O)z

P(z, >
(>0 2 00

Conversely, consider the distribution gf(x). It is easy to see that, except for
Dirac masses at1 and 1, it has a bounded densitywith respect to the Lebesgue
measure. Since is positive, we know that-2(0) is the largest eigenvalue of the
generator of the diffusion, and that it is simple; hengg,|l2 < || p1ll2 exp(— (@ —
1A(0)). It is then a direct application of the Cauchy—Schwarz inequality to see
that || p;||l1 < Ce=*©@7 and since we havgp, |1 = P(t, > 1), this completes the
proof of the lemma. O

2. Dimension of thetrace of SLEg.

2.1. Construction of the trace.Let K be a chordal SLE in the upper-half plane
and letC be the intersection of its trace with the squird, 1] x [1, 3]. In order
to apply Proposition 1, introduce

Co={ze[-1,1] x[1,3]:d(z,C) <e¢}.

SinceC is a compact set, we have= () C.. Moreover, we make the following
remark: Letz be some point if—1, 1] x [1, 3], ¢ > 0, and assume thatis at
distance greater thanfrom the boundary of the square. LE% . ) be the hitting
time defined as usual as

Tg(ze) = Inf{¢: K, N B(z,¢) # T}
Then, we have the following equivalence:
(14) z€C; = B(z,8) € Krg.,,

We call the second part of the equivalemomdisconnectiarindeed, the condition
is equivalent to the fact thak'r, ., does not disconnect from co. Note the
similarity with the definition of Brownian pioneer points [5].
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2.2. The(nonydisconnection exponentThe proofs in this section rely on the
equivalence between chordal and radial SLE #o& 6 that have been proven
in [8]. More precisely, there are two versions of SLE in the unit disk. The first
one (chordal SLE in the disk) is obtained by mapping chordal SLE in the upper-
half plane to the disk by a conformal map, so that it grows toward a point on the
unit circle. The second version is calletlial SLE, and it corresponds to the case
where K grows toward O instead of a point on the boundary. It is defined by the
following PDE [if (g;) is the corresponding family of conformal maps]:

9.3 —5 8(2)+ B
181(2) = & (Z)igt D= B

whereg; = ¢/V¥' is a time-scaled Brownian motion on the unit circle.

Chordal/radial equivalence is stated as follows. (it) be achordal SLEs in
the unit disk, starting at 1 and aiming-atl, and let(K;) be aradial SLEs in the
unit disk, starting from 1 and aiming at 0. LEt(resp.T’) be the first time whe&
(resp.K) separates-1 from 0. Then K - andI?f_ have the same law, and so do

(KinaT)i>0 and(I?Mf),>o up to a (random) time change. For complete references
about this, see [8]. Note that this is specific to the case6.

PrROPOSITION2. Let(K;) be a chordalSLE; in the unit disk starting from1
and growing toward—1, and let 7, be the first time whelk, hits the ball with
radiusr centered aD. ThenK 7, disconnects this disk from the unit circle if and
only if 8(0,r) C Kr., and asr tends ta0,

p(r):=P(B0,r) ¢ Kg,) =< r'/%.

PrROOF This estimate is similar to Theorem 3.1 in [8], of which it is the
natural counterpart in the cage= 0. Let K’ be aradial SLEs in the unit
disk, aiming at 0, and lef, be the first time when it reache8(0,r). The
chordal/radial equivalence shows thatr) is equal to the probability thaK/r,
does not disconned (0, r) from —1 , that is, the probability that1 ¢ K’Tr,.

Let W, = ¢/V®5 be the (time-scaled) Brownian motion @) driving (K/)
[where (B;) is a standard Brownian motion dR], and letY; be the continuous
determination of the argument gf(—1)/ W, starting atr. Y; is well defined as
long asK’ does not reach-1. Loewner’s differential equation and It6’s formula
show that

dY; = ~/6dB, + cotqY,/2) dt,

that is,(Y;) is a diffusion process with diffusiok/6 and drift cotg:/2), absorbed
by {0,27} when —1 is absorbed bykK;. Straightforward calculations prove
that f;(x) = e~"/4(siny/2)V/? satisfiesd, f; = Lf, = —3 f,;; we can now apply
Lemma 2 and obtain

(15) P(—1¢ K))=<e /4
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But Kobe's distortion theorem [14] states that; (f) = d (0, K;), then
—t

¢ i <e
4 — — b

which, combined with estimate (15), proves the proposition. (Details of the last
step are the same as in [8].)1

COROLLARY 1. Fixn > 0,and let8 = 8(z, r) be some disk contained T,
where|z| < 1—2n andr < n; let (K;) be a chordaSLEg in the unit disk starting
from1 and aiming at-1. If Tg denotes the first time wheky reachesB, then the
probability p(8) that K7, does not disconned® from —1 satisfies

p(B) =< ri/4,

where the implicit constants depend onlyan

PROOF There exists exactly one Mobius transfo#m U — U mapping 1 to
itself andB to a disk centered at 0. The radius®{B) is then

A+7r2— 21 = V(A +r? = z17)? — 42
p(Z,l"): 2r =r.

®(K) is then a chordal SLE in the disk starting from 1 and aimingb&t1).
Moreover, |®(—1) — 1| is bounded away from O by a constant. The proof of
Proposition 2 can then be adapted (only changing the position of the end point)
to show that

p(B) = p(p(z,1) = pr) < r Y4,

with constants depending only gn O

It is then easy, by mapping the disk to the upper-half plane and using (14), to
turn this corollary into the first condition of Proposition 1, that is,

(16) Vze[-1,1] x [1,3], P(z€C,) = &'/4,

It then follows from the definition of ;. that condition 2 holds: If € C,, letz’ € C
such thatz — 7’| = ¢ (which exists by a compactness argument); then the disk with
diameter{zz'] is contained inB(z, ¢) N C, and it has area ¢2/4.

2.3. Percolation and second momentdie now turn our attention to the
derivation of second moments for the hitting probability of disks by the §SLE
trace, namely conditio3 in Proposition 1. Again we W make strong use of the
fact that we are in the cage= 6, and in fact the decay of correlations we obtain
is a consequence of the locality property of SLE has been proved [17, 18] that
the exploration process of critical percolation on the triangular lattice converges to
the SLE trace; in particular, consat critical percadtion on a discretization of the
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upper-half plane with mesh> 0 and the usual boundary conditions (i.e., wired on
[0, 400) and free on(—oo, 0)). Then the probability that the discrete exploration
processs hits the ballB (i, ¢) satisfies

(17) P(ysN B, e) # 9) — P(i€Ce) = gl/4,

But the fact that the discrete exploration process touches this disk is equivalent to
the existence of both a closed path connecting the digR,t¢-c0) and an open

path connecting the disk te-oc, 0). Applying the results in [18], this leads to the
following:

COROLLARY 2. Let A, be the annulus centered &t with radii ¢ and 1.
For all § > 0, consider critical site-percolation on the intersectionAf with the
triangular lattice of mesld. Let p(¢, §) be the probability tha® (0, ¢) is connected
to C(0, 1) by both a path of open vertices and a path of closed verticds iThen
asé tends to0, p(e, §) converges to some(e) satisfying

pe) < et/4,

Note that this says nothing about the speed of convergence, and hence does not
provide useful estimates for the probability of the discrete event itself; but it is
sufficient for our purpose here.

Now fix z, z/ € [-1, 1] x [1, 3] ande < |z — Z/|/2. Again, the probability that
the SLE trace touches botlB(z, ¢) and B(z/, ¢) can be written as the limit,
asé§ goes to 0, of the corresponding probability for critical site-percolation on
the triangular lattice with mesh But this implies the following:

() There exist a path of open vertices and a path of closed vertices, both
connecting®(z, ) to C(z, |z — 7|/2) inside B(z, |z — 7’| /2).
(i) There exist a path of open vertices and a path of closed vertices, both
connecting® (7, €) to C(Z, |z — 7| /2) inside B (7, |z — 2’| /2).
(i) There exist a path of open vertices and a path of closed vertices, both
connecting®((z + ') /2, |z — Z’|) to the real axis outsid® ((z + ') /2, |z — Z/|).

Those three events are independent, since they describe the behavior of pairwise
disjoint sets of vertices; besides, the probability of each of them can be estimated
using Corollary 2 and converges, 4s— 0 and up to universal multiplicative
constants, respectively, e/d)Y4, (¢/d)1/* andd/4, with d = |z — Z/|. Hence,

letting § go to 0, we obtain the following estimate:

1/2

1/2
) o MA=C—

(18) P({z,z/}CC—8)§C< Iz — 7/|U4%

lz — 2|

which is exactly condition 3 in Proposition 1 with= 1/4, as we wanted.
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2.4. Conclusion. It is now possible to apply Proposition 1 with=1/4: We
obtain

P(dimy(C)<§) =1,  P(dimy(C)=1%)>0.

Now let #,, be the complete trace &f . SinceC C #,, we obtain the same
results for#~. Theorem 1 is then a consequence of the following:

LEMMA 3 (0-1 law for the trace). For all d € [0, 2], we have

P(dimy () = d) € {0, 1}.

PrRoOFE For all n € Z, let D, = dimy(#). For all n, we then have
D, 1> D, [because(#,) is increasing] and besideB, and D,,1 have the
same law (by the scaling property). Hence, almost surely, fomalln, we
have D,, = D,,. Taking this to the limit givesP (dimg (#~) = D,) = 1; hence
the random variable dig(#~) is Fo-measurable for allz. Hence it is
Fo+-measurable, and we know by Blumenthal’'s zero—one law thatotHigld
is trivial. [

3. Dimension of the boundary of SLEe. In this section we adapt the
previous proof to compute the Hausdorff dimension of the boundaky af some
fixed time.

3.1. The escaperoballity.

PrROPOSITION3. Let(K;) be anSLEg in the half-planeand letty be the first
time it reaches radiu®. Then as R goes to infinity

P(i ¢ Ky) < RT3,
Note that the corresponding result fB(1 ¢ K.,) has been derived in [8].

PROOF OFPROPOSITION3. Fix! > 2 (its value will be determined later). We
shall suppose that starts at instead of 0; it is easy to see that this only changes
the estimates up to a fixed constant. The idea of the proof is as follows: We will
prove that the conditional probability, knowing tha¢ K., that K., does not
intersect the unit disk is bounded below by a positive constant. The probability
that this happens satisfiéyU N K, = @) =< R~/3 (cf. [8]), which leads to the
conclusion.

We make the following preliminary remark. For each O such that ¢ K, the
intersection of2 (0, 2) with H, = H \ K, is a union of at most countably many arcs
of positive length. BecausH, is simply connected, some of these arcs separate
from infinity, and the first separating arc on a continuous path frdminfinity
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does not depend on the path. We will denote this amt(@yand call it therelevant
arc at radius 2 and time. Definekﬁl) similarly. It is easy to see tha(tkﬁz)) is
nonincreasing, in the sense that, for ak@ < ¢/, we have\t(,z) C /\,(2).

Introduce the following stopping times (whefg = Tp = 0), defined induc-
tively for n > O (where as usual we let l@af = 00):

S, = Inf{t > Tn—l:)‘t(Z) & )‘(Ti),l}’

T, =Inf{r > 5,: 2" ¢ A(Slj}

(Loosely speakings, is the first time after7,,_; when the process touches the
circle of radius 2 and, is the first time afteiS,, when it returns to the circle of
radius/, except that we are only considering the relevant parts of the circles.)

Moreover, letT =tz = Inf{r: K; N C(0, R) # &}. Then, almost surely, the
integerN = Sufn : T, < T} is finite and we have

O0=To<S1<T1<---<Sy<Ty<T <

(i.e., K crosses the annulus between radii 2 awodly finitely many times before
reaching radiuR). In the Brownian casay would be geometric with parameter
log(l/2)/log(R/2).

Let Er andE; be defined as

Egr:={i ¢ K7}, Er:={UNKr=2).

We have to estimat® (Eg); from Theorem 3.1 in [7]P(E}) < R~1/3, and we
haveP(Eg) > P(E%). We shall decomposE according to the value a¥: We
canwriteP(Eg) =Y 2o P(Eg, N =n). Note that if bothEg and{N = 0} hold,
thenE’, holds as well.

For fixedn, make the following remark: If there is not disconnection befbre
then there is not disconnection forinside any[Sk, Tx], for all k < n. Apply
the strong Markov property at timg, and conditionKs, not to containi. The
conditional probability of disconnection betwegf:, 7;] is then at least equal to
the probability that an SL&in Hs,, starting fromy (Sx), separates from infinity
before reaching the unit circle or (the relevant part of) the cigile, /). We will
prove that this last probability is bounded below by a constant which depends only
onl.

So, let be the bounded connected componentif \Agk) (i.e., the one
which containg), and letQ2’ be the connected component®@f\ ¢ (0, 1) having
Y (Sx) on its boundary. Leb = dK5, UR U C(0,7) U €(0, 1). We can write the
boundary ofQ?’, starting fromy (Sx) and going counterclockwise, as the union of
five subsets:

(i) 01 Co;
(if) some arcd of C(0, 1) N Hg, which either contains or separates it from
infinity in Hg,;
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(ii) 93 C9;

i M.
(iv) 04= Ages
(v) o5 C 0

(possibly in the opposite order, which changes nothing in what followsy. If
touchesds befored, U a4, then it disconnectsfrom infinity before timeTy.

First, estimate the probability that hits 93 U 94 before d,. By the locality
property, this is the probability that an SgEn <, going from y (S;) to the
common endpoint ob, and d3, does the same. In turn, this is a positive non-
decreasing function of the extremal distarigebetweer, andas in Q' (cf. [7]).
By construction, this extremal distance is at least equal to that belﬁy@afrdkg?,
which in turn is bounded below by the extremal distance between the unit circle
and €(0, 2) in H. Hence, the probability thay touchesds U 34 before d, is
bounded below by some absolute constastO.

Now, conditionally on the previous event, jf hits 93 before 94, then it
disconnects from oo before timeTy,. The conditional probability that this does not
happen is the conditional probability to i befored, U 93, and this in turn is not
greater thar —1 times the probability to hifs befored, U 33 (still conditionally to
the past of the process up to tir§g).

Again this probability is a positive, decreasing function of the extremal
distanceL, betweerd; andd, in Q. L, is at least equal to the extremal distance
betweenk(si) and 94 in €/, which is bounded below by the extremal distance
betweenc (0, 2) andC(0,1) in H. This can be made arbitrarily large by takihg
large enough; so for largethe probability we are considering is smaller tlza@.
With such a value of, we thus obtainP (i € K7, |Fs,) > 1/2.

So, for allk, the (conditional, knowing the process up to tigyeand knowing
i ¢ Kg,) probability that there is no disconnection between tifSesand 7 is
bounded by 12. After time Ty, the probability to not swallow before reaching
C(0, R), and to do so without touching (the relevant part 6fD, 2) is bounded
above bycR~1/3 (applying the same reasoning between radind R instead of
2 andl, resp.). Hence:

0 00
P(ER) = Z P(Egr,N=k)<c Z 2k R=1/3 2 9 R=1/3,
k=0 k=0

But on the other hand, by the results in [7], we have
P(Eg) = P(ER) < R™'/3,
so that finally we obtain what we announced:

P(Eg) < P(Eg, N =0) < P(Ep) < R™Y3, O
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3.2. Exponent fob = 1/3.

PrRoPOSITION4. Let(K;) be a chordalSLE; in the unit disk starting from1
and growing toward—1, and let7, be the first time wheik, hits the ball with
radiusr centered a0.Let L7, ber times the extremal distancelh\ K7, between
C(0,r) andaU. Then asr tends ta0,

E(e_LTf/S) = ré/3,

PROOF  As previously, letk’ be a radial SLEin U, starting from 1 and aimed
at 0. Then, since all the involved events satisfy nondisconnection bet@@en)
and—1 (L7, = oo iff there is disconnection), we have

_ _ -L,/3
(19) q(r):=E(e LTr/S) = E(e LT’/BJILT,~<OO) = E(e Ty ]l—lgéK/T/).

We shall estimate the third term, again following the steps of the proof of
Theorem 3.1 in [8]. From now on, fix=1/3 andv = v(x, b) = 2/3; sinceb < 1,

we need a separate proof here. I.éte the Euclidean length of the ag@dU\ K;).

The only place in [8] wheré > 1 was needed was in the derivation of

(20) E(%) < exp(—vr).

But this is exactly what Lemma 1 shows, after suitable rescaling.

3.3. Construction of the boundary.Again we describe the studied set as the
decreasing intersection of a famiB of subsets of the plane. Here, let

B, ={z¢ K1:d(z, K1) < ¢}.

In order forz to be in B,, the following must happen. First, there is some point
in # at a distance less thanfrom z; letting T(z, €) = Inf{¢t . d(z, K;) < ¢}, and
introducing the extremal distandgz, ¢) betweenB(z, ¢) anddU in U\ Kr7(;,¢),
this condition is equivalent to

L(z,&) < o0.

Then, the SLE aftef'(z, ¢) and up to time 1 must not disconnedrom “infinity”
(i.e., fromaU), and conditionally tK 7, . this happens with probability of order

e—L(z,s)/B.

Proposition 4 then states thB(z € B,) < ¢%/3. Second moments can be obtained

in the same fashion as for the trace; in this case, the relevant estimate (describing
in which conditions a disk intersects the boundary of the discrete exploration
process) is the following. First, two crossings of different colors must ensure that
the exploration process touches the disk; then a third path, disjoint of the first two,
will prevent it from closing a loop around it. Hence the following consequence of
Proposition 4.
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COROLLARY 3. Let A, be the annulus centered &t with radii ¢ and 1.
For all § > 0O, consider critical site-percolation on the intersectionAaf with the
triangular lattice of mesld. Let p(e, §) be the probability tha® (0, ¢) is connected
to C(0,1) both by a path of open vertices and by two disjoint paths of closed
vertices inA,. Then asé tends ta0, p(e, §) converges to somg(e) satisfying

pe) < g2/3,

The rest of the construction is the same, and we obtain sufficient estimates to

apply Proposition 1, this time with= 2/3. We obtain

P(dimy (9K1) < §) =1, P(dimy (3K1) = §) > 0,
and once more we need a zero—one law.

LEMMA 4 (0-1 law for the boundary). For all d € [0, 2], we have
P(dimy (3K1) =d) € {0, 1}.

PROOE Let D, =dimy(dK,). As previously in the case of the trace, scaling
shows that the law oD, does not depend on> 0. However, hergd K,) is not
increasing anymore, so we need another argument,, lzet- 0 and consider the
boundary ofK,, . It has two parts, namely the “new” paif = 9K, \ K;, and
the “old” partd, = 0K, N K, C K;. Itis clear that

Dy =dimy (91) v dimy (32),

hence in particular dim(d1) < D,.,. Besides, conformal mapping shows that
dimg (91) has the same law aB,, hence the same law d3;,,,. Hence, with
probability 1,D; , = dimg (32).

Moreover, conformal mapping also shows that gif®y) is independent of;.
This proves that, for ali, #' > 0, the dimension 06K, is independent of;.
It is then a direct application of Blumenthal's zero—one law thahas an almost
sure value. OJ

This concludes the proof of Theorem 1.

3.4. Dimension ofSLEg/3. It should be theoretically possible to apply the
previous construction to other values of but some of the main tools that we
used (namely, the radial/chordal equivalence and the restriction property) do hold
only for ¥ = 6, so that additional arguments would be required.

For the special value = 8/3, the result on the frontier of SlgEmakes
it possible to show that the dimension of & is almost surely A3. More
precisely, Lawler, Schramm and Werner [11] have shown that the outer boundary
of the union of eight SLE3’s has the same law as that of the union of five
Brownian excursions. The zero—one laws previously proved for both the trace
and the boundary of SLE extends to this object: Its boundary has a.s. the same
dimension as the boundary of Sg&Bnd also a.s. the same dimension as $4.E
Hence these dimensions are equal, and the result follows.
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4. Time-setsfor SLE,. We now turn our attention to the dimension of sets
of exceptional times. Note that time corresponds to the Loewner parameterization
of the trace, which is in a way not the most canonical; it is not clear, for instance,
whether it behaves nicely under time-reversal. More precisely, how smoothly does
the Riemann map frorfl \ y ([¢, c0)) to H evolve ag increases?

A natural question that also arises is the following. Bebe some (random)
subset of0, o], and lety (A) be its image by the trace of a chordal SLE in
the upper-half plane. Is it possible, knowing the Hausdorff dimensioA,ab
obtain that ofy (A)? Such a relation holds for Brownian motion [4]; namely, the
dimension of the image is a.s. equal to twice the dimensioA.dt is expected
that such a relation cannot hold for SLE without additional requirementg;on
however, a few cases can be treated entirely (in the sense that both the time and
space dimensions can be computed in independent ways), at leastfér the
trace itself, cut-points, and the boundary.

4.1. Boundary times. In the previous section, we derived the dimension of
the boundary of SLE The dimension of the corresponding time-set can also be
computed (and it should be noted that the following is true evenr #16).

THEOREM4. LetK be anSLEin the upper-half plangwithx > 4,and letD
be the set of boundary times[iy 1], thatis the set of timessuch that/ () € K.
Then with probability 1,

44k

dImH(D)= P

PrROOF It is clearly sufficient to compute the dimension of left-boundary
times, namely times such thatgi(y (¢)) € (—o0, 8;), Where 8 is the process
driving K . Introduce the sets of approximate left-boundary times betweenla,
defined by

D g ={r:Inf(RN g (K1) = INfF(RN g/ (Ki44a))}

(i.e.,y may touch the real line on the right side Kfbut not on the left side). Let
D be the intersection of th®, , whene — 0. Scaling and the Markov property
show thatP(r € D, ,) depends only or/a. Hence, to obtain condition 1 in
Proposition 1, withy = (« — 4) /2« it is sufficient to obtain the following estimate:

LEMMA 5. Let(K;) be achordalSLE, (« > 4)in the upper-half planerhen
ast goes to infinity
pi = P(INf(RN K;) = Inf(R N K1) = 14/

PrROOF  First, apply the Markov property of SLE at time 1 and map the picture
to the upper-half plane b = g1 — 1. Let Yp < 0 be the image of IR N K1)
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by ®. The processK,) = (®(K114)) is an SLE, and the probability we are
interested in is then given by

pr=PYo¢ K;_1).

Let (8,) andg,:H \ K, — H be, respectively, the process driviig and the
associated conformal maps; [Bf = 3, (Yo) — B.. It is easy to see, using Itd’s
formula and the definition of chordal SLE, th&t satisfies the following SDE
(whereB is a standard Brownian motion):

2
(21) dy, :ﬁdBu+?du;

t

that is, up to a linear time chang#, is a Bessel process of dimension=
1+ 4/k < 2 starting fromYg. Hence, it is known that the probability that it does
not hit O up to timeu behaves Iike(u/Yg)—”, wherev = (« — 4)/2« > 0 is the
index of the process. Hence,

P =< t_”E(YOZ") =1,

as we wanted. [

This provides the right estimate,

Pt
P(tGD&a)X[—:| )
a

where the implicit constants depend onlysriNotice that iff + ¢ is in D, 4, then
t € Dy, , (becaus&; C K;,.) and everiz,t + ¢] C D2, 4. This and the previous
estimate provide

P(t+eceD.y) -

P(t,t+e]CD teD > >c¢ >0,
([ ] 2£,a| 2£,a) P(IE DZs,a)

which is condition 2. It remains to obtain second moments, and these are given by
the Markov property, as follows.

Letx < y be two times in[0, 1]. If x andy are in D, , with a > y — x, then
in particularx € D, ,_, andy € D, ,. By the Markov property of SLE, applied at
time y, those two events are independent. Hence we obtain

P(x,ye Ds,a) <Pxe Ds,y—x)P(y € Ds,a)

e 1°rel® &
RIS [
y—x]Lla (y —x)*

still with s = (x — 4)/2«. This is exactly condition 3. l&# < y — x, then the events
x € D., andy € D, , are themselves independent and the same method applies.
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Hence, everything is ready to apply Proposition 1. Foraalt 0, with positive
probability,

Noticing then thatD® ¢ D ¢ D? hence provides

P(dimH(D) - 4;'{) )
K

It is then easy to apply the same proof as that of Lemma 4 and obtain a zero—one
law for dimg (D), thus completing the proof.[]

REMARK 2. In particular, the dimension of boundary-times is never less
than /2, even whemr — oo. Note that in this case, the dimension of the Bessel
process appearing in the proof tends to 1, so the expori2ns the same as in the
usual gambler’s ruin estimate.

This is not surprising since, whentends tooo, the trace of an SLEconverges,
after suitable rescaling, to

Vooil > (B, L),

where B is standard Brownian motion arid;) denotes its local time at point
(cf. [2]). In the limit, the boundary times correspond to last-passage times, which
have dimension /2 by a reflection argument.

4.2. Cut-times and the existence of cut-pointg/e saw in the previous sections
how the dimension of the trace of SLE was related to nondisconnection exponents.
Here, we follow the analogy with Brownian motion to describe cut-points on the
SLE trace. Letk be a chordal SLEand letC be the set of cut-points &> in K1
(i.e., the set of points € K3 such thatk, \ {z} is not connected). Such a point is
on the boundary oK'1; hence ify is the trace oK, every cut-point is ory ([0, 1]).

We say that is a cut-time ify (¢) is a cut-point, and noté the set of cut-times.

THEOREMD.

() If0<«k <4,thenC =[0,1] andC = Kj.
(i) If 4 <« < 8, then with positive probabilityC has Hausdorff dimension
(8 — k) /4; in particular, it is nonemptyhenceC # &.
(iii) If « > 8,then as. C = @ and K1 has no cut-point

PrROOF (i) is a direct consequence of the fact thais a simple path [15],
and (iii) is proved exactly like (ii) with the usual convention that a set of negative
dimension is empty. Hence, we may assume thatd< 8. Again we are going
to apply Proposition 1, and the proof wilk very similar to that of Theorem 4.
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Introduce the set of approximate cut-times betweanda defined as
Cea={t€[0,1]:y ([t + &, +a]) N (K; UR) =2}

DefineC“ as the (indeed nonincreasing) intersection of@hg. By the Markov
property at timer, it follows that P(r € C.,) does not depend on Moreover,
scaling shows that it is a function af/a. Hence, to obtain condition 1 in
Proposition 1 withs = (¢ — 4) /4, it suffices to prove the following:

LEMMA 6. LetK be anSLE;, in the upper-half plangstarting atx € (0, 1),
with « > 4. Then whent — oo,

PUO,1INK, =) =<4 /4

PROOF The proof of this lemma is very similar to that of Theorem 3.1 in [9].
Two things have to be done: first, extend this theorem to the (easier) case where
w1 = w2 = 0; second, translate it back to an estimate for SLE at a fixed time.
Introduce the following processes; = g;(1) — B, Y; = g:(0) — B;, where(8;) is
the time-scaled Brownian motion driving. As was seen previouslX andY
satisfy the following SDEs:

2 2
dXt:Ydt‘i‘«/EdBt, dYt:?dl+«/EdBt,
t t

whereB is a standard real Brownian motion. Liet= X; — Y; be the length of the
image interval, and leR;, = X,/L,. Tedious application of It6’s formula leads to

2dt 2(1-2R
dLj= ————, t=#dl‘+£d&.
LiR;/(1—Ry) L?R;(1—Ry) L,

Introduce the following random time-change:
L2 Ris)(L = Ri(s)) s
2 9
then the previous system reducesdf, ) = L;(ds, that is, almost surely
L5y =¢€* and, lettingZ; = Ry (y),

Z.(1-2
(22) dZS:(l—ZZS)ds—I—,/LZS)a’BS

as in [9]. Now introduce the following stopping times:
S =Inf{s:Z; €{0,1}}, T =1(S)=Inf{t: R, € {0, 1}}.

dt(s) =

The counterpart of Theorem 3.1 in [9] for the case= w» = 0 is obtained as
Lemma 2 in the present paper; it gives the following estimate:

(23) P(S > s) < exp(—1(0,0)s) = exp(—K ; 4s).
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It remains to transfer this estimate to deterministic values &fecall that we
have 241 (s) = ¢% Zy(1 — Z,)ds. This already proves thalr (s) < % /8ds, that
is, 1(s) < e /16 ors > log(16¢(s))/2. Hence,

log(16¢
P(T>1)< P(S > 09(2 )) = =D/

To obtain the lower bound, note that the proof of Theorem 3.1 in [9] also gives the
distribution of Ry knowing thatS > s, which is the eigenfunction associated to the
eigenvaluer (0, 0) for the generator oR, namely,

clx(L— x)|®—9/x,

In particular, conditionally to the fact th&t> s, there is a positive probability that
Z, € [3, 31. Comparison with Brownian motion then shows that

P(¥selso,so+11,Z; €[, §l1Zp € [3.3]) 2 c> 0,
and combining this with (23) provides, for aj > 42,
P(Vs e[so—1,s0l, Zs € [% %]lS > s0) > ¢ > 0.

Now on this event, we obtain

t()>/so ezsd> 250
KY ——ds > cge”™",
0= so—1 128 =0

from which the lower bound follows:

log(z
P(T>1)> cP(S > W) > ct =6/, =

The end of the proof is exactly the same as that of the previous theorem, so we
do not repeat it here.[d

REMARK 3. Forx = 8 (where the obtained dimension is 0), the method is
inconclusive; but it is possible to prove that there are no cut-points in that case;
one of the simplest way to do it being to use tegersibility of the trace, which
in turn is a consequence of the fact that gliEthe scaling limit of the uniform
spanning tree Peano path (cf. [13]). Notice however that the fact that thg SLE
trace is a Peano curve is not sufficient in itself to conclude.

If « =6, we get that the dimension of cut-times j&11t is known in this case
(using Brownian exponents) that the dimension of cut-points-is524 = 3/4
(cf. [8]). For the other values af € (4, 8), the dimension ot is not known.
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