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HAUSDORFF DIMENSIONS FOR SLE6

BY VINCENT BEFFARA

Université Paris-Sud and Institut Mittag-Leffler

We prove that the Hausdorff dimension of the trace of SLE6 is almost
surely 7/4 and give a more direct derivation of the result (due to Lawler–
Schramm–Werner) that the dimension of its boundary is 4/3. We also prove
that, for allκ < 8, the SLEκ trace has cut-points.
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0. Introduction. It has been conjectured by theoretical physicists that various
lattice models in statistical physics (such as percolation, Potts model, Ising, uni-
form spanning trees), taken at their critical point, have a continuous conformally
invariant scaling limit when the mesh of the lattice tends to 0. Recently, Schramm
[16] introduced a family of random processes he called Stochastic Loewner Evolu-
tions (or SLE), which are the only possible conformally invariant scaling limits of
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random cluster interfaces (which are very closely related to all above-mentioned
models).

An SLE process is defined using the usual Loewner equation, where the driving
function is a time-changed Brownian motion. More specifically, in the present
paper we will be mainly concerned with SLE in the upper-half plane (sometimes
called chordal SLE), defined by the following PDE:

∂tgt (z) = 2

gt (z) − √
κBt

, g0(z) = z,(1)

where(Bt ) is a standard Brownian motion on the real line andκ is a positive
parameter. It can be shown that this equation defines a family(gt ) of conformal
mappings from simply connected domains(Ht ) contained in the upper-half plane,
onto H. We shall denote byKt the complement ofHt in H, then for all t > 0,
Kt is a relatively compact subset ofH and the family(Kt ) is increasing. For each
valueκ > 0, this defines a random process denoted by SLEκ (see, e.g., [19] for
more details on SLE).

In three cases, it has now been proven that SLEκ is the scaling limit of a discrete
model. Smirnov [17] proved that SLE6 (which is one of the processes we will focus
on in the present paper) is the scaling limit of critical site percolation interfaces
on the triangular grid, and Lawler, Schramm and Werner [13] have proved that
SLE2 and SLE8 are the respective scaling limits of planar loop-erased random
walks and uniform Peano curves. In fact, we will use Smirnov’s result as a key
argument in the present paper.

It is natural to study the geometry of SLEκ , and in particular, its dependence
on κ . It is known (see [15] forκ �= 8 and [13] for κ = 8) that there almost
surely exists a continuous curveγ : [0,∞) → �H (called thetraceof the SLE) that
generatesKt , in the following sense:Ht is the (unique) unbounded connected
component ofH \ γ ([0, t]). Furthermore (see [15]),γ is a simple curve when
κ ≤ 4, and it is a space-filling curve whenκ ≥ 8.

It is possible, for eachx ∈ H, to evaluate the asymptotics whenε → 0 of the
probability thatγ intersects the disk of radiusε aroundx. When κ < 8, this
probability decays likeεα for someα = α(κ) > 0. This (loosely speaking) shows
that the expected number of balls of radiusε needed to coverγ [0,1] (say) is of the
order ofε−2+α, and implies that the Hausdorff dimension ofγ is not larger than
2− α. Rohde and Schramm [15] used this strategy to show that almost surely the
Hausdorff dimension of the SLEκ trace is not larger than 1+ κ/8 whenκ ≤ 8.

This exponentα and various other exponents describing exceptional subsets
of γ are closely related to critical exponents that describe the behavior near the
critical point of some functionals of the related statistical physics model. Actually,
in the physicsliterature, the derivation of theexponent is often announced interms
of (almost sure) fractal dimension, thereby omitting to prove the lower bound on
the dimension. Indeed, it maya priori be the case that the valueε−2+α is due to
exceptional realizations of SLEκ with exceptionally many visited balls of radiusε,
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while “typical” realizations of SLEκ meet many fewer disks. One usual way to
exclude such a possibility and to prove that 2− α corresponds to the almost sure
dimension of a random fractal is to estimate second moments, that is, giventwo
balls of radiusε, to estimate the probability that the SLE trace intersects both of
them.

It is conjectured that for allκ ∈ [0,8], the Hausdorff dimension of the trace of
SLEκ is indeed almost surely 1+ κ/8. Up to the present paper, this is known to
hold for κ = 8/3 for reasons that will be described below. We prove that it is the
case forκ = 6:

THEOREM 1. Almost surely, the dimension of theSLE6 trace is7/4.

Note that the discrete analog of this theorem in terms of percolation is an
open problem, while it is known that the expected number of steps of a discrete
exploration process isN7/4 (cf. [18] for further reference).

Another natural object is theboundaryof an SLE, namely∂Kt ∩ H. Forκ ≤ 4,
sinceγ is a simple curve, the boundary of the SLE is the SLE itself; forκ > 4, it is
a strict subset of the trace, and its dimension is conjectured to be 1+ 2/κ . Again,
the first-moment estimate is known to hold for allκ , but the only value ofκ > 4
for which the dimension is known rigorously isκ = 6:

THEOREM 2 ([6]). Almost surely, the dimension of theSLE6 boundary is4/3.

It is known that SLE6 is closely related to planar Brownian motion, so that
this theorem is equivalent to the same statement for the exterior boundary of a
Brownian path. It was first conjectured by Mandelbrot that the fractal dimension
of the boundary should be 4/3; the first mathematical proof is due to Lawler,
Schramm and Werner (cf. [6] for a review) and goes as follows.

First, note that to each point of the Brownian path, two independent Brownian
motions can be associated (the past and the future), and that this point is on
the boundary of the complete path iff the union of these two processes does
not disconnect it from infinity. This remark provides a relation between the
dimension of the boundary and the nondisconnection exponent for two paths.
It is then necessary to compute the value of this exponent, and this requires a
long and very technical proof. In particular, it uses the fact that the Brownian
intersection exponents are analytic [10] and sharp estimates for the probabilities of
nondisconnection events. (These estimates, up to the value of the exponents, were
obtained earlier by Lawler in a series of clever and technical papers.)

It is conjectured (see [15] for a discussion) that the boundary of SLEκ , κ > 4,
is very similar to the trace of SLE16/κ , and a precise statement of thisduality is
known forκ = 6 (see [11]). This and Theorem 2 provide the dimension of SLE8/3,
namely: With probability 1, the dimension of the SLE8/3 trace is 4/3.
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In the present paper, we will reprove, without using the relation to planar
Brownian motion, that the dimension of the outer frontier of SLE6 is almost
surely 4/3. Combining this with the previously mentioned universality arguments,
this implies also that the dimension of the SLE8/3 trace and that of the outer
frontier of planar Brownian motion are almost surely 4/3 and gives a shorter proof
of these results. We should also mention here that SLE8/3 is the natural candidate
for the scaling limit of self-avoiding walks [12] and therefore also an interesting
object.

Theorem 1 can be related to the dimension ofpioneer pointson a Brownian
path (i.e., pointsBt that are on the boundary at timet): It is known [8] that the
set of pioneer points has dimension 7/4, the same as the SLE6 trace, and this is
not surprising since they play similar roles. However, it can be proved that they
are different. (Note, e.g., that Brownian motion can enter its past hull and the SLE
trace cannot.)

The method described here cannot be extended directly to other values ofκ .
Indeed, two properties that are specific to SLE6 are used, namely the chordal/radial
equivalence (in the computation of the hitting probabilities) and the locality
property (in the derivation of second moments). It should be possible to obtain
second moments using only the Markov property (at the cost of a more technical
proof); however, the derivation of the hitting probabilities will need a different
approach.

It is also possible to compute the dimension of exceptional time-sets. This is in
fact easier than for subsets of the upper-half plane, since the distortion of space due
to the past does not influence the probability estimates, and this makes it possible to
compute dimensions for everyκ ≥ 0. In the last section we compute the dimension
of the set of boundary times and that of the set of cut-times [i.e., timest such that
γ (t) is, resp., a boundary point or a cut-point ofK ]. In particular, we prove the
following:

THEOREM 3. Let (Kt) be anSLEκ for κ < 8. Then, almost surely, K1 has
cut-points.

A natural question is then the way subsets of the time interval are mapped into
the upper-half plane by the trace of an SLE process. It is known [4] that Brownian
motion in the plane doubles Hausdorff dimensions (i.e., ifB is a planar Brownian
motion, then with probability 1, for all Borelian subsetsA of the real line, the
Hausdorff dimension of{Bt, t ∈ A} is equal to twice that ofA). Such a result does
not seem to hold in the general case for an SLE process.

1. Ingredients. We provide in this section several estimates and tools which
will be needed in the subsequent proofs, but are also (maybe) of more general
interest.



2610 V. BEFFARA

1.1. Hausdorff dimension of random sets.We will use the following result to
derive the value of Hausdorff dimensions from the values of exponents. It is stated
here in dimensiond ≥ 1, but we will use it only ford = 1 (for time sets) ord = 2
(for subsets of the complex plane).

Suppose thatλ denotes the Lebesgue measure in[0,1]d . Let(Cε)ε>0 be a family
of random Borelian subsets of the cube[0,1]d . Assume that forε < ε′ we have
Cε ⊆ Cε′ , and letC = ⋂

Cε . Define the following conditions (wheref � g means
that there exist positive numbersc− andc+ such thatc−g ≤ f ≤ c+g, and where
the constants do not depend onε, x or y):

1. For allx ∈ [0,1]d ,

P (x ∈ Cε) � εs .

2. There existsc > 0 such that, for allx ∈ [0,1]d andε,

P
(
λ
(
Cε ∩ B(x, ε)

)
> cεd |x ∈ Cε

) ≥ c > 0.

3. There existsc > 0 such that, for allx, y ∈ [0,1]d andε,

P ({x, y} ⊂ Cε) ≤ cε2s|x − y|−s .

PROPOSITION1. (i) If conditions1 and2 hold, then a.s. dimH(C) ≤ d − s.
(ii) If conditions1 and3 hold, then with positive probabilitydimH(C) ≥ d − s.

PROOF. A detailed proof of this proposition can be found in [3], Theorem 2.
The outline goes as follows. First, if conditions 1 and 2 hold, they provide an upper
bound on the expected number of balls of radiusε needed to coverCε , henceC.
By Borel–Cantelli, this gives an upper bound on the Minkowski dimension ofC,
which is valid with probability 1.

To derive a lower bound, one introduces the random measuresµε having density
ε−s1Cε with respect to the Lebesgue measure in[0,1]d . If conditions 1 and 3 hold,
with positive probability it is possible to extract a subsequenceµεk

converging to
some measureµ supported onC, and to prove that with positive probabilityµ
is a Frostman measure with dimensiond − s, which implies that the Hausdorff
dimension of the support ofµ is at leastd − s. �

Each time we will derive an almost sure Hausdorff dimension, we will in fact
check these three conditions and use a zero–one law to conclude.

REMARK 1. A similar proposition can be found in [5], stated in a discrete
setup in which condition 2 does not appear. Indeed, in most cases, this condition
is a direct consequence of condition 1 and the definition ofCε (for instance, if
Cε is a union of balls of radiusε).
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1.2. An estimate for diffusions.We will need estimates for stochastic flows
in an interval, that we now state and prove. For background on this topic see, for
instance, [1].

Let (Xt ) be the diffusion process on the intervalI = [−1,1] defined by the
following stochastic differential equation:

dXt = σ dBt + f (Xt) dt,(2)

whereσ > 0 andf is a given smooth function satisfyingf ′ ≤ −a < 0 and

−f (−1+ x) ∼ f (1− x) ∼ −C0 · x−1,(3)

f ′(−1+ x) ∼ f ′(1− x) ∼ −C1 · x−2,(4)

−f ′′(−1+ x) ∼ f ′′(1− x) ∼ −C2 · x−3,(5)

asx → 0+ for some positive constantsC1, C2, C3.
Let (gt ) be the stochastic flow associated to this stochastic differential equation;

that is,(gt )t≥0 is the family of random functions fromI to itself such thatgt (x) is
the value at timet of the solution of (2) starting fromx at t = 0. Note thatX is
absorbed on the points 1 and−1. This implies that, with probability 1, for allt > 0,
there is an intervalIt ⊂ I such that

gt (I ) = {−1,1} ∪ It .

We want to estimate the lengthlt of It . Consider the following family of partial
differential equations, indexed byb ≥ 0:

ḣ(t, x) = σ 2

2
h′′(t, x) + f (x)h′(t, x) − bf ′(h)h(t, x).(Eb)

Assume that for eachb ≥ 0, (Eb) has a positive solutionhb(t, x) satisfying

hb(t, x) � [(1+ x)(1− x)]q(b)e−λ(b)t .(6)

It is then possible, using the Feynman–Kac formula (following exactly [8]), to
prove that ifb > 0,

E
((

g′
t (x)

)b) � e−λ(b)t [(1+ x)(1− x)]q(b)(7)

whenevert ≥ 1 (where as usual we letg′
t (x) = 0 if the path starting fromx is

absorbed by the boundary before timet). For allx, let

τx = Inf
{
t :gt (x) ∈ {−1,1}} = Inf{t :g′

t (x) = 0}.
It will be sufficient for our purposes to provide an estimate in the caseτ0 > t , that
is, when we condition the path from 0 not to exit the interval by timet .

LEMMA 1. In the previous setup,

∀b > 0, E
(
lbt 1τ0>t

) � e−λ(b)t .
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Note that this type of result does not seem to be standard in the literature on
diffusions. The natural way to obtain estimates on the length ofIt is to use Jensen’s
inequality, and, depending on the value ofb, it can give a lower bound (ifb < 1) or
an upper bound (ifb > 1) of the right form. Another way to obtain a lower bound
is given in [8], and consists in computing the length of the image of a small interval
around 0, thus giving a lower bound in terms ofg′(0) which is valid for allb > 0.
Hence, all that needs to be done to complete the proof is to derive the upper bound
in the caseb < 1.

PROOF OF LEMMA 1. A rough idea of the proof is as follows: Write the
length lt as the integral ofg′

t over I , and then obtain a uniform upper bound
on g′

t (x). Roughly speaking, two cases need to be considered (and they will be
treated quite differently):

(i) If gs(0) stays away from the boundary fors ≤ t , then so doesgs(x) for
eachx; in this caseg′′

t (x) is bounded above and it will be possible to compare
g′

t (x) to g′
t (0) and use (7).

(ii) If gs(0) comes close to the boundary fors ≤ t , then so doesgs(x) for eachx
and in this caseg′

t (x) becomes very small.

In the proof,C will stand for a generic positive constant, the value of which
may change from line to line.

We first consider the first case. The definition ofg implies that, for allx ∈ I ,

g′
t (x) = exp

[∫ t

0
f ′(gs(x)

)
ds

]
,(8)

and differentiating this with respect tox leads to

g′′
t (x)

g′
t (x)

=
∫ t

0
g′

s(x)f ′′(gs(x)
)
ds.(9)

Moreover, sincef ′ is bounded by−a < 0, (8) also proves that almost surely, for
all t > 0 and for allx ∈ I ,

g′
t (x) ≤ e−at(10)

and in particularlt ≤ 2e−at .
Let α > 0 andJs = [−1 + αe−as/4,1 − αe−as/4]: If for all s > 0, gs(x) ∈ Js ,

then condition (5) leads to|f ′′(gs(x))| ≤ C2α
−3e3as/4, hence∣∣∣∣g

′′
t (x)

g′
t (x)

∣∣∣∣ ≤
∫ t

0
C2α

−3e−ase3as/4ds ≤ 4C2a
−1α−3.

Assume that for alls ∈ [0, t], gs(0) ∈ Js (so that the previous estimate applies
for x = 0). For allx ∈ (−1,0) such thatτx > t , write∫ t

0
f ′(gs(x)

)
ds =

∫ t

0
f ′(gs(x)

)
1gs(x)∈Js ds +

∫ t

0
f ′(gs(x)

)
1gs(x)/∈Js ds.
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In the first integral, integratingf ′′ over[gs(x), gs(0)] (which is a subset ofJs) and
using (5) shows that∣∣f ′(gs(x)

) − f ′(gs(0)
)∣∣ ≤ Ce−as(αe−as/4)−3 = Cα−3e−as/4.(11)

In the second one, sincegs is monotonous,gs(x) can only be in[−1,−1 +
αe−as/4], on whichf ′ is negative and increasing. Hence,f ′(gs(x)) ≤ f ′(−1 +
αe−as/4), and integratingf ′′ between−1+αe−as/4 andgs(0) as previously leads
to ∣∣f ′(−1+ αe−as/4) − f ′(gs(0)

)∣∣ ≤ Cα−3e−as/4.

In both cases we finally obtain

f ′(gs(x)
) ≤ f ′(gs(0)

) + Ce−as(αe−as/4)−3,

and integrating overs ∈ [0, t] then proves that

g′
t (x) ≤ exp

[
Cα−3 +

∫ t

0
f ′(gs(0)

)
ds

]
≤ Kg′

t (0).

A similar computation shows that this also holds forx ∈ (0,1). Integrating this
inequality leads tolt ≤ 2Kg′

t (0), hence to the desired conclusion—on the event
{∀ s ∈ [0, t], gs(0) ∈ Js}. Together with our estimate on|g′| [given by (7)], this can
be rewritten as

E
[
lbt 1∀s<t,gs(0)∈Js

] ≤ Ce−νt .

Note that the same upper bound would apply if we replaced everywhere 0 by any
given pointx; we would even get an additional factor(1 − x2)q , whereq = q(b)

is the same as in (7). It would also apply if we consideredgt (I0) for some sub-
interval I0 of [−1,1], in which caseg′ would only be integrated onI0 and we
would get yet another multiplicative factor of the forml(I0)

b.
Now let t1 < t2, and letFt1 be theσ -field generated by the diffusion up to

time t1. Applying the Markov property at timet1 and then the previous argument
on the time interval[t1, t2], we obtain the following estimate:

E
[
lbt21∀s∈(t1,t2),gs(0)∈Js |Ft1

] ≤ C
(
1− gt1(0)2)qlbt1e−ν(t2−t1).(12)

We now have to consider the case wheregs(0) exits Js (and this will happen
in particular for small values ofs, for which Js can even be empty ifα is large
enough). For this, we shall count the number of times it does it and use the previous
estimate (12) between those times.

First, assume that for some stopping timet > 0 we havegt (0) = −1+ αe−at/4

(i.e., it is on the boundary ofJt ). Assume thatα was chosen large enough
so that the whole image ofgt (except maybe the point{1}) is contained in
[−1,−1+2αe−at/4] [this is possible by (10)], and assume also thatt is sufficiently
large so that 2αe−at/4 < 1. Let(ϕs) denote the stochastic flow started at timet ; for
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eachx satisfyingτx > t , we havegt+s(x) = ϕs(gt (x)) (but (ϕs) is defined on the
whole interval[−1,1]).

Up to the first timeτ whenϕτ (−1 + 2αe−at/4) = 0, f ′ is increasing on the
image of[−1,−1 + 2αe−at/4] by ϕ, so we obtainlt+s ≤ ltϕ

′
s(−1 + 2αe−at/4).

But without a lower bound onτ , we cannot apply (7) toϕ at timeτ ∧ 1 directly.
Instead, make the following remark. Letu > 0, and lets be a stopping time for

which gs(0) = −1+ u; let σ be the first time afters for which gσ (0) = −1+ 2u.
Scaling shows that, with probability at leastη > 0 (independent ofu), we have
σ − s ≥ u2. In particular, this implies that with positive probability,g′

σ (0) ≤ cg′
s(0)

for somec < 1. Sinceg′ is decreasing anyway, we obtainE(g′
σ (0)b|Fs) ≤ c′g′

s(0)b

with c′ < 1. We can then apply the result foru = 2αe−at/4; thenu = 2kαe−at/4

with k ≥ 2, as long as 2k+1αe−at/4 < 1. The number of steps we can perform is of
the order of log2(e

−at/4), that is, linear int , thus providing the estimate

E
(
lbτ |Ft , gt (0) = −1+ αe−at/4) ≤ e−η′t lbt

with η′ > 0. Combining that with (7) at time 1, we finally obtain

E
(
lbt+(τ∧1)|Ft , gt (0) = −1+ αe−at/4) ≤ Clbt e−η′′t/4(13)

with η′′ = (qa/4) ∧ η′ > 0.
Now, let Et;k;n1,...,nk

be the event that before timet , gs(0) exits Js on each
of the [ni, ni+1] and none of the others (so that roughly speaking it gets close to
the boundaryk times). For eachi, let ti be the first time in[ni, ni + 1] at which
gt (0) is on the boundary ofJt . We can apply the previous estimates (12) and (13)
at timesti , leading to

E
(
lbni+2;Et;k;n1,...,nk

|Fni

) ≤ Clbni
e−η′′ni .

We can always assume that, for eachi, ni+1 ≥ ni +2. Recursive application of the
Markov property leads to

E
[
lbt 1τ0>t;Et;k;n1,...,nk

] ≤ C · Cke−νLt

k∏
i=1

e−η′′ni ,

whereLt = t − ∑
(ni + 2− ni) = t − 2k; so that, replacingC by Ce2ν , we obtain

E
[
lbt 1τ0>t ;Et;k;n1,...,nk

] ≤ C · Cke−νt
k∏

i=1

e−η′′ni .

Summing over all possible values for theni (note that we always haveni ≥ i) and
overk ≥ 0, we obtain

E
[
lbt 1τ0>t

] ≤ Ce−νt
∞∑

k=0

Ck
k∏

i=1

e−η′′i

1− e−η′′ ≤ Ce−νt
∞∑

k=0

Cke−η′′k2/2.

This last sum being finite, we get the result we wanted.�
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LEMMA 2. In the same setup, the probability that a given pointx survives up
to timet > 0 is

P (τx > t) = P
(
g′

t (x) > 0
) � e−λ(0)t .

PROOF. We know thatE(h0(0, gt (x))) = h0(t, x) � e−λ(0)t . On the other
hand, sinceh0 is bounded, we haveE(h0(0, gt (x))) ≤ ‖h0(0, ·)‖∞P (τx > t).
Hence

P (τx > t) ≥ ce−λ(0)t

‖h0(0, ·)‖∞
.

Conversely, consider the distribution ofg1(x). It is easy to see that, except for
Dirac masses at−1 and 1, it has a bounded densityp1 with respect to the Lebesgue
measure. Sinceh is positive, we know that−λ(0) is the largest eigenvalue of the
generator of the diffusion, and that it is simple; hence,‖pt‖2 ≤ ‖p1‖2 exp(−(t −
1)λ(0)). It is then a direct application of the Cauchy–Schwarz inequality to see
that‖pt‖1 ≤ Ce−λ(0)t , and since we have‖pt‖1 = P (τx > t), this completes the
proof of the lemma. �

2. Dimension of the trace of SLE6.

2.1. Construction of the trace.Let K be a chordal SLE in the upper-half plane
and letC be the intersection of its trace with the square[−1,1] × [1,3]. In order
to apply Proposition 1, introduce

Cε = {z ∈ [−1,1] × [1,3] :d(z,C) ≤ ε}.
SinceC is a compact set, we haveC = ⋂

Cε. Moreover, we make the following
remark: Letz be some point in[−1,1] × [1,3], ε > 0, and assume thatz is at
distance greater thanε from the boundary of the square. LetTB(z,ε) be the hitting
time defined as usual as

TB(z,ε) := Inf{t :Kt ∩ B(z, ε) �= ∅}.
Then, we have the following equivalence:

z ∈ Cε ⇐⇒ B(z, ε) �⊂ KTB(z,ε)
.(14)

We call the second part of the equivalencenondisconnection. Indeed, the condition
is equivalent to the fact thatKTB(z,ε)

does not disconnectz from ∞. Note the
similarity with the definition of Brownian pioneer points [5].
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2.2. The(non)disconnection exponent.The proofs in this section rely on the
equivalence between chordal and radial SLE forκ = 6 that have been proven
in [8]. More precisely, there are two versions of SLE in the unit disk. The first
one (chordal SLE in the disk) is obtained by mapping chordal SLE in the upper-
half plane to the disk by a conformal map, so that it grows toward a point on the
unit circle. The second version is calledradial SLE, and it corresponds to the case
whereK grows toward 0 instead of a point on the boundary. It is defined by the
following PDE [if (g̃t ) is the corresponding family of conformal maps]:

∂t g̃t (z) = g̃t (z)
g̃t (z) + βt

g̃t (z) − βt

,

whereβt = ei
√

κt is a time-scaled Brownian motion on the unit circle.
Chordal/radial equivalence is stated as follows. Let(Kt ) be achordalSLE6 in

the unit disk, starting at 1 and aiming at−1, and let(K̃t ) be aradial SLE6 in the
unit disk, starting from 1 and aiming at 0. LetT (resp.T̃ ) be the first time whenK
(resp.K̃) separates−1 from 0. Then,KT − andK̃

T̃ − have the same law, and so do
(Kt∧T )t>0 and(K̃

t∧T̃
)t>0 up to a (random) time change. For complete references

about this, see [8]. Note that this is specific to the caseκ = 6.

PROPOSITION2. Let (Kt ) be a chordalSLE6 in the unit disk, starting from1
and growing toward−1, and letTr be the first time whenKt hits the ball with
radius r centered at0. ThenKTr disconnects this disk from the unit circle if and
only if B(0, r) ⊂ KTr , and asr tends to0,

p(r) := P
(
B(0, r) �⊂ KTr

) � r1/4.

PROOF. This estimate is similar to Theorem 3.1 in [8], of which it is the
natural counterpart in the caseb = 0. Let K ′ be a radial SLE6 in the unit
disk, aiming at 0, and letT ′

r be the first time when it reachesB(0, r). The
chordal/radial equivalence shows thatp(r) is equal to the probability thatK ′

T ′
r

does not disconnectB(0, r) from −1 , that is, the probability that−1 /∈ K ′
T ′

r
.

Let Wt = ei
√

6Bt be the (time-scaled) Brownian motion on∂U driving (K ′
t )

[where (Bt ) is a standard Brownian motion onR], and letYt be the continuous
determination of the argument ofgt (−1)/Wt starting atπ . Yt is well defined as
long asK ′ does not reach−1. Loewner’s differential equation and Itô’s formula
show that

dYt = √
6dBt + cotg(Yt/2) dt,

that is,(Yt) is a diffusion process with diffusion
√

6 and drift cotg(·/2), absorbed
by {0,2π} when −1 is absorbed byK ′

t . Straightforward calculations prove
that ft (x) = e−t/4(siny/2)1/3 satisfies∂tft = Lft = −1

4ft ; we can now apply
Lemma 2 and obtain

P (−1 /∈ K ′
t ) � e−t/4.(15)
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But Köbe’s distortion theorem [14] states that, ifr(t) = d(0,Kt), then

e−t

4
≤ r(t) ≤ e−t ,

which, combined with estimate (15), proves the proposition. (Details of the last
step are the same as in [8].)�

COROLLARY 1. Fix η > 0, and letB = B(z, r) be some disk contained inU,
where|z| < 1− 2η andr < η; let (Kt) be a chordalSLE6 in the unit disk, starting
from1 and aiming at−1. If TB denotes the first time whenKt reachesB, then the
probabilityp(B) thatKTB does not disconnectB from−1 satisfies

p(B) � r1/4,

where the implicit constants depend only onη.

PROOF. There exists exactly one Möbius transform� :U → U mapping 1 to
itself andB to a disk centered at 0. The radius of�(B) is then

ρ(z, r) = (1+ r2 − |z|2) − √
(1+ r2 − |z|2)2 − 4r2

2r
� r.

�(K) is then a chordal SLE in the disk starting from 1 and aiming at�(−1).
Moreover, |�(−1) − 1| is bounded away from 0 by a constant. The proof of
Proposition 2 can then be adapted (only changing the position of the end point)
to show that

p(B) � p
(
ρ(z, r)

) � p(r) � r−1/4,

with constants depending only onη. �

It is then easy, by mapping the disk to the upper-half plane and using (14), to
turn this corollary into the first condition of Proposition 1, that is,

∀ z ∈ [−1,1] × [1,3], P (z ∈ Cε) � ε1/4.(16)

It then follows from the definition ofCε that condition 2 holds: Ifz ∈ Cε, letz′ ∈ C

such that|z−z′| = ε (which exists by a compactness argument); then the disk with
diameter[zz′] is contained inB(z, ε) ∩ Cε and it has areaπε2/4.

2.3. Percolation and second moments.We now turn our attention to the
derivation of second moments for the hitting probability of disks by the SLE6
trace, namely condition 3 in Proposition 1. Again we will make strong use of the
fact that we are in the caseκ = 6, and in fact the decay of correlations we obtain
is a consequence of the locality property of SLE6. It has been proved [17, 18] that
the exploration process of critical percolation on the triangular lattice converges to
the SLE6 trace; in particular, consider critical percolation on a discretization of the
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upper-half plane with meshδ > 0 and the usual boundary conditions (i.e., wired on
[0,+∞) and free on(−∞,0)). Then the probability that the discrete exploration
processγδ hits the ballB(i, ε) satisfies

P
(
γδ ∩ B(i, ε) �= ∅

)−→
δ→0

P (i ∈ Cε) � ε1/4.(17)

But the fact that the discrete exploration process touches this disk is equivalent to
the existence of both a closed path connecting the disk to[0,+∞) and an open
path connecting the disk to(−∞,0). Applying the results in [18], this leads to the
following:

COROLLARY 2. Let Aε be the annulus centered at0, with radii ε and 1.
For all δ > 0, consider critical site-percolation on the intersection ofAε with the
triangular lattice of meshδ. Letp(ε, δ) be the probability thatC(0, ε) is connected
to C(0,1) by both a path of open vertices and a path of closed vertices inAε. Then,
asδ tends to0, p(ε, δ) converges to somep(ε) satisfying

p(ε) � ε1/4.

Note that this says nothing about the speed of convergence, and hence does not
provide useful estimates for the probability of the discrete event itself; but it is
sufficient for our purpose here.

Now fix z, z′ ∈ [−1,1] × [1,3] andε < |z − z′|/2. Again, the probability that
the SLE6 trace touches bothB(z, ε) and B(z′, ε) can be written as the limit,
as δ goes to 0, of the corresponding probability for critical site-percolation on
the triangular lattice with meshδ. But this implies the following:

(i) There exist a path of open vertices and a path of closed vertices, both
connectingC(z, ε) to C(z, |z − z′|/2) insideB(z, |z − z′|/2).

(ii) There exist a path of open vertices and a path of closed vertices, both
connectingC(z′, ε) to C(z′, |z − z′|/2) insideB(z′, |z − z′|/2).

(iii) There exist a path of open vertices and a path of closed vertices, both
connectingC((z + z′)/2, |z − z′|) to the real axis outsideB((z + z′)/2, |z − z′|).
Those three events are independent, since they describe the behavior of pairwise
disjoint sets of vertices; besides, the probability of each of them can be estimated
using Corollary 2 and converges, asδ → 0 and up to universal multiplicative
constants, respectively, to(ε/d)1/4, (ε/d)1/4 andd1/4, with d = |z − z′|. Hence,
letting δ go to 0, we obtain the following estimate:

P ({z, z′} ⊂ C − ε) ≤ C

(
ε

|z − z′|
)1/2

|z − z′|1/4 = C
ε1/2

|z − z′|1/4
,(18)

which is exactly condition 3 in Proposition 1 withs = 1/4, as we wanted.
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2.4. Conclusion. It is now possible to apply Proposition 1 withs = 1/4: We
obtain

P
(
dimH(C) ≤ 7

4

) = 1, P
(
dimH(C) = 7

4

)
> 0.

Now let H∞ be the complete trace ofK . SinceC ⊂ H∞, we obtain the same
results forH∞. Theorem 1 is then a consequence of the following:

LEMMA 3 (0–1 law for the trace). For all d ∈ [0,2], we have

P
(
dimH(H∞) = d

) ∈ {0,1}.

PROOF. For all n ∈ Z, let Dn = dimH(H2n). For all n, we then have
Dn+1 ≥ Dn [because(Ht ) is increasing] and besidesDn and Dn+1 have the
same law (by the scaling property). Hence, almost surely, for allm, n, we
haveDn = Dm. Taking this to the limit givesP (dimH(H∞) = Dn) = 1; hence
the random variable dimH(H∞) is F2n -measurable for alln. Hence it is
F0+-measurable, and we know by Blumenthal’s zero–one law that thisσ -field
is trivial. �

3. Dimension of the boundary of SLE6. In this section we adapt the
previous proof to compute the Hausdorff dimension of the boundary ofK at some
fixed time.

3.1. The escapeprobability.

PROPOSITION3. Let(Kt ) be anSLE6 in the half-plane, and letτR be the first
time it reaches radiusR. Then, asR goes to infinity,

P
(
i /∈ KτR

) � R−1/3.

Note that the corresponding result forP (1 /∈ KτR
) has been derived in [8].

PROOF OFPROPOSITION3. Fix l > 2 (its value will be determined later). We
shall suppose thatK starts atl instead of 0; it is easy to see that this only changes
the estimates up to a fixed constant. The idea of the proof is as follows: We will
prove that the conditional probability, knowing thati /∈ KτR

, that KτR
does not

intersect the unit disk is bounded below by a positive constant. The probability
that this happens satisfiesP (�U ∩ KτR

= ∅) � R−1/3 (cf. [8]), which leads to the
conclusion.

We make the following preliminary remark. For eacht ≥ 0 such thati /∈ Kt , the
intersection ofC(0,2) with Ht = H\Kt is a union of at most countably many arcs
of positive length. BecauseHt is simply connected, some of these arcs separatei

from infinity, and the first separating arc on a continuous path fromi to infinity
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does not depend on the path. We will denote this arc byλ
(2)
t and call it therelevant

arc at radius 2 and timet . Defineλ
(l)
t similarly. It is easy to see that(λ(2)

t ) is
nonincreasing, in the sense that, for all 0< t < t ′, we haveλ(2)

t ′ ⊆ λ
(2)
t .

Introduce the following stopping times (whereS0 = T0 = 0), defined induc-
tively for n > 0 (where as usual we let Inf∅ = ∞):

Sn = Inf
{
t > Tn−1 :λ(2)

t � λ
(2)
Tn−1

}
,

Tn = Inf
{
t > Sn :λ(l)

t � λ
(l)
Sn

}
.

(Loosely speaking,Sn is the first time afterTn−1 when the process touches the
circle of radius 2 andTn is the first time afterSn when it returns to the circle of
radiusl, except that we are only considering the relevant parts of the circles.)

Moreover, letT = τR = Inf{t :Kt ∩ C(0,R) �= ∅}. Then, almost surely, the
integerN = Sup{n :Tn < T } is finite and we have

0= T0 < S1 < T1 < · · · < SN < TN < T < ∞
(i.e.,K crosses the annulus between radii 2 andl only finitely many times before
reaching radiusR). In the Brownian case,N would be geometric with parameter
log(l/2)/ log(R/2).

Let ER andE′
R be defined as

ER := {i /∈ KT }, E′
R := {�U ∩ KT = ∅}.

We have to estimateP (ER); from Theorem 3.1 in [7],P (E′
R) � R−1/3, and we

haveP (ER) ≥ P (E′
R). We shall decomposeER according to the value ofN : We

can writeP (ER) = ∑∞
n=0P (ER,N = n). Note that if bothER and{N = 0} hold,

thenE′
R holds as well.

For fixedn, make the following remark: If there is not disconnection beforeT ,
then there is not disconnection fort inside any[Sk, Tk], for all k ≤ n. Apply
the strong Markov property at timeSk, and conditionKSk

not to containi. The
conditional probability of disconnection between[Sk, Tk] is then at least equal to
the probability that an SLE6 in HSk

, starting fromγ (Sk), separatesi from infinity
before reaching the unit circle or (the relevant part of ) the circleC(0, l). We will
prove that this last probability is bounded below by a constant which depends only
on l.

So, let � be the bounded connected component ofHSk
\ λ

(l)
Sk

(i.e., the one
which containsi), and let�′ be the connected component of� \ C(0,1) having
γ (Sk) on its boundary. Let∂ = ∂KSk

∪ R ∪ C(0, l) ∪ C(0,1). We can write the
boundary of�′, starting fromγ (Sk) and going counterclockwise, as the union of
five subsets:

(i) ∂1 ⊂ ∂ ;
(ii) some arc∂2 of C(0,1) ∩ HSk

which either containsi or separates it from
infinity in HSk

;
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(iii) ∂3 ⊂ ∂ ;
(iv) ∂4 = λ

(l)
Sk

;
(v) ∂5 ⊂ ∂

(possibly in the opposite order, which changes nothing in what follows). Ifγ

touches∂3 before∂2 ∪ ∂4, then it disconnectsi from infinity before timeTk .
First, estimate the probability thatγ hits ∂3 ∪ ∂4 before∂2. By the locality

property, this is the probability that an SLE6 in �′, going from γ (Sk) to the
common endpoint of∂2 and ∂3, does the same. In turn, this is a positive non-
decreasing function of the extremal distanceL1 between∂2 and∂5 in �′ (cf. [7]).

By construction, this extremal distance is at least equal to that between∂2 andλ
(2)
Sk

,
which in turn is bounded below by the extremal distance between the unit circle
and C(0,2) in H. Hence, the probability thatγ touches∂3 ∪ ∂4 before ∂2 is
bounded below by some absolute constantε > 0.

Now, conditionally on the previous event, ifγ hits ∂3 before ∂4, then it
disconnectsi from ∞ before timeTk . The conditional probability that this does not
happen is the conditional probability to hit∂4 before∂2 ∪ ∂3, and this in turn is not
greater thanε−1 times the probability to hit∂4 before∂2 ∪ ∂3 (still conditionally to
the past of the process up to timeSk).

Again this probability is a positive, decreasing function of the extremal
distanceL2 between∂1 and∂4 in �′. L2 is at least equal to the extremal distance
betweenλ

(2)
Sk

and ∂4 in �′, which is bounded below by the extremal distance
betweenC(0,2) andC(0, l) in H. This can be made arbitrarily large by takingl

large enough; so for largel, the probability we are considering is smaller thanε/2.
With such a value ofl, we thus obtainP (i ∈ KTk

|FSk
) ≥ 1/2.

So, for allk, the (conditional, knowing the process up to timeSk and knowing
i /∈ KSk

) probability that there is no disconnection between timesSk andTk is
bounded by 1/2. After timeTN , the probability to not swallowi before reaching
C(0,R), and to do so without touching (the relevant part of)C(0,2) is bounded
above bycR−1/3 (applying the same reasoning between radiil andR instead of
2 andl, resp.). Hence:

P (ER) =
∞∑

k=0

P (ER,N = k) ≤ c

∞∑
k=0

2−kR−1/3 ≤ 2cR−1/3.

But on the other hand, by the results in [7], we have

P (ER) ≥ P (E′
R) � R−1/3,

so that finally we obtain what we announced:

P (ER) � P (ER,N = 0) � P (E′
R) � R−1/3. �
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3.2. Exponent forb = 1/3.

PROPOSITION4. Let (Kt ) be a chordalSLE6 in the unit disk, starting from1
and growing toward−1, and letTr be the first time whenKt hits the ball with
radiusr centered at0.LetLTr beπ times the extremal distance inU\KTr between
C(0, r) and∂U. Then, asr tends to0,

E(e−LTr /3) � r2/3.

PROOF. As previously, letK ′ be a radial SLE6 in U, starting from 1 and aimed
at 0. Then, since all the involved events satisfy nondisconnection betweenC(0, r)

and−1 (LTr = ∞ iff there is disconnection), we have

q(r) := E(e−LTr /3) = E
(
e−LTr /31LTr <∞

) = E
(
e
−L′

T ′
r
/3

1−1/∈K ′
T ′
r

)
.(19)

We shall estimate the third term, again following the steps of the proof of
Theorem 3.1 in [8]. From now on, fixb = 1/3 andν = ν(κ, b) = 2/3; sinceb < 1,
we need a separate proof here. Letlt be the Euclidean length of the arcgt (∂U\K ′

t ).
The only place in [8] whereb ≥ 1 was needed was in the derivation of

E(lbt ) � exp(−νt) .(20)

But this is exactly what Lemma 1 shows, after suitable rescaling.�

3.3. Construction of the boundary.Again we describe the studied set as the
decreasing intersection of a familyBε of subsets of the plane. Here, let

Bε = {z /∈ K1 :d(z,K1) < ε}.
In order forz to be inBε, the following must happen. First, there is some point
in H at a distance less thanε from z; letting T (z, ε) = Inf{t :d(z,Kt) < ε}, and
introducing the extremal distanceL(z, ε) betweenB(z, ε) and∂U in U \ KT (z,ε),
this condition is equivalent to

L(z, ε) < ∞.

Then, the SLE afterT (z, ε) and up to time 1 must not disconnectz from “infinity”
(i.e., from∂U), and conditionally toKT (z,ε) this happens with probability of order

e−L(z,ε)/3.

Proposition 4 then states thatP (z ∈ Bε) � ε2/3. Second moments can be obtained
in the same fashion as for the trace; in this case, the relevant estimate (describing
in which conditions a disk intersects the boundary of the discrete exploration
process) is the following. First, two crossings of different colors must ensure that
the exploration process touches the disk; then a third path, disjoint of the first two,
will prevent it from closing a loop around it. Hence the following consequence of
Proposition 4:
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COROLLARY 3. Let Aε be the annulus centered at0, with radii ε and 1.
For all δ > 0, consider critical site-percolation on the intersection ofAε with the
triangular lattice of meshδ. Letp̃(ε, δ) be the probability thatC(0, ε) is connected
to C(0,1) both by a path of open vertices and by two disjoint paths of closed
vertices inAε. Then, asδ tends to0, p̃(ε, δ) converges to somẽp(ε) satisfying

p̃(ε) � ε2/3.

The rest of the construction is the same, and we obtain sufficient estimates to
apply Proposition 1, this time withs = 2/3. We obtain

P
(
dimH(∂K1) ≤ 4

3

) = 1, P
(
dimH (∂K1) = 4

3

)
> 0,

and once more we need a zero–one law.

LEMMA 4 (0–1 law for the boundary).For all d ∈ [0,2], we have

P
(
dimH(∂K1) = d

) ∈ {0,1}.
PROOF. Let Dt = dimH(∂Kt). As previously in the case of the trace, scaling

shows that the law ofDt does not depend ont > 0. However, here(∂Kt ) is not
increasing anymore, so we need another argument. Lett , t ′ > 0 and consider the
boundary ofKt+t ′ . It has two parts, namely the “new” part∂1 = ∂Kt+t ′ \ Kt , and
the “old” part∂2 = ∂Kt+t ′ ∩ Kt ⊂ ∂Kt . It is clear that

Dt+t ′ = dimH(∂1) ∨ dimH (∂2),

hence in particular dimH(∂1) ≤ Dt+t ′ . Besides, conformal mapping shows that
dimH(∂1) has the same law asDt ′ , hence the same law asDt+t ′ . Hence, with
probability 1,Dt+t ′ = dimH(∂2).

Moreover, conformal mapping also shows that dimH(∂2) is independent ofFt .
This proves that, for allt , t ′ > 0, the dimension of∂Kt+t ′ is independent ofFt .
It is then a direct application of Blumenthal’s zero–one law thatDt has an almost
sure value. �

This concludes the proof of Theorem 1.

3.4. Dimension ofSLE8/3. It should be theoretically possible to apply the
previous construction to other values ofκ , but some of the main tools that we
used (namely, the radial/chordal equivalence and the restriction property) do hold
only for κ = 6, so that additional arguments would be required.

For the special valueκ = 8/3, the result on the frontier of SLE6 makes
it possible to show that the dimension of SLE8/3 is almost surely 4/3. More
precisely, Lawler, Schramm and Werner [11] have shown that the outer boundary
of the union of eight SLE8/3’s has the same law as that of the union of five
Brownian excursions. The zero–one laws previously proved for both the trace
and the boundary of SLE extends to this object: Its boundary has a.s. the same
dimension as the boundary of SLE6 and also a.s. the same dimension as SLE8/3.
Hence these dimensions are equal, and the result follows.
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4. Time-sets for SLEκ . We now turn our attention to the dimension of sets
of exceptional times. Note that time corresponds to the Loewner parameterization
of the trace, which is in a way not the most canonical; it is not clear, for instance,
whether it behaves nicely under time-reversal. More precisely, how smoothly does
the Riemann map fromH \ γ ([t,∞)) to H evolve ast increases?

A natural question that also arises is the following. LetA be some (random)
subset of[0,∞], and letγ (A) be its image by the trace of a chordal SLE in
the upper-half plane. Is it possible, knowing the Hausdorff dimension ofA, to
obtain that ofγ (A)? Such a relation holds for Brownian motion [4]; namely, the
dimension of the image is a.s. equal to twice the dimension ofA. It is expected
that such a relation cannot hold for SLE without additional requirements onA;
however, a few cases can be treated entirely (in the sense that both the time and
space dimensions can be computed in independent ways), at least forκ = 6: the
trace itself, cut-points, and the boundary.

4.1. Boundary times. In the previous section, we derived the dimension of
the boundary of SLE6. The dimension of the corresponding time-set can also be
computed (and it should be noted that the following is true even forκ �= 6).

THEOREM 4. LetK be anSLE in the upper-half plane, with κ > 4,and letD
be the set of boundary times in[0,1], that is, the set of timest such thatγ (t) ∈ ∂K1.
Then, with probability1,

dimH(D) = 4+ κ

2κ
.

PROOF. It is clearly sufficient to compute the dimension of left-boundary
times, namely timest such thatg1(γ (t)) ∈ (−∞, βt ), whereβ is the process
driving K . Introduce the sets of approximate left-boundary times betweenε anda,
defined by

Dε,a = {
t : Inf

(
R ∩ gt (Kt+ε)

) = Inf
(
R ∩ gt (Kt+a)

)}
(i.e.,γ may touch the real line on the right side ofK but not on the left side). Let
Da be the intersection of theDε,a whenε → 0. Scaling and the Markov property
show thatP (t ∈ Dε,a) depends only onε/a. Hence, to obtain condition 1 in
Proposition 1, withs = (κ −4)/2κ , it is sufficient to obtain the following estimate:

LEMMA 5. Let (Kt ) be a chordalSLEκ (κ > 4) in the upper-half plane. Then
as t goes to infinity,

pt := P
(
Inf(R ∩ Kt) = Inf(R ∩ K1)

) � t(4−κ)/2κ.

PROOF. First, apply the Markov property of SLE at time 1 and map the picture
to the upper-half plane by� = g1 − β1. Let Y0 ≤ 0 be the image of Inf(R ∩ K1)
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by �. The process(K̃u) = (�(K1+u)) is an SLEκ , and the probability we are
interested in is then given by

pt = P (Y0 /∈ K̃t−1).

Let (β̃u) and g̃u :H \ K̃u → H be, respectively, the process driving̃K and the
associated conformal maps; letYu = g̃u(Y0) − β̃u. It is easy to see, using Itô’s
formula and the definition of chordal SLE, thatY satisfies the following SDE
(whereB is a standard Brownian motion):

dYu = √
κ dBu + 2

Yt

du;(21)

that is, up to a linear time change,Y is a Bessel process of dimensionb =
1 + 4/κ < 2 starting fromY0. Hence, it is known that the probability that it does
not hit 0 up to timeu behaves like(u/Y 2

0 )−ν , whereν = (κ − 4)/2κ > 0 is the
index of the process. Hence,

pt � t−νE(Y 2ν
0 ) � t−ν,

as we wanted. �

This provides the right estimate,

P (t ∈ Dε,a) �
[
ε

a

]s

,

where the implicit constants depend only onκ . Notice that ift + ε is in Dε,a , then
t ∈ D2ε,a (becauseKt ⊂ Kt+ε) and even[t, t + ε] ⊂ D2ε,a . This and the previous
estimate provide

P ([t, t + ε] ⊂ D2ε,a|t ∈ D2ε,a) ≥ P (t + ε ∈ Dε,a)

P (t ∈ D2ε,a)
≥ c > 0,

which is condition 2. It remains to obtain second moments, and these are given by
the Markov property, as follows.

Let x < y be two times in[0,1]. If x andy are inDε,a with a > y − x, then
in particularx ∈ Dε,y−x andy ∈ Dε,a . By the Markov property of SLE, applied at
time y, those two events are independent. Hence we obtain

P (x, y ∈ Dε,a) ≤ P (x ∈ Dε,y−x)P (y ∈ Dε,a)

≤ C

[
ε

y − x

]s[ ε

a

]s

≤ C
ε2s

(y − x)s
,

still with s = (κ − 4)/2κ . This is exactly condition 3. Ifa ≤ y − x, then the events
x ∈ Dε,a andy ∈ Dε,a are themselves independent and the same method applies.



2626 V. BEFFARA

Hence, everything is ready to apply Proposition 1: For alla > 0, with positive
probability,

dimH(Da) = 1− κ − 4

2κ
= 4+ κ

2κ
.

Noticing then thatD1 ⊂ D ⊂ D2 hence provides

P

(
dimH(D) = 4+ κ

2κ

)
> 0.

It is then easy to apply the same proof as that of Lemma 4 and obtain a zero–one
law for dimH(D), thus completing the proof.�

REMARK 2. In particular, the dimension of boundary-times is never less
than 1/2, even whenκ → ∞. Note that in this case, the dimension of the Bessel
process appearing in the proof tends to 1, so the exponent 1/2 is the same as in the
usual gambler’s ruin estimate.

This is not surprising since, whenκ tends to∞, the trace of an SLEκ converges,
after suitable rescaling, to

γ∞ : t �→ (Bt ,L
Bt
t ),

whereB is standard Brownian motion and(Lx
t ) denotes its local time at pointx

(cf. [2]). In the limit, the boundary times correspond to last-passage times, which
have dimension 1/2 by a reflection argument.

4.2. Cut-times and the existence of cut-points.We saw in the previous sections
how the dimension of the trace of SLE was related to nondisconnection exponents.
Here, we follow the analogy with Brownian motion to describe cut-points on the
SLE trace. LetK be a chordal SLEκ and letC be the set of cut-points ofK2 in K1
(i.e., the set of pointsz ∈ K1 such thatK2 \ {z} is not connected). Such a point is
on the boundary ofK1; hence ifγ is the trace ofK , every cut-point is onγ ([0,1]).
We say thatt is a cut-time ifγ (t) is a cut-point, and notẽC the set of cut-times.

THEOREM 5.

(i) If 0 ≤ κ ≤ 4, thenC̃ = [0,1] andC = K1.
(ii) If 4 < κ < 8, then with positive probabilityC̃ has Hausdorff dimension

(8− κ)/4; in particular, it is nonempty, henceC �= ∅.
(iii) If κ > 8, then a.s. C̃ = ∅ andK1 has no cut-point.

PROOF. (i) is a direct consequence of the fact thatγ is a simple path [15],
and (iii) is proved exactly like (ii) with the usual convention that a set of negative
dimension is empty. Hence, we may assume that 4< κ < 8. Again we are going
to apply Proposition 1, and the proof willbe very similar to that of Theorem 4.
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Introduce the set of approximate cut-times betweenε anda defined as

Cε,a = {t ∈ [0,1] :γ ([t + ε, t + a]) ∩ (Kt ∪ R) = ∅}.
DefineCa as the (indeed nonincreasing) intersection of theCε,a . By the Markov
property at timet , it follows that P (t ∈ Cε,a) does not depend ont . Moreover,
scaling shows that it is a function ofε/a. Hence, to obtain condition 1 in
Proposition 1 withs = (κ − 4)/4, it suffices to prove the following:

LEMMA 6. Let K be anSLEκ in the upper-half plane, starting atx ∈ (0,1),
with κ > 4. Then, whent → ∞,

P ({0,1} ∩ Kt = ∅) � t(4−κ)/4.

PROOF. The proof of this lemma is very similar to that of Theorem 3.1 in [9].
Two things have to be done: first, extend this theorem to the (easier) case where
w1 = w2 = 0; second, translate it back to an estimate for SLE at a fixed time.
Introduce the following processes:Xt = gt (1)−βt , Yt = gt (0)−βt , where(βt ) is
the time-scaled Brownian motion drivingK . As was seen previously,X andY

satisfy the following SDEs:

dXt = 2

Xt

dt + √
κ dBt , dYt = 2

Yt

dt + √
κ dBt ,

whereB is a standard real Brownian motion. LetLt = Xt −Yt be the length of the
image interval, and letRt = Xt/Lt . Tedious application of Itô’s formula leads to

dLt = 2dt

LtRt (1− Rt)
, dRt = 2(1− 2Rt)

L2
t Rt (1− Rt)

dt +
√

κ

Lt

dBt .

Introduce the following random time-change:

dt (s) = L2
t (s)Rt(s)(1− Rt(s))

2
ds;

then the previous system reduces todLt(s) = Lt(s) ds, that is, almost surely
Lt(s) = es and, lettingZs = Rt(s),

dZs = (1− 2Zs) ds +
√

κZs(1− Zs)

2
dBs(22)

as in [9]. Now introduce the following stopping times:

S = Inf
{
s :Zs ∈ {0,1}}, T = t (S) = Inf

{
t :Rt ∈ {0,1}}.

The counterpart of Theorem 3.1 in [9] for the casew1 = w2 = 0 is obtained as
Lemma 2 in the present paper; it gives the following estimate:

P (S > s) � exp
(−λ(0,0)s

) = exp
(
−κ − 4

2
s

)
.(23)
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It remains to transfer this estimate to deterministic values oft . Recall that we
have 2dt (s) = e2sZs(1 − Zs) ds. This already proves thatdt (s) ≤ e2s/8ds, that
is, t (s) ≤ e2s/16 ors ≥ log(16t (s))/2. Hence,

P (T > t) ≤ P

(
S >

log(16t)

2

)
� t−(κ−4)/4.

To obtain the lower bound, note that the proof of Theorem 3.1 in [9] also gives the
distribution ofRs knowing thatS > s, which is the eigenfunction associated to the
eigenvalueλ(0,0) for the generator ofR, namely,

c[x(1− x)](κ−4)/κ .

In particular, conditionally to the fact thatS > s, there is a positive probability that
Zs ∈ [1

4, 3
4]. Comparison with Brownian motion then shows that

P
(∀ s ∈ [s0, s0 + 1],Zs ∈ [1

8, 7
8

]|Zs0 ∈ [1
4, 3

4

]) ≥ c > 0,

and combining this with (23) provides, for alls0 > 42,

P
(∀ s ∈ [s0 − 1, s0],Zs ∈ [1

8, 7
8

]|S > s0
) ≥ c > 0.

Now on this event, we obtain

t (s0) ≥
∫ s0

s0−1

e2s

128
ds ≥ c0e

2s0,

from which the lower bound follows:

P (T > t) ≥ cP

(
S >

log(t/c0)

2

)
≥ ct−(κ−4)/4. �

The end of the proof is exactly the same as that of the previous theorem, so we
do not repeat it here.�

REMARK 3. For κ = 8 (where the obtained dimension is 0), the method is
inconclusive; but it is possible to prove that there are no cut-points in that case;
one of the simplest way to do it being to use thereversibilityof the trace, which
in turn is a consequence of the fact that SLE8 is the scaling limit of the uniform
spanning tree Peano path (cf. [13]). Notice however that the fact that the SLE8

trace is a Peano curve is not sufficient in itself to conclude.
If κ = 6, we get that the dimension of cut-times is 1/2. It is known in this case

(using Brownian exponents) that the dimension of cut-points is 2− 5/4 = 3/4
(cf. [8]). For the other values ofκ ∈ (4,8), the dimension ofC is not known.
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