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THE DIMENSION OF THE SLE CURVES

BY VINCENT BEFFARA

CNRS—UMPA—ENS Lyon

Let γ be the curve generating a Schramm–Loewner Evolution (SLE)
process, with parameter κ ≥ 0. We prove that, with probability one, the Haus-
dorff dimension of γ is equal to Min(2,1 + κ/8).

Introduction. It has been conjectured by theoretical physicists that various
lattice models in statistical physics (such as percolation, Potts model, Ising model,
uniform spanning trees), taken at their critical point, have a continuous confor-
mally invariant scaling limit when the mesh of the lattice tends to 0. Recently,
Oded Schramm [15] introduced a family of random processes which he called
Stochastic Loewner Evolutions (or SLE), that are the only possible conformally
invariant scaling limits of random cluster interfaces (which are very closely re-
lated to all above-mentioned models).

An SLE process is defined using the usual Loewner equation, where the driving
function is a time-changed Brownian motion. More specifically, in the present pa-
per we will be mainly concerned with SLE in the upper-half plane (sometimes
called chordal SLE), defined by the following PDE:

∂tgt (z) = 2

gt (z) − √
κBt

, g0(z) = z,(0.1)

where (Bt ) is a standard Brownian motion on the real line and κ is a positive
parameter. It can be shown that this equation defines a family (gt ) of conformal
mappings from simply connected domains (Ht) contained in the upper-half plane,
onto H. We shall denote by Kt the closure of the complement of Ht in H: then for
all t > 0, Kt is a compact subset of H and the family (Kt) is increasing. For each
value κ > 0, this defines a random process denoted by SLEκ (see, e.g., [14] for
more details on SLE).

There are very few cases where convergence of a discrete model to SLEκ

is proved: Smirnov [17] (see also the related work of Camia and Newman [3])
showed that SLE6 is the scaling limit of critical site percolation interfaces on the
triangular grid, and Lawler, Schramm and Werner [12] have proved that SLE2 and
SLE8 are the respective scaling limits of planar loop-erased random walks and
uniform Peano curves. Convergence of the “harmonic explorer” was obtained by
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Schramm and Sheffield [16], and there is also strong evidence [13] that the infinite
self-avoiding walk in the half-plane is related to SLE8/3.

It is natural to study the geometry of SLEκ , and in particular, its dependence
on κ . It is known (cf. [12, 14]) that, for each κ > 0, the process (Kt) is generated
by a random curve γ : [0,∞) → H (called the trace of the SLE or the SLE curve),
in the following sense: For each t > 0, Ht is the unique unbounded connected
component of H \ γ ([0, t]). Furthermore (see [14]), γ is a simple curve when
κ ≤ 4, and it is a space-filling curve when κ ≥ 8. The geometry of this curve will
be our main object of interest in the present paper.

It is possible, for each z ∈ H, to evaluate the asymptotics when ε → 0 of the
probability that γ intersects the disk of radius ε around z. When κ < 8, this prob-
ability decays like εs for some s = s(κ) > 0. This (loosely speaking) shows that
the expected number of balls of radius ε needed to cover γ ([0,1]) (say) is of the
order of εs−2, and implies that the Hausdorff dimension of γ is not larger than
2 − s. Rohde and Schramm [14] used this strategy to show that almost surely the
Hausdorff dimension of the SLEκ trace is not larger than 1 + κ/8 when κ ≤ 8, and
they conjectured that this bound was sharp.

Our main result in the present paper is the proof of this conjecture, namely:

THEOREM. Let (Kt) be an SLEκ in the upper-half plane with κ > 0, let γ be
its trace and let H := γ ([0,∞)). Then, almost surely,

dimH(H) = 2 ∧
(

1 + κ

8

)
.

This result was known for κ ≥ 8 (because the curve is then space-filling), κ = 6
(see [2], recall that this corresponds to the scaling limit of critical percolation clus-
ters) and κ = 8/3 (this follows from the description of the outer frontier of SLE6—
or planar Brownian motion—in terms of SLE8/3 in [11], and the determination of
the dimension of this boundary, see [8, 9]). Note that in both these special cases,
the models have a lot of independence built in (the Markov property of planar
Brownian motion, the locality property of SLE6), and that the proofs use it in a
fundamental way.

SLE2 is the scaling limit (see [12]) of the two-dimensional loop-erased walk:
Hence, we prove that the Hausdorff dimension of this scaling limit is 5/4, that is,
it is equal to the growth exponent of the loop-erased walk (obtained by Kenyon,
cf. [6]) and, at least heuristically, this is not surprising. It is not known whether
Kenyon’s result can be derived using SLE methods.

This exponent s and various other exponents describing exceptional subsets of γ

are closely related to critical exponents that describe the behavior near the critical
point of some functionals of the corresponding statistical physics model. The value
of the exponents 1 + κ/8 appear in the theoretical physics literature (see, e.g., [4]
for a derivation based on quantum gravity, and the references therein) in terms
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of the central charge of the model. Let us stress that in the physics literature, the
derivation of the exponent is often announced in terms of (almost sure) fractal
dimension, thereby omitting to prove the lower bound on the dimension. It might
a priori be the case that the value εs−2 is due to exceptional realizations of SLEκ

with exceptionally many visited balls of radius ε, while “typical” realizations of
SLEκ meet far fewer disks, in which case the dimension of the curve could be
smaller than 2 − s.

One standard way to exclude such a possibility and to prove that 2 − s corre-
sponds to the almost sure dimension of a random fractal is to estimate the variance
of the number of ε-disks needed to cover it. This amounts to computing second
moments, that is, given two balls of radius ε, to estimating the probability that the
SLE trace intersects both of them—and this is the hairy part of the proof, especially
if there is a long-range dependence in the model. One also needs another nontrivial
ingredient: One has to evaluate precisely (i.e., up to multiplicative constants) the
probability of intersecting one ball. Even in the Brownian case (see, e.g., [10]),
this is not an easy task.

Note that the discrete counterpart of our theorem in the cases κ = 6 and κ = 2 is
still an open problem. It is known that for critical percolation interfaces (see [18])
and for loop-erased random walks [6], the expected number of steps grows in the
appropriate way when the mesh of the lattice goes to zero, but its almost sure
behavior is not yet well-understood: For critical percolation, the up-to-constant
estimate of the first moment is missing, and for loop-erased random walks, we
lack the second moment estimate.

Another natural object is the boundary of an SLE, namely, ∂Kt ∩ H. For κ ≤ 4,
since γ is a simple curve, the boundary of the SLE is the SLE itself; for κ > 4,
it is a strict subset of the trace, and it is conjectured to be closely related to the
curve of an SLE16/κ (this is called SLE duality)—in particular, it should have di-
mension 1 + 2/κ . Again, the first moment estimate is known for all κ (though not
up to constants), and yields the upper bound on the dimension. The lower bound
is known to hold for κ = 6 (see [8]). A consequence of our main theorem is that
it also holds for κ = 8, because of the continuous counterpart of the duality be-
tween uniform spanning trees and loop-erased random walks (which is the basis
of Wilson’s algorithm, cf. [19]).

The derivation of the lower bound on the dimension relies on the construction
of a random Frostman measure μ supported on the curve. It appears that the prop-
erties of this measure are closely related to some of those exhibited by conformal
fields—more specifically, the correlations between the measures of disjoint sub-
sets of H behave similarly to the (conjectured) correlation functions in conformal
field theory. See, for instance, Friedrich and Werner [5].

The plan of this paper is as follows. In the first section we review some facts that
can be found in our previous paper ([2]) and that we will need later. Section 2 is
devoted to the derivation of the up-to-constants estimate of the first moment of the
number of disks needed to cover the curve. In Section 3 we will derive the upper
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bound on the second moment, which will conclude the proof of the main theorem.
In the final sections we will comment on the properties of the Frostman measure
supported on the SLE curve and on the dimension of the outer boundary of SLE8.

1. Preliminaries. As customary, the Hausdorff dimension of the random frac-
tal curve γ will be determined using first and second moments estimates. This
framework was also used in [2]. We now briefly recall without proofs some tools
from that paper that we will use. The following proposition is the continuous ver-
sion of a similar discrete construction due to Lawler (cf. [7]).

Let λ be the Lebesgue measure in [0,1]2, and (Cε)ε>0 be a family of random
Borel subsets of the square [0,1]2. Assume that for ε < ε′ we have almost surely
Cε ⊆ Cε′ , and let C = ∩Cε . Finally, let s be a nonnegative real number. Introduce
the following conditions:

1. For all x ∈ [0,1]2,

P(x ∈ Cε) � εs

(where the symbol � means that the ratio between both sides of the expression
is bounded above and below by finite positive constants);

2. There exists c > 0 such that, for all x ∈ [0,1]2 and ε > 0,

P
(
λ
(
Cε ∩ B(x, ε)

)
> cε2|x ∈ Cε

) ≥ c > 0;
3. There exists c > 0 such that, for all x, y ∈ [0,1]2 and ε > 0,

P({x, y} ⊂ Cε) ≤ cε2s |x − y|−s .

PROPOSITION 1. With the previous notation:

1. If conditions 1 and 2 hold, then a.s. dimH(C) ≤ d − s;
2. If conditions 1 and 3 hold, then with positive probability dimH(C) ≥ d − s.

REMARK. The similar proposition which can be found in [7] is stated in a
discrete setup in which condition 2 does not appear. Indeed, in most cases, this
condition is a direct consequence of condition 1 and the definition of Cε (e.g., if
Cε is a union of balls of radius ε as will be the case here).

The value of the exponent in condition 1 is usually given in terms of the prin-
cipal eigenvalue of a diffusion generator (cf. [1] for further reference). The rule of
thumb is as follows:

LEMMA 2. Let (Xt) be the diffusion on the interval [0,1] generated by the
following stochastic differential equation:

dXt = σ dBt + f (Xt) dt,
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where (Bt ) is a standard real-valued Brownian motion, σ is a positive constant,
and where f is a smooth function on the open unit interval satisfying suitable
conditions near the boundary. Let L be the generator of the diffusion, defined by

Lφ = σ 2

2
φ′′ + f φ′,

and let λ be its leading eigenvalue. Then, as t goes to infinity, the probability pt

that the diffusion is defined up to time t tends to 0 as

pt � e−λt .

We voluntarily do not state the conditions satisfied by f in detail here (roughly,
f needs to make both 0 and 1 absorbing boundaries, while being steep enough to
allow a spectral gap construction—cf. [2] for a more complete statement), because
we shall not use the lemma in this form in the present paper; we include it mainly
for background reference.

The next two sections contain derivations of conditions 1 and 3; together with
Proposition 1, this implies that

P

[
dimH H = 1 + κ

8

]
> 0.

The main theorem then follows from the zero-one law derived in [2], namely:

LEMMA 3 (0–1 law for the trace). For all d ∈ [0,2], we have

P(dimH H = d) ∈ {0,1}.

2. The first moment estimate. Fix κ > 0 and z0 ∈ H; let γ be the trace of a
chordal SLEκ in H, and let H = γ ([0,∞)) be the image of γ . We want to compute
the probability that H touches the disk B(z0, ε) for ε > 0.

PROPOSITION 4. Let α(z0) ∈ (0, π) be the argument of z0. Then, if κ ∈ (0,8),
we have the following estimate:

P
(
B(z0, ε) ∩ H �= ∅

) �
(

ε

�(z0)

)1−κ/8

(sinα(z0))
8/κ−1.

If κ ≥ 8, then this probability is equal to 1 for all ε > 0.

REMARK. We know that H is a closed subset of H̄ (indeed, this is a conse-
quence of the transience of γ —cf. [14]). For κ ≥ 8, this proves that, for all z ∈ H̄,
P(z ∈ H) = 1, hence, H almost surely has full measure. And since it is closed,
this implies that, with probability 1, γ is space-filling, as was already proved by
Rohde and Schramm [14] for κ > 8 and by Lawler, Schramm and Werner [12] for
κ = 8 (for which a separate proof is needed for the existence of γ ).
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PROOF OF PROPOSITION 4. The idea of the following proof is originally due
to Oded Schramm. Let δt be the Euclidean distance between z0 and Kt . (δt ) is then
a nonincreasing process, and its limit when t goes to +∞ is the distance between
z0 and H . Besides, we can apply the Köbe 1/4 theorem to the map gt : this leads
to the estimate

δt � �(gt (z0))

|g′
t (z0)|(2.1)

(where the implicit constants are universal—namely, 1/4 and 4).
It will be more convenient to fix the image of z0 under the random conformal

map. Hence, introduce the following map:

g̃t : z �→ gt (z) − gt (z0)

gt (z) − gt (z0)
.

It is easy to see that g̃t maps H \ Kt conformally onto the unit disk U, and maps
infinity to 1 and z0 to 0. In other words, the map

w �→ g̃t

(
wgt(z0) − gt (z0)

w − 1

)

maps the complement of some compact K̃t in U onto U, fixing 0 and 1 (in all this
proof, z will stand for an element of H and w for an element of U). Moreover, in
this setup equation (2.1) becomes simpler (because the distance between 0 and the
unit circle is fixed): Namely,

δt � 1

|g̃′
t (z0)| .(2.2)

Differentiating g̃t (z) with respect to t (which is a little messy and error-prone,
but straightforward) leads to the following differential equation:

∂t g̃t (z) = 2(β̃t − 1)3

(gt (z0) − gt (z0))2β̃2
t

· β̃t g̃t (z)(g̃t (z) − 1)

g̃t (z) − β̃t

,(2.3)

where (β̃t ) is the process on the unit circle defined by

β̃t = βt − gt (z0)

βt − gt (z0)
.

Now the structure of the expression for ∂t g̃t (z) [equation (2.3)] is quite nice: The
first factor does not depend on z and the second one only depends on z0 through β̃ .
Hence, let us define a (random) time change by taking the real part of the first
factor; namely, let

ds = (β̃t − 1)4

|gt (z0) − gt (z0)|2β̃2
t

dt,
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and introduce hs = g̃t (s).
Then equation (2.3) becomes similar to a radial Loewner equation, that is, it can

be written as

∂shs(z) = X̃
(
β̃t (s), hs(z)

)
,(2.4)

where X̃ is the vector field in U defined as

X̃(ζ,w) = 2ζw(w − 1)

(1 − ζ )(w − ζ )
.(2.5)

The only missing part is now the description of the driving process β̃ . Applying
Itô’s formula (now this is an ugly computation) and then the previous time-change,
we see that β̃t (s) can be written as exp(iαs), where (αs) is a diffusion process on
the interval (0,2π) satisfying the equation

dαs = √
κ dBs + κ − 4

2
cotg

αs

2
ds(2.6)

with the initial condition α0 = 2α(z0).
The above construction is licit as long as z0 remains inside the domain of gt .

While this holds, differentiating (2.4) with respect to z at z = z0 yields

∂sh
′
s(z0) = 2h′

s(z0)

1 − β̃s

,

so that dividing by h′
s(z0) �= 0 and taking the real parts of both sides we get

∂s log |h′
s(z0)| = 1,

that is, almost surely, for all s > 0, |h′
s(z0)| = |h′

0(z0)|es . Combining this with (2.2)
shows that

δt (s) � δ0e
−s � �(z0)e

−s .

Finally, let us look at what happens at the stopping time

τz0 = Inf{t : z0 ∈ Kt }.
We are in one out of two situations: Either z0 is on the trace: in this case δt goes
to 0, meaning that s goes to ∞, and the diffusion (αs) does not touch {0,2π}. Or,
z0 is not on the trace: then δt tends to d(z0,H) > 0, and the diffusion (αs) reaches
the boundary of the interval (0,2π) at time

s0 := log δ0 − log d(z0,H) + O(1).

Let S be the surviving time of (αs): the previous construction then shows that

d(z0,H) � δ0e
−S,

and estimating the probability that z0 is ε-close to the trace becomes equivalent to
estimating the probability that (αs) survives up to time log(δ0/ε).
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Assume for a moment that κ > 4. The behavior of cotgα/2 when α is close to 0
shows that (αs) can be compared to the diffusion (ᾱs) generated by

dᾱs = √
κ dBs + (κ − 4)

ds

ᾱs

,

which (up to a linear time-change) is a Bessel process of dimension

d = 3κ − 8

8
.

More precisely, (ᾱs) survives almost surely, if and only if (αs) survives almost
surely. But it is known that a Bessel process of dimension d survives almost surely
if d ≥ 2, and dies almost surely if d < 2. Hence, we already obtain the phase
transition at κ = 8:

• If κ ≥ 8, then d ≥ 2, and (αs) survives almost surely. Hence, almost surely,
d(z0,H) = 0, and for all ε > 0, the trace will almost surely touch B(z0, ε).

• If κ < 8, then d < 2 and (αs) dies almost surely in finite time. Hence, almost
surely, d(z0,H) > 0.

So, there is nothing left to prove for κ ≥ 8. From now on, we shall then suppose that
κ ∈ (0,8). If κ ≤ 4, then the drift of (αs) is toward the boundary, hence, comparing
it to standard Brownian motion shows that it dies almost surely in finite time as for
κ ∈ (4,8). We want to apply Lemma 2 to (αs) and for that we need to know the
principal eigenvalue of the generator Lκ of the diffusion. It can be seen that the
function

(sin(x/2))8/κ−1

is a positive eigenfunction of Lκ , with eigenvalue 1 − κ/8: hence, we already
obtain that, if α0 is far from the boundary, P(S > s) � exp(−(1 − κ/8)s), that is,

P
(
d(z0,H) ≤ ε

) � e(1−κ/8) log(ε/δ0) �
(

ε

δ0

)1−κ/8

,(2.7)

which is the correct estimate. It remains to take the value of α0 into account.
Introduce the following process:

Xs := sin
(

αs

2

)8/κ−1

e(1−κ/8)s

(and Xs = 0 if s ≥ S). Applying the Itô formula shows that (Xs) is a local martin-
gale [in fact, this is the same statement as saying that sin(x/2)8/κ−1 is an eigen-
function of the generator], and it is bounded on any bounded time interval. Hence,
taking the expected value of X at times 0 and s shows that

sin
(

α0

2

)8/κ−1

= e(1−κ/8)sP (S ≥ s)E

[
sin

(
αs

2

)8/κ−1∣∣∣S ≥ s

]
.(2.8)
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The same proof as that of Lemma 2 shows that, for all s ≥ 1,

P(αs ∈ [π/2,3π/2]|S ≥ s) > 0,

with constants depending only on κ ; combining this with (2.8) then provides

P(S ≥ s) � e−(1−κ/8)s sin
(

α0

2

)8/κ−1

,

again with constants depending only on κ . Applying the same computation as for
equation (2.7) ends the proof. �

COROLLARY 5. Let D � C be a simply connected domain, a and b be two
points on the boundary of D, and γ be the path of a chordal SLEκ in D from a

to b, with κ ∈ (0,8). Then, for all z ∈ D and ε < d(z, ∂D)/2, we have

P
(
γ ∩ B(z, ε) �= ∅

) �
(

ε

d(z, ∂D)

)1−κ/8(
ωz(ab) ∧ ωz(ba)

)8/κ−1
,

where ωz is the harmonic measure on ∂D seen from z and ab is the positively
oriented arc from a to b along ∂D.

PROOF. This is easily seen by considering a conformal map � mapping D to
the upper-half plane, a to 0 and b to ∞: Since the harmonic measure from z in D

is mapped to the harmonic measure from �(z) in H, it is sufficient to prove that,
for all z ∈ H,

ωz(R+) ∧ ωz(R−) � sin(arg z);
and ωz(R+) can be explicitly computed, because ωz is a Cauchy distribution on
the real line:

ωx+iy(R+) = 1

π

∫ ∞
0

du/y

1 + (u − x)2/y2 = 1

2
+ 1

π
arctg(x/y).

When x tends to −∞, this behaves like −y/πx, which is equivalent to sin(arg(x +
iy))/π . �

This “intrinsic” formulation of the hitting probability will make the derivation
of the second moment estimate more readable.

3. The second moment estimate. We still have to derive condition 3 in
Proposition 1. For κ = 6, it was obtained using the locality property, but this does
not hold for other values of κ , so we can rely only on the Markov property. In this
whole section we shall assume that κ < 8 (there is nothing to prove if κ ≥ 8, since
in that case γ is space-filling).

The general idea is as follows. Fix two points z and z′ in the upper half plane,
and ε < |z′ − z|/2. We want to estimate the probability that the trace γ visits both
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B(z, ε) and B(z′, ε). Assume that it touches, say, the first one (which happens
with probability of order ε1−κ/8), and that it does so before touching the other.

Apply the Markov property at the first hitting time Tε(z) of B(z, ε): If every-
thing is going fine and we are lucky, the distance between z′ and KTε(z) will
still be of order |z′ − z|. Hence, applying the first moment estimate to this situ-
ation shows that the conditional probability that γ hits B(z′, ε) is not greater than
C(ε/|z′ − z|)1−κ/8 [it might actually be much smaller, if the real part of gTε(z)(z

′)
is large, but this is not a problem since we only need an upper bound], and this
gives the right estimate for the second moments:

C
ε2−κ/4

|z′ − z|1−κ/8 .

The whole point is then to prove that this is the main contribution to the second
moment; the way we achieve it is by providing sufficiently sharp upper bounds for
the second term of the estimate given by Corollary 5.

3.1. Preliminaries. The first part of the proof is a succession of topological
lemmas which allow for a precise estimation of the harmonic measures of the two
sides of the SLE process. They are easier to state in the case κ ≤ 4, for which
the process consists in a simple curve. In the case 4 < κ < 8, what happens is
that a positive area is “swallowed” by the process; in all the following discussion,
nothing changes as long as the points z and z′ themselves are not swallowed, and
the arguments are exactly the same—as all that is required for the proofs to apply
is for the complement of the process to be simply connected and contain both z

and z′.
On the other hand, if (say) z is swallowed at a given time, at which the curve

has not touched C(z, ε) yet, then this will never happen, so this event does not
contribute at all to the probability of the event we are interested in. If the trace does
touch C(z, ε) before swallowing z, then the swallowing occurs at a time when it
is not relevant anymore—since we know already that z is ε-close to the path—so
again the rest of the argument is not affected.

In order to simplify the exposition of the argument, we will implicitly assume
that indeed κ ≤ 4. The interested reader can easily check as she proceeds that what
follows does apply to the other cases, with little change in the writing.

Let z, z′ be two points in the upper half plane, and let δ = |z − z′|/2. We can
assume that both �z and �z′ are greater than 18δ (say). Introduce a “separator set”
(cf. Figure 1):

E = C

(
z + z′

2
,2δ

)
∪ {

w ∈ H :d(w, z) = d(w, z′) ≤ δ
√

5
}
.

At each positive time t , the complement Ht of Kt in H is an open and simply
connected domain, hence, its intersection with E is the disjoint union of at most
countably many connected sets, each separating Ht into two (or up to four for at
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FIG. 1. Second moments: the setup.

most two of them) connected components. If both z and z′ are in Ht , let Et be
the union of those crosscuts which disconnect z from z′ in Ht ; if either z or z′ is
in Kt , let Et = ∅—notice that in the case of an SLE process with parameter κ ≤ 4,
this almost surely never happens. Note that, as long as z and z′ are in Ht , Et is
not empty, because Ht is simply connected and E itself disconnects z from z′. The
components of Et can then be ordered in the way they first appear on any path
going from z to z′ in Ht ; let λt be the first one, and λ′

t be the last one (which is also
the first one seen from z′ to z); for convenience, in the case Et = ∅, let λt = λ′

t = ∅
too.

For each time t (possibly random), introduce

t̃ := Inf{s > t :Ks ∩ λ′
t �= ∅},(3.1)

ť := Inf{s > t :Ks ∩ λt �= ∅},(3.2)

with the usual convention that the infimum of the empty set is infinite. Clearly,
τ̃ and τ̌ are stopping times if τ is one.

Besides, Et does not change on any time-interval on which γ does not intersect
E—hence, if for some t1 < t2, γ ((t1, t2)) ∩ E = ∅, we can define Et2− as its con-
stant value on the interval (t1, t2) (i.e., as Et1 ). We say that a positive stopping time
t is a good time if the following conditions are satisfied with probability 1:

• There exists s < t such that γ ((s, t)) ∩ E = ∅;
• γ (t) ∈ Et−.

Examples of good times are t̃ and ť when t is a stopping time such that γ (t) /∈ E
holds with probability 1.

We first give two preliminary lemmas which will be useful in estimating the
harmonic measures appearing in the statement of Corollary 5. They are not specific
to SLE, but they depend (as stated) on the fact that γ is a simple curve which does
not contain z nor z′ (as is the case with probability 1 in the case κ ≤ 4); they have
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obvious counterparts obtained by exchanging z and z′ and replacing everywhere t̃

with ť .
For each positive time, let ωt (resp. ω′

t ) be the smaller of the harmonic measures
of the two sides of γ , from z (resp. z′) in Ht—this corresponds to the term we
want to estimate in the statement of Corollary 5. (Here and in all the sequel, as
is natural, we include the positive real axis in the right side of γ and the negative
real axis in its left side.) Besides, for t > 0 and ρ ∈ (0, δ), let Bt (ρ) [resp. B ′

t (ρ)]
be the closure of the connected component of z (resp. z′) in B(z, ρ) ∩ Ht [resp.
B(z′, ρ) ∩ Ht ].

In all that follows we will use the following notation at each time t > 0 (together
with their counterparts around z′):

rt := d
(
z, γ ([0, t]) ∪ R

);
ρt := Inf{ρ ∈ (0, δ) :Bt (ρ) disconnects z′ from ∞ in Ht }

(letting ρt = δ if the infimum is taken over an empty set). Obviously (rt ) is non-
increasing; but (ρt ) is not in general. Besides, ρt ≥ rt . Last, since the sets Bt (ρ)

and γ ([0, t]) are all compact, it is easy to see that at each time t such that ρt < δ,
γ ([0, t]) ∪ Bt (ρt ) itself does disconnect z′ from infinity.

LEMMA 6. There exists a positive constant c such that the following happens.
Let t be a good time, and ρ ∈ (rt , δ). If ωt ≥ c(rt/ρ)1/2, then γ ([0, t]) ∪ Bt (ρ)

disconnects z′ from infinity; in particular, ρt ≤ ρ.

PROOF. First make the following remark: For ρ ∈ (rt , δ), if the harmonic mea-
sure from z in Bt (ρ) \ γ ([0, t]) gives positive mass to both sides of γ , then Bt (ρ)

separates z′ from infinity in Ht (see Figure 2).
Indeed, assume that we are this case. That means that there exist two dis-

joint smooth curves ζ1, ζ2 : [0,1] → H satisfying ζ1(0) = ζ2(0) = z, ζi((0,1)) ⊂
Bt (ρ) \ γ ([0, t]) and ζi(1) ∈ γ ([0, t]), each landing on a different side of γ [i.e.,
lims→1 gt (ζ1(s))−βt ∈ (0,+∞) and lims→1 gt (ζ2(s))−βt ∈ (−∞,0)—note that
such limits are always welldefined because gt extends continuously to the bound-
ary of Ht ]. Let ζ = ζ1((0,1)) ∪ ζ2((0,1)) ∪ {z} be the corresponding cross-cut:
The complement of ζ in Ht has exactly two (simply) connected components, one
of which is unbounded.

If γ (t) were on the boundary of the unbounded component, then one could con-
tinue γ ([0, t]) with some curve γ̂ contained in Ht \ ζ and tending to infinity. Then
the bounded component of Ht \ ζ would be contained in one of the components
of H \ (γ ([0, t]) ∪ γ̂ ), hence, its boundary (which contains both endpoints of ζ )
would intersect only one side of γ —which is in contradiction with our hypothesis.

Now if z′ were in the unbounded component, it would be possible to join z to
z′ inside the unbounded component. But such a path would have to intersect the
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FIG. 2. Proof of Lemma 6.

part of Et− which contains γ (t) (by the definition of Et− and that of a good time),
and it does not because this part of Et is contained in the connected component of
Ht \ ζ which contains γ (t) on its boundary—that is, the bounded one.

To sum it up, γ ([0, t]) ∪ ζ cuts Ht into two connected components, and the
bounded component contains z′ in its interior and γ (t) on its boundary. In particu-
lar, since ζ is contained in Bt (ρ), this implies that Bt (ρ) separates z′ from infinity
in Ht .

It is then straightforward to complete the proof of the lemma, by applying Beurl-
ing’s estimate in Bt (ρ) and the maximum principle. �

We will actually use the converse of this lemma: At any good time t , we have

ωt ≤ c

(
rt

ρt

)1/2

.(3.3)

A related fact is the following:

LEMMA 7. Let r ∈ (0, δ), T be the first time when γ hits the circle C(z, r)

and T̃ as introduced above [see equation (3.1)]. If T̃ if finite, then B
T̃
(r) does not

disconnect z′ from infinity in H
T̃

.

PROOF. Let ζ be a continuous, simple curve going from z′ to infinity in H
T̃

,
and let C be the connected component of HT \ E which contains z′. It is always
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possible to ensure that ζ intersect every component of E
T̃

at most once. The bound-
ary of C is contained in γ ([0, T ]) ∪ λ′

T ; and since γ ([0, T ]) ∩ E is not empty
[because E separates C(z, r) from 0], necessarily γ ([0, T ]) ∩ λ̄′

T �= ∅. In partic-
ular, HT \ (ζ ∪ C ∪ λ′

T ) has exactly two unbounded connected components, say,
U1 and U2.

Assume that B
T̃
(r) does disconnect z′ from infinity. Then ζ has to intersect its

interior, splitting it into at most countably many connected components. γ ([0, T̃ ])
has to intersect at least one component on each side of ζ , since if not one could
deform ζ so that it avoids B

T̃
(r)—but by the definition of T , γ ([0, T ]) intersects

only the adherence of one component, say, on the left of ζ . By construction, the
only way for γ to reach a component on the other side of ζ is by intersecting C
and hence λ′

T , so it cannot happen before time T̃ . �

In other words, if T is the first time when γ intersects C(z, r) and τ is the first
time t such that ρt ≤ r , then assuming that τ is finite, we have T < T̃ < τ .

The last lemma in this section is specific to SLE: It is a quantitative version of
the transience of the curve γ and basically says that if γ forms a fjord, then it is
not likely to enter it. With the modifications of notation described later for the case
4 < κ < 8, it holds also in that case, and the proof is the same.

LEMMA 8. Let γ be the trace of an SLE with parameter κ ≤ 4; then there exist
positive constants C and η such that the following happens. Let ρ > 0 and let τ be
the first time t such that ρt ≤ ρ (i.e., such that γ ([0, t])∪Bt (ρ) disconnects z′ from
infinity). τ is finite with positive probability, in which case we have |γτ − z| = ρ,
and:

1. P(τ̃ < ∞|Fτ , τ < ∞) ≤ C(ρ/δ)η;
2. For every r < rτ ,

P(τ̃ < ∞, rτ̃ < r|Fτ , τ < ∞) ≤ C(r/rτ )
1−κ/8(ρ/δ)η.

PROOF. (i) In all this proof c will denote any finite positive constant which
depends only on κ . Notice that if z′ ∈ Kτ (which can happen if κ > 4), there is
nothing to prove, since τ̃ = ∞ in this case; so we assume from now on that z′ /∈ Kτ .
Recall that λ′

τ is the last component of Eτ that one has to cross when going from
z to z′ in Hτ . By monotonicity, the extremal distance between E and Bτ (ρ) in Hτ

is bounded below by 1
2π

log(δ/ρ)—and hence so is the extremal distance between
λ′

τ and Bτ (ρ).
By the definition of τ , it is possible to find a simple continuous curve ζ go-

ing from z′ to ∞ in (Hτ \ Bτ (ρ)) ∪ {γτ } (e.g., by using the fact that γ ([0, τ −
s]) ∪ Bτ (ρ) does not separate z′ from ∞ for s > 0, choosing ζ s accordingly, and
letting s go to 0); and there exists a simple continuous curve ζ ′ going from z to
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FIG. 3. Proof of Lemma 8: Setup.

γτ in Bτ (ρ) (see Figure 3). Considering these curves, it is easy to see that λ′
τ

disconnects z′, and not z, from infinity in Hτ .
The construction also shows that |γτ − z| ≤ ρ: Indeed, if not then, we can

deform ζ locally around γτ to obtain a continuous curve going from z′ to in-
finity without hitting γ ([0, τ ]) ∪ Bτ (ρ), which is in contradiction with the de-
finition of τ . If on the other hand we had |γτ − z| < ρ, then for s < τ large
enough, Bs(ρ) ∪ γ ([0, s]) would still disconnect z′ from infinity, also leading to a
contradiction—hence, |γτ − z| = ρ.

Map the whole picture by ϕ := gτ −βτ . Bτ (ρ) is mapped to a cross-cut having 0
on its closure, and the images of λ′

τ and z′ are in a bounded connected component
of its complement (cf. Figure 4). The boundary of the unbounded component of the
complement of ϕ(Bτ (ρ)) contains either (−∞,0) or (0,∞); for ease of notation,
we assume that the former holds, as in the figure.

By conformal invariance, the extremal distance in H between ϕ(λ′
τ ) and

ϕ(Bτ (ρ)) is bounded below by 1
2π

log(δ/ρ)—and so is the extremal distance be-
tween ϕ(λ′

τ ) and (−∞,0), since 0 is on the closure of ϕ(B(z, ρ)). Let x > 0 be the
smallest element of R ∩ ϕ(λ′

τ ) and let r > 0 be the smallest positive real such that
C(x, r) separates ϕ(λ′

τ ) from infinity [so that, in particular, ϕ(λ′
τ ) ⊂ B̄(x, r)]. Let l

be the extremal distance in H\ϕ(λ′
τ ) between (0, x) and (Max(R ∩ ϕ(λ′

τ )),+∞),
that is, the reciprocal of the extremal distance in H between (−∞,0) and ϕ(λ′

τ ):
We have l ≤ c/ log(δ/ρ).
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FIG. 4. Proof of Lemma 8: After mapping by ϕ.

On the other hand, it is possible to find a lower bound for l in terms of x and r ,
as follows: Consider the metric given by u(z) = α/|z − x| if r/5 < |z − x| < 5x,
and u(z) = 0 otherwise, where α is chosen to normalize the surface integral to
1—so that α is of order 1/ log(x/r). In this metric, the length of any curve joining
(0, x) to (Max(R ∩ ϕ(λ′

τ )),+∞) around ϕ(λ′
τ ) is at least of order α [this can be

seen, e.g., by using the conformal map z �→ log(z − x), which maps u, where it is
not zero, to the renormalized Euclidean metric]. Hence, we obtain a lower bound
for l, of the form l ≥ c/ log(x/r), and thus an upper bound on r/x of the form
c(ρ/δ)α for some α > 0.

Let p(r) be the probability that a chordal SLEκ starting at 0 touches the cir-
cle C(1, r). Since we are in the case κ < 8, 0 < p(r) < 1 as soon as r ∈ (0,1),
and p(r) goes to 0 with r ; besides, the strong Markov property applied at the first
hitting time of C(1, r) (if such a time exists) together with Köbe’s 1/4-theorem
ensure that there is a finite positive constant C > 1 such that, for all r, r ′ < 1,
p(rr ′) ≤ Cp(r)p(r ′). So, let r0 be such that p(r0) < C−2 and apply the inequal-
ity n − 1 times to obtain p(rn

0 ) ≤ Cn−1(C−2)n ≤ C−n. This implies that p(r) is
bounded above by crη′

for some η′ > 0 [actually, the optimal value for η′ is the
same as the boundary exponent sb = (8/κ) − 1, but we will not need this].

Hence, we obtain

P(τ̃ < ∞|Fτ , τ < ∞) ≤ c

(
r

x

)η′
≤ c

(
ρ

δ

)η

,

with η > 0, as we wanted.
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(ii) The proof of this estimate is actually a simpler version of the proof of the
second-moment estimate in the next section, so we will explain it in more detail
than would probably be necessary. We want to estimate the conditional probability,
conditionally to Fτ , that τ̃ is finite and that the curve γ hits the circle C(z, r) before
τ̃ (we say that γ succeeds if these two conditions are satisfied). Fix a ∈ (0,1) (its
value will be chosen later in the proof): If γ succeeds, then, in particular, it has to
hit all the circles of the form C(z, rτ a

k) lying between γ (τ) and C(z, r), and (the
relevant parts of) all the circles of the form C(z, ρa−k) lying between γ (τ) and Eτ .

The idea is then the following: For each possible ordering of these hitting times,
we will estimate the probability that the circles are hit in this particular order, using
the strong Markov property recursively together with previous estimates; we can
then sum over all possible orderings to obtain an estimate of the probability that γ

succeeds.
For each k > 0, let Tk be the first hitting time of C(z, rτ a

k) by γ . Besides, let λk

be the last connected component of C(z, ρa−k) ∩ Hτ which a curve going from z

to z′ has to cross, and let τk be the first hitting time of λk by γ . Last, let k1 (resp. k2)
be the largest integer smaller than log(δ/ρ)/ log(1/a) [resp. log(rτ /r)/ log(1/a)]:
It is sufficient to give an upper bound for the probability that both τk1 and Tk2 are
finite and smaller that τ̃ .

We describe the ordering of the hitting times by specifying the successive num-
bers of circles of each kind which γ hits before time τ̃ . More precisely, assume
that γ succeeds: Then there are nonnegative integers I , (mi)i≤I and (li)i≤I , all
positive except possibly for m1 and lI , such that

τ1 < · · · < τm1 < T1 < · · · < Tl1 < τm1+1 < · · · < τm1+m2 < · · · < Tl1+···+lI < τ̃

and
∑

mi = k1 and
∑

li = k2 [so that γ first crosses m1 of the λk , then l1 of the
C(z, rτ a

k), then m2 new λk , etc.].
Notice that at time τi , Beurling’s estimate in the domain B(z, rτ ) \ γ ([0, τi])

shows that ωτi
is at most equal to C(rτi

/rτ )
1/2 (by Lemma 7 and the same argu-

ment as the one used in the proof of Lemma 6). Besides, the same proof as that of
point (i) in the present lemma shows the following: For given values of the (mi)

and (li), for each i, conditionally to FTl1+···+li
and the facts that Tl1+···+li < ∞ and

that the last τ -time happening before Tl1+···+li is τm1+···+mi
(as will be the case in

the construction), P(τm1+···+mi+1 < ∞|FTl1+···+li
) is bounded by Caηmi+1 .

For given values of I and the (mi) and (li), applying the strong Markov property
at each of the times Tl1+···+li and τm1+···+mi

, we get an estimate of the conditional
probability (conditionally to Fτ ) that γ succeeds with this particular ordering, as
a product of conditional probabilities, namely,

I∏
i=1

P(τm1+···+mi
< ∞|FTl1+···+li−1

)P (Tl1+···+li < ∞|Fτm1+···+mi
).
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Using the previous estimates, and Corollary 5, this product is bounded above by

I∏
i=1

Caηmi (al1+···+li−1)(8/κ−1)/2(ali )1−κ/8.

It remains to sum this estimate over all possible values of I , the mi and the li .
We get the following, where as is usual C is allowed to change from line to line,
but depends only on κ and later on a:

P(τk1 < τ̃,Tk2 < τ̃) ≤
∞∑

I=1

∑
(mi),(li )

I∏
i=1

Caηmi (al1+···+li−1)(8/κ−1)/2(ali )1−κ/8

≤ aηk1+(1−κ/8)k2

∞∑
I=1

CI
∑

(mi),(li )

I∏
i=1

(al1+···+li−1)(8/κ−1)/2

= aηk1+(1−κ/8)k2

∞∑
I=1

CI
∑

(mi),(li )

I∏
i=1

(
a(I−i)li

)(8/κ−1)/2
.

For a fixed value of I , the number of possible choices for the mi (which are I

integers of sum k1) is smaller than 2I+k1 , hence, replacing C by 2C, we get

P(τk1 < τ̃,Tk2 < τ̃) ≤ aηk1+(1−κ/8)k22k1

∞∑
I=1

CI
∑
(li )

I∏
i=1

(
a(I−i)li

)(8/κ−1)/2
.

The sum over (li) is taken over all I -tuples of positive integers with sum k2, so
if the first I − 1 are known, so is the last one. An upper bound is then given by
relaxing the condition l1 + · · · + lI = k2 and simply summing over all positive
values of l1, . . . , lI−1 (lI does not contribute to the product anyway). So we obtain

P(τk1 < τ̃,Tk2 < τ̃) ≤ aηk1+(1−κ/8)k22k1

∞∑
I=1

CI
I−1∏
i=1

∑
l>0

(
a(I−i)l)(8/κ−1)/2

.

We can sum over l > 0 in each term of the product; each sum will be equal to
a(I−i)(8/κ−1)/2 up to a constant which, if a is chosen small enough, is smaller
than 2. Hence, a factor 2I which can again be made part of CI by doubling the
value of C:

P(τk1 < τ̃,Tk2 < τ̃) ≤ aηk1+(1−κ/8)k22k1

∞∑
I=1

CI
I−1∏
i=1

(
a(I−i))(8/κ−1)/2

.

Compute the product explicitly: The exponent of a is then the sum of the I − i

for 1 ≤ i ≤ I − 1, which is equal to I (I − 1)/2. The linear term −I/2 can be
incorporated in the factor CI (making C depend on a now, which will not be a
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problem), leading to

P(τk1 < τ̃,Tk2 < τ̃) ≤ aηk1+(1−κ/8)k22k1

∞∑
I=1

CI (aI 2/2)(8/κ−1)/2

≤ (2aη/2)k1a(η/2)k1+(1−κ/8)k2

∞∑
I=1

CI (aI 2/2)(8/κ−1)/2.

Now pick a small enough that 2aη/2 is smaller than 1. The sum in the previous
expression is finite (because κ < 8 and a < 1), so we obtain

P(τk1 < τ̃,Tk2 < τ̃) ≤ Ca(η/2)k1+(1−κ/8)k2,

which implies the announced result. �

REMARK 1. It is possible to simplify the statement of the last part of the
proof of the lemma (though unfortunately not the computation) in the following
way. Let m = (mi) and l = (li) be the jump sizes of the process, which we will
interpret as ordered partitions of k1 and k2, respectively. As is customary, we write
this as m � k1, respectively l � k2. The length of the partitions, that is, I , will
be denoted as |m| = |l|. Let l+ be the cumulative sum of l, that is, the sequence
(l1 + · · · + li)1≤i≤I−1. Using am as a shortcut for the product of the ami , the main
step in the proof of (ii) above is the following inequality, valid for any positive
exponents α, β and γ and for a small enough that 4caγ/2 < 1: Uniformly in k1
and k2, ∑

m�k1,l�k2,|l|=|m|
aαm+βl+γ l+c|l| ≤ Caαk1/2+βk2 .(3.4)

The direct use of this inequality and similar notation will greatly simplify the writ-
ing of the proof in the next section.

REMARK 2. One could describe the behavior of the system in the proof of
point (ii) in a different way. Let mt (resp. lt ) be the value of k corresponding to the
last λk [resp. C(z, rτ a

k)] discovered by γ by time t (or 0 if t < τ1, resp. t < T1).
The process (mt , lt ) takes values in N2; looking at it at times Tl1+···+li , one can
couple it with a discrete-time Markov chain (Mi,Li) in � = N2 ∪ {�}, with an
absorbing state � and transition probabilities given by the following:

• P(Mi+1 = Mi + m,Li+1 = Li + l|Mi,Li) = 0 if m ≤ 0 or l ≤ 0,
• P(Mi+1 = Mi +m,Li+1 = Li + l|Mi,Li) ≤ Caηm+(8/κ−1)Mi/2+(1−κ/8)l if m >

0 and l > 0.

The probability estimate provided by point (ii) of the previous lemma is then
bounded above by the probability that this Markov chain, started at (0,0), reaches
the domain Dk1,k2 = �k1,∞�×�k2,∞�. Such a probability can be estimated by
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summing the probabilities of all possible paths going from (0,0) to Uk1,k2 (which
corresponds to the proof we just gave), or by finding an appropriate super-
harmonic function on N2. However, we could not find a simple expression for
such a super-harmonic function.

3.2. The proof. Applying Lemma 6, Corollary 5 and the strong Markov prop-
erty, we obtain the following estimate (which we will refer to as the main estimate):
For every good time t and every radius r ∈ (0, rt ),

P
(
γ ([t,∞)) ∩ B(z, r) �= ∅|Ft , t < ∞) ≤ C

(
r

rt

)s( rt

ρt

)sb/2

,(3.5)

where we define the hull and boundary exponents by

s = 1 − κ

8
and sb = 8

κ
− 1

and where C depends only on κ . The way to obtain the required second-moment
estimate from this upper bound is actually quite similar in spirit to the way we
proved point (ii) of Lemma 8: We will split the event that γ hits two small disks
according to the order in which it visits a finite family of circles, estimate each
of these individual probabilities as a product using the strong Markov property,
and then sum over all possibilities. The notation is quite heavier than previously,
though.

Introduce a small constant a ∈ (0,1) (the value of which will be determined
later) and let δn = anδ. We will split the event

Eε(z, z
′) := {B(z, ε) ∩ γ ([0,∞)) �= ∅,B(z′, ε) ∩ γ ([0,∞)) �= ∅}

according to the order in which the processes (rt ), (r ′
t ), (ρt ) and (ρ′

t ) reach the
values δn. For convenience, let n̄ = �log(ε/δ)/ loga�: It is sufficient to estimate
the probability that both (rt ) and (r ′

t ) reach the value δn̄.
Let Tn (resp. T ′

n, τn, τ ′
n) be the first time when rt (resp. r ′

t , ρt , ρ′
t ) is not greater

than δn (or infinity, if such a time does not exist). We will call all these stopping
times discovery times.

LEMMA 9. For all n,n′ > 0, we have the following (as well as their coun-
terparts obtained by exchanging the roles of z and z′) if all the involved stopping
times are finite:

1. γτn ∈ C(z, δn) ∩ Bτn(δn); in particular, |γτn − z| = δn;
2. Tn < Tn+1 and τn < τn+1;
3. T̃n < τn;
4. If Tn < T ′

n′ , then T̃n < T ′
n′ , and similarly replacing T (resp. T ′, resp. both) by τ

(resp. τ ′, resp. both).
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PROOF. Point (i) was proved as part of Lemma 8; point (ii) is then obvious
and point (iii) is a direct consequence of Lemma 7, so only (iv) requires a proof.

Assume that Tn < T ′
n′ . Let ζ be a curve going from z to z′, obtained by concate-

nating ζ1 ⊂ BTn(δn), γ ([Tn,T
′
n′ ]) and ζ2 ⊂ BT ′

n′ (δn′). Such a curve has to cross

λ′
Tn

(by definition), and that can only happen on γ ((Tn, T
′
n′)) because the distance

between ETn and z (resp. z′) is greater than δn (resp. δn′). This is equivalent to
saying that T̃n < T ′

n′ , which is what we wanted. The same reasoning applies when
replacing T by τ and/or T ′ by τ ′. �

Here is a somewhat informal description of the construction we will do. Assume
that γ hits both B(z, δn̄) and B(z′, δn̄). In order to do it, it has to cross all the
circles of radii δn, n ≤ n̄ around z and z′, and it will do so in a certain order, coming
back to the separator set E between explorations around z and around z′ [this is
the meaning of point (iv) of the previous lemma]. We call a task the time interval
spanning between two successive such returns on E . The conditional probability
that a given task is performed, conditionally to its past, is then given by the main
estimate (3.5), and the rest of the construction is then very similar to the proof of
point (ii) in Lemma 8.

Let S0 = 0 and define the stopping times Si and S′
i for i > 0, inductively, as

follows:

• S′
i = Min({Tn,T

′
n, τn, τ

′
n}∩ (Si−1,∞)), that is, S′

i is the first discovery time after
Si−1, if such a time exists;

• Si = S̃′
i if S′

i is a Tn or a τn, Si = Š′
i if S′

i is a T ′
n or a τ ′

n—again if such a time
exists.

Continue the construction until the first ball of radius δn̄ is hit by the curve; let I

be chosen in such a way that this happens at time S′
I−1. The curve still has to come

back to E after that, so SI−1 is well defined. Then, simply let SI be the hitting time
of the second ball of radius δn̄. We call task a time-interval of the form (Si−1, Si];
I is then simply the number of tasks. Following our construction, the last task is
different from the others and will have to be treated specially.

For each i ≤ I , let Ji (resp. Ki , J ′
i , K ′

i ) be the largest integer n > 0 for which τn

(resp. Tn, τ ′
n, T ′

n) is smaller than Si , if such an integer exists, and 0 if it does not.
By construction,

δKi+1 < rSi
≤ δKi

, δJi+1 < ρSi
,

and similar inequalities hold for r ′
Si

and ρ′
Si

.
So, we obtain a sequence of quadruples (Ji,Ki, J

′
i ,K

′
i )i≤I , which is not

Markovian but on which we can say enough to obtain the needed second-moment
estimate. First of all, for each i < I , at least one of Ji+1, Ki+1, J ′

i+1, K ′
i+1 is larger

than its counterpart at index i; but if Ji+1 > Ji or Ki+1 > Ki , then J ′
i+1 = J ′

i and



1442 V. BEFFARA

K ′
i+1 = K ′

i , by point (iv) of Lemma 9. The main estimate implies the following
bound: for each k > 0,

P
(
(Ji+1,Ki+1, J

′
i+1,K

′
i+1) = (Ji,Ki + k, J ′

i ,K
′
i )|FSi

)
(3.6)

≤ Casb(Ki−Ji)/2ask.

Point (ii) of Lemma 8 then says that, for every j > 0 and k ≥ 0, and if i < I − 1,

P
(
(Ji+1,Ki+1, J

′
i+1,K

′
i+1) = (Ji + j,Ki + k, J ′

i ,K
′
i )|FSi

)
(3.7)

≤ Caη(Ji+j)ask.

The first of these bounds also applies in the second case, still as a consequence of
the main estimate, so we get a last estimate for the last step: for every j > 0,

P
(
(JI ,KI , J

′
I ,K

′
I ) = (JI−1 + j, n̄, J ′

I−1, n̄)|FSI−1

)
(3.8)

≤ Casb(KI−1−JI−1)/2ask.

Notice that here and from now on, as the estimates on radii we get from the
values of the J and K are only valid up to a multiplicative factor of order a, the
constants C appearing in the estimates now depend on the value of a.

LEMMA 10 (Reduction). With the previous notation, any jump of the second
kind, that is, corresponding to equation (3.7), and such that both j and k are
positive, satisfies Ji + j = Ki . In other words, in such a case γ closes a fjord of
width comparable to rSi

and then approaches z before going back to the separator
set (see Figure 5).

FIG. 5. Second moments: Reduction.



THE DIMENSION OF THE SLE CURVES 1443

PROOF. First notice that Lemma 7 ensures that Ji + j ≤ Ki ; assume that
Ji + j < Ki . Let τ = τJi+j and T = TKi+k , and assume that both lie between Si

and Si+1 and that τ < T : At time τ , the situation is similar to the one in Lemma 8.
Construct ζ ′ as in the proof of Lemma 8, and continue ζ ′ to a crosscut ζ̂ ′ sep-
arating z′ from infinity, and still contained in Bτ (δJi+j )—this is possible by the
definition of τ . Let τ ′ be the first time after τ such that γτ ′ ∈ ∂Bτ (δKi

) (necessar-
ily τ ′ < T ). Let ζ ′′ be a continuous curve joining γτ ′ to z inside Bτ (δKi

). Because
the unbounded component of Hτ \λ′

τ is simply connected, the concatenation of ζ ′′
and γ ([τ ′, τ ]) is homotopic to ζ ′, and in particular, it separates λ′

τ from infinity.
Hence, Bτ (δKi

) separates z′ from infinity in Hτ ′ , and in particular, τKi
< T . This

contradicts the hypothesis Ji + j < Ki .
The same construction applies if, among the discovery times lying between Si

and Si+1, there is a τ -time before a T -time. The last case to consider is then when
T = TKi+k happens before any closing time. In particular, if such is the case,
BT (δJi+1) does not separate z′ from infinity in HT . The same proof as that of
Lemma 7 then shows that τJi+1 > T̃ = Si+1, which again is a contradiction. �

This reduction means that, as far as reaching probabilities are concerned, the
jump from (Ji,Ki) to (Ji + j,Ki + k) behaves exactly like the succession of two
jumps, from (Ji,Ki) to (Ji + j,Ki) = (Ki,Ki) (which happens with probability
not greater than Caη(Ji+j)) and then from (Ki,Ki) to (Ki,Ki +k) (which happens
with probability not greater than Cask): Up to replacing C with C2, we can assume
in the computations that jumps of the type corresponding to equation (3.7) only
happen with k = 0, and

P
(
(Ji+1,Ki+1, J

′
i+1,K

′
i+1) = (Ji + j,Ki, J

′
i ,K

′
i )|FSi

) ≤ Caη(Ji+j).(3.9)

Again, this estimate does not hold for the very last task—which, according to
this decomposition, would correspond to the fact that the last two jumps are a jump
of J followed by a jump of K , this last one reaching the value n̄. In that case, with
the notation in equation (3.8), we would have j = KI−1 − JI−1 from the previous
Lemma. Assuming that η < sb/2, which we can do, we then obtain the following
estimate for the second-to-last jump in the previous reduction (the last jump always
involves K):

P
(
(JI−1,KI−1, J

′
I−1,K

′
I−1) = (JI−2 + j,KI−2, J

′
I−2, n̄)|FSI−2

)
(3.10)

≤ Caηj .

In other words, here only the last jump of J appears in the exponent as opposed to
the end-value in the other cases. (In fact, using the main estimate here amounts to
discarding that last jump of J entirely, but writing the estimate this way makes for
a slightly more pleasant computation below.) This turns out to be enough for our
purposes.
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All we need to do then is to estimate the probability that (Ki,K
′
i ) reaches (n̄, n̄).

With this formulation, it would be nice to give a super-harmonic function associ-
ated to the process, but despite our best effort, we could not find such a function.
The natural candidate would be of the form C ′as(n̄−K)+η(K−J )/2, but this might
fail to be super-harmonic along the diagonal—the reason being that C now de-
pends on a.

So, we will apply the same strategy as in the proof of point (ii) of Lemma 8,
namely, sum over all possible paths starting at (0,0,0,0) and ending
on (J, n̄, J ′, n̄) for some J,J ′ ∈ �0, n̄� (which we will call good paths). This leads
to rather unpleasant computations, but the general strategy should be clear enough.

Look first at the components Ji and Ki of the walk: Along a good path, the
jumps of (Ji,Ki) affect either its first or its second coordinate. Let n ≥ 0 be the
number of jumps affecting (Ji), and let j1, . . . , jn > 0 be their lengths. Then, for
0 ≤ i ≤ n, let li ≥ 0 be the number of jumps affecting K between the ith and
(i + 1)st jumps of J , and let ki,1, . . . , ki,li > 0 be their lengths—with the obvious
abuse of notation that l0 is the number of jumps of K before the first jump of J ,
and ln is the number of jumps of K after the last jump of J . In particular, the sum
of all ki,j is equal to n̄. Define the integers n′, j ′

i , l′i and k′
i,j in a similar fashion to

describe the behavior of (J ′
i ,K

′
i ).

Notice that, just before the jump corresponding to ji , the value of J is j1 +
· · · + ji−1. Besides, let di ≥ 0 be the value of K − J just after that jump (di is
the difference between the sum of the k’s and that of the j ’s so far): Just before
the jump corresponding to ki,j , the value of K − J is equal to di + ki,1 + · · · +
ki,j−1. This is sufficient to estimate the probability that a given path occurs: It
will be given by the product along the path of the (conditional, given the past)
probabilities of the individual steps, which is bounded above by the product of two
terms, namely,

A := a−η(j1+···+jn−1)

×
l0∏

j=1

C(ak0,j )s(ak0,1+···+k0,j−1)sb/2

×
n∏

i=1

[
C(aj1+···+ji )η

li∏
j=1

C(aki,j )s(adi+ki,1+···+ki,j−1)sb/2

]
.

Here, the empty products are equal to 1 by convention. The term a−η(j1+···+jn−1)

accounts for the difference in the very last task, where as was pointed out above,
only the last jump of J , that is, jn, appears in the exponent. That task might be a
jump toward z′, or not involve a jump of J at all, in which case the factor would not
be needed, but having it in all cases makes the computation more symmetric—it
not smaller than 1 anyway.
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Also define the corresponding A′ involving n′, j ′
i , l′i and k′

i,j . With the shortcut
notation used in the previous subsection, letting j = (ji) and ki = (ki,j ), so that
|j| = n and |ki | = li , this becomes

A = a−ηj+n−1C|j|+∑ |ki |ask0asbk+
0 /2aηj+

n∏
i=1

[
aski asbk+

i /2a|ki |disb/2]
.

Rewriting the product using the fact that
∑

ki,j = n̄, and letting j0 = d0 = 0 for
ease of notation, we obtain

A = a−ηj+n−1Cn+∑
li asn̄

l0∏
j=1

(ak0,1+···+k0,j−1)sb/2

×
n∏

i=1

[
(aj1+···+ji )η

li∏
j=1

(adi+ki,1+···+ki,j−1)sb/2

]

= a−ηj+n−1Cn+∑
li asn̄

n∏
i=0

[
(aj1+···+ji )η

li∏
j=1

(adi+ki,1+···+ki,j−1)sb/2

]

= Cn+∑
li asn̄aηjn

n∏
i=0

[
a(n−i)ηji+lidi sb/2

li−1∏
j=1

a(li−j)ki,j sb/2

]
.

Indeed, each term aji for i < n appears n − i times in the product, the term ajn

appears once [in other terms, aji appears (n − i) ∨ 1 times], the term adi appears
li times and the term aki,j appears li − j times.

We still have to sum the product AA′ over all the good paths. Notice first that
giving the values of n, ji , li and ki,j , n′, j ′

i , l
′
i and k′

i,j is not sufficient to specify the
path of (J,K,J ′,K ′), because it says nothing about the way the jumps of (J,K)

and (J ′,K ′) are intertwined; however, there are at most(
n + ∑

li + n′ + ∑
l′i

n + ∑
li

)
≤ 2n+∑

li 2n′+∑
l′i

such intertwinings. Hence, up to doubling of the constant C, it is sufficient to sum
AA′ over the values of n, ji , li and ki,j , n′, j ′

i , l′i and k′
i,j . The sum will factor into

two terms, one involving the terms around z and the other the terms around z′, and
these two factors are equal. Hence, an upper bound of the probability that (K,K ′)
reaches (n̄, n̄) is given by B2, where

B := ∑
j,ki

a−ηj+n−1C|j|+∑ |ki |ask0asbk+
0 /2aηj+

n∏
i=1

[
aski asbk+

i /2a|ki |disb/2]
,

with a sum taken over all values of the indices leading to a good path.
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First, let ki = ∑lj
j=1 ki,j (and notice that di = di−1 + ki−1 − ji). We can rewrite

B2 as

B2 = a2sn̄

[ ∞∑
n=0

Cn
n∏

i=0

[∑
ji ,ki

a[(n−i)∨1]ηji
∑

li ,ki,j

Cli alidi sb/2
li−1∏
j=1

a(li−j)ki,j sb/2

]]2

,

where the innermost sum is taken over all choices of li and ki,j satisfying∑
ki,j = ki , and where the sum over ji is in fact not present for i = 0. This in

turn can be considered as a sum over the ki,j for j ≤ li − 1 with sum smaller
than ki . The case ki = li = 0 needs to be treated separately here, and we get

B2 ≤ a2sn̄

[ ∞∑
n=0

Cn
n∏

i=0

[∑
ji

a[(n−i)∨1]ηji

(
1 + ∑

ki ,li>0

Cli alidisb/2

×
li−1∏
j=1

(∑
k>0

a(li−j)ksb/2

))]]2

.

The sum over k can be computed explicitly, it is convergent because j < li and
its value is smaller than 2a(li−j)sb/2 if a is chosen small enough, which we will
assume from now on. The product over j is then equal to 2li−1ali(li−1)sb/4. The
terms with an exponent linear in li can be factored into Cli —note that C now
depends on a—leading to

B2 ≤ a2sn̄

[ ∞∑
n=0

Cn
n∏

i=0

[∑
ji

a[(n−i)∨1]ηji

(
1 + ∑

di ,li

Cli alidisb/2al2i sb/4

)]]2

≤ a2sn̄

[ ∞∑
n=0

Cn
n∏

i=0

[∑
ji

a[(n−i)∨1]ηji

(
1 + ∑

di≥0

adisb/2
∑
li>0

Cli al2i sb/4

)]]2

.

The sums over li and di are convergent, because a < 1, so the whole term in
parentheses is bounded by a constant depending only on κ and a; since it appears
n + 1 times, up to another change in the value of C, we get

B2 ≤ a2sn̄

[ ∞∑
n=0

Cn+1
n∏

i=1

[∑
ji>0

a[(n−i)∨1]ηji

]]2

.

Summing over all values of ji > 0, we obtain (if a is small enough)

B2 ≤ a2sn̄

[ ∞∑
n=0

Cn+12aη
n−1∏
i=1

(
2a(n−i)η)]2

.
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Up to yet another increase of C, the factor 2 can be made part of it, and the product
over i can be computed explicitly:

B2 ≤ a2sn̄

[ ∞∑
n=0

Cn+1aηan(n−1)η/2

]2

.

This last sum is again convergent, so we obtain B2 ≤ Ca2sn̄, with a constant C

depending only on κ and a.
Putting everything together, assuming Eε(z, z

′) holds, first γ has to reach E ,
and this happens with probability of order δs . Then, conditionally to the process
up to this hitting time, we can apply the previous reasoning which says that the
conditional probability to hit both disks of radius δn̄ is bounded above by Ca2n̄s

where C depends only on a and κ . Hence,

P(Eε(z, z
′)) ≤ Cδsa2n̄s .

Notice that an̄ ≤ (ε/δ)a−1 to finally obtain

P(Eε(z, z
′)) ≤ Ca−2s ε2s

δs
,

which is precisely the estimate we were looking for.

4. The occupation density measure. As a side remark, let us consider the
proof of the lower bound for the dimension (cf. Section 1). It is based on the
construction of a Frostman measure μ supported on the path, constructed as a
subsequential limit of the family (με) defined by their densities with respect to the
Lebesgue measure on the upper-half plane:

dμε(z) = ε−s1z∈Cε |dz|.
Then, μ is a random measure with correlations between μ(A) and μ(B), for dis-
joint compact sets A and B , decaying as a power of their inverse distance. So, at
least formally, it behaves in this respect like a conformal field: the one-point func-
tion (corresponding to the density of μ) is not welldefined, because μ is singular
to the Lebesgue measure, but the two-point correlation

lim
δ→0

δ−4 Cov(μ(B(z, δ)),μ(B(z′, δ)))

behaves like d(z, z′)−1+κ/8.
A little more can be said about this measure, or about its expectation. The proof

of the estimate for P(γ ∩B(z, ε) �= ∅) can be refined in the following way: When
we apply the stopping theorem (2.8), saying that the diffusion conditioned to sur-
vive has a limiting distribution shows that

E

[
sin

(
αs

2

)8/κ−1∣∣∣S ≥ s

]
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has a limit λ when s → ∞, and that this limit depends only on κ . So what we get
out of the construction in Section 2 is

P

(
∃t > 0 : |g′

t (z)| ≥
�(z)

ε

)
∼

ε→0
λ(κ)

(
ε

�z

)1−κ/8

(sin(arg(z)))8/κ−1.

This lead us to an estimate on P(d(z, γ ) < ε) by the Köbe 1/4 theorem; but it is
also natural to measure the distance to γ by the modulus of g′. We can now define

φ1(z) = lim
ε→0

εκ/8−1P

(
∃t > 0 : |g′

t (z)| ≥
�(z)

ε

)
:

the previous estimate boils down to

φ1(z) = λ(κ)�(z)κ/8−1 sin(arg z)8/κ−1,

and by the construction of μ, we obtain that, for every Borel subset A of the upper-
half plane,

E(μ(A)) �
∫
A

φ1(z)|dz|,
with universal constants.

It is then possible to do this construction for several points; note first that the
second moment estimate can actually be written as

P({z, z′} ⊂ Cε) � ε2(1−κ/8)

|z − z′|1−κ/8�((z + z′)/2)1−κ/8 ,

as long as both �(z) and �(z′) are bounded below by |z − z′|/M for some fixed
M > 0. Indeed, the upper bound is exactly what we derived in the previous section,
and the lower bound is provided by the term n = n′ = 0 in the sum. Hence, any
subsequential limit ψ(z, z′), as ε vanishes, of

ε2(κ/8−1)P ({z, z′} ⊂ Cε)

satisfies ψ(z, z′) � φ2(z, z
′) for some fixed function φ2, with constants depending

only on κ . The second moment estimate then shows that

φ2(z, z
′) �

z′→z

φ1(z)

|z − z′|1−κ/8 ,

that is, φ2 behaves like a correlation function when z and z′ are close to each other.
The general case of n points, n ≥ 2, can be treated in the same fashion. First,

the derivation of second moments admits a generalization to n points, as follows.
Let (zi)1≤i≤n be n distinct points in H, such that their imaginary parts are large
enough (bigger than, say, 18n times the maximal distance between any two of
them). We use them to construct a Voronoi tessellation of the plane; denote by Ci

the face containing zi , and by δi the (Euclidean) distance between zi and ∂Ci . Let
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C(z0, δ0) be the smallest circle containing all the discs B(zi, δi). Last, let E be the
“separator set” between the zi ’s, defined as

E = C(z0, δ0) ∪
[(

n⋃
i=1

∂Ci

)
∩ B(z0, δ0)

]
.

It is the same as defined previously in the case n = 2.
The previous proof can then be adapted to show that

P({z1, . . . , zn} ⊂ Cε) �
(

δ0ε
n∏
δi

)1−κ/8

(using radii δia
k for the circles around zi). In the case n = 2, we have δ1 = δ2 =

δ0/2, so this estimate is exactly the same as previously. So, it makes sense to take
a (subsequential) limit, as ε tends to 0, of

εn(κ/8−1)P ({z1, . . . , zn} ⊂ Cε),

and all possible subsequential limits are comparable to a fixed symmetric func-
tion φn.

The behavior of φn(z1, . . . , zn) when zn approaches the boundary is then given
by the boundary term in Proposition 4, that is, φ behaves like (�zn)

8/κ−1 there.
Last, it is easy to see that, when zn tends to z1, φn(z1, . . . , zn) has a singularity
which is comparable to |zn − z1|κ/8−1; in other words, we have a recursive relation
between all the φn’s, given by

φn(z1, . . . , zn) �
zn→z1

φn−1(z1, . . . , zn−1)

|zn − z1|1−κ/8 ,(4.1)

φn(z1, . . . , zn) ��zn→0
φn−1(z1, . . . , zn−1) · (�zn)

8/κ−1.(4.2)

These relations are very similar to some of those satisfied by the correlation
functions in conformal field theory. In fact, it is possible to push the relation fur-
ther, in two ways. First, we can look at the evolution of the system in time. This
corresponds to mapping the whole picture by the map gt − βt , and this map acts
on the discs of small radius around the zi’s like a multiplication of factor |g′

t (zi)|
(as long as Kt remains far away from the zi’s, which we may assume if t is small
enough). Hence, the process

Yn
t :=

(∏ |g′
t (zi)|1−κ/8

)
φn

(
gt (z1) − βt , . . . , gt (zn) − βt

)
(defined as long as all the zi ’s remain outside Kt ) is a local martingale. We can
apply Itô’s formula to compute dYn

t , and write that the drift term has to be 0 at
time 0 to obtain a PDE satisfied by φn.

Note though that the formula involves the modulus of g′
t , meaning that the equa-

tion we would obtain cannot be expressed in terms of complex derivatives of gt



1450 V. BEFFARA

only, and that we have to introduce derivatives with respect to the coordinates.
This is also the case for the second-order term in Itô’s formula: Since β is a real
process, we would obtain terms involving second derivatives of φn with respect
to the x-coordinates of the arguments. To sum it up, it would be an ugly formula
without the correct formalism—which is why we do not put it here. The formula is
much nicer when considering points on the boundary of the domain—compare [5].

The last thing we can do is study what happens if we add one point zn+1 to the
picture. This will add one multiplicative factor, corresponding (at least intuitively)
to the conditional probability to hit zn+1 knowing that we touch the first n points
already. In the case κ = 8/3 and for points on the boundary of the domain, this
can be computed using the restriction property, and it leads to Ward’s equations
(cf. [5]). In the “bulk” (i.e., for points inside the domain), or for other values of κ ,
it is not clear yet how to do it.

5. The boundary. A natural question is the determination of the dimension
of the boundary of Kt for some fixed t , in the case κ > 4. The conjectured value is

dimH(∂Kt) = 1 + 2

κ
,

and this can now be proved for a few values of κ for which the boundary of K

can be related to the path of an SLEκ ′ with κ ′ = 16/κ . In fact, this relation is
only known in the cases where convergence of a discrete model to SLE is known,
namely:

• κ = 6, where actually both ∂Kt and the path of the SLEκ ′ are closely related to
the Brownian frontier. Hence, we obtain a third derivation of the dimension of
the Brownian frontier, this time through SLE8/3.

• κ = 8: Here, SLE8 is known to be the scaling limit of the uniform Peano curve
and SLE2 that of the loop-erased random walk (cf. [12]). Since these two dis-
crete objects are closely related through Wilson’s algorithm, this shows that the
local structure of the SLE2 curve and the SLE8 boundary are the same, and in
particular, they have the same dimension.

So we obtain one additional result here:

COROLLARY 11. Let (Kt) be a chordal SLE8 in the upper-half plane: Then,
for all t > 0, the boundary of Kt almost surely has Hausdorff dimension 5/4.

It would be nice to have a direct derivation of the general result, without using
the “duality” between SLEκ and SLE16/κ ; but it is not even clear how to obtain a
precise estimate of the probability that a given ball intersects the boundary of K1.
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