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BRIDGES AND RANDOM TRUNCATIONS OF RANDOM

MATRICES

V. BEFFARA, C. DONATI-MARTIN, AND A. ROUAULT

Abstract. Let U be a Haar distributed matrix in U(n) or O(n). In
a previous paper, we proved that after centering, the two-parameter
process

T
(n)(s, t) =

∑

i≤⌊ns⌋,j≤⌊nt⌋

|Uij |
2
, s, t ∈ [0, 1]

converges in distribution to the bivariate tied-down Brownian bridge.
In the present paper, we replace the deterministic truncation of U by
a random one, in which each row (resp. column) is chosen with proba-
bility s (resp. t) independently. We prove that the corresponding two-

parameter process, after centering and normalization by n−1/2 converges
to a Gaussian process. On the way we meet other interesting conver-
gences.

1. Introduction

Let us consider a unitary matrix U of size n × n and two fixed integers
p < n and q < n. Let us call Up,q the (rectangular) matrix obtained by
deleting the last n−p rows and n− q columns from U . It is well known that
if U is Haar distributed in U(n), the random matrix Up,q (Up,q)∗ has a Jacobi
matricial distribution and that if p, q and n → ∞ with (p/n, q/n) → (s, t) ∈
(0, 1)2, its empirical spectral distribution converges to a limit Ds,t (see for
instance [10]), often called the generalized Kesten-McKay distribution.

In [14] we studied the trace of Up,q (Up,q)∗ which is also the square of the
Frobenius (or Euclidean) norm of Up,q. Actually we set p = ⌊ns⌋, q = ⌊nt⌋
and considered the process indexed by s, t ∈ [0, 1]. We proved that, after
centering, but without any normalization, the process converges in distri-
bution, as n → ∞, to a bivariate tied-down Brownian bridge. Previously,
Chapuy [9] proved a similar result for permutation matrices, with an n−1/2

normalization.
Besides, for purposes of random geometry analysis, Farrell has proposed

another model in [18] (see also [17]), deleting randomly and independently a
proportion 1− s of rows and a proportion 1− t of columns from a Haar dis-
tributed matrix in U(n). If Us,t denotes the matrix so obtained, he proved
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that (for fixed s, t) the empirical spectral distribution of Us,t
(
Us,t

)∗
con-

verges again, as n → ∞, to Ds,t.

It is then tempting to study the trace of Us,t
(
Us,t

)∗
as a process, after

having defined a probability space where all random truncations live simul-
taneously. For that purpose we define a double array of 2n auxiliary inde-
pendent uniform variables R1, . . . , Rn, C1, . . . , Cn and then, for any choice
of (s, t), obtain the matrix Us,t by removing from U rows with indices not
in {i : Ri ≤ s} and columns with indices not in {j : Rj ≤ t}. This gives us
a coupled realization of the Us,t, reminiscent of the “standard coupling” for
percolation models. Then, we notice that in the first model, the invariance
of the Haar distribution on U(n) implies that we could have deleted any fixed
set of n−p rows and n−q columns. So, we can consider the random trunca-
tion model as the result of the subordination of the deterministic truncation
model by a couple of binomial processes. In other words, we treat the lat-
ter uniform variables as an environment, and state quenched and annealed
convergences.

For instance, we will prove that after convenient centering and without
normalization, the above process converges (quenched) to a bivariate Brown-

ian bridge, but that after another centering and with normalization by n−1/2

it converges (annealed) to a Gaussian process which is no more a bivariate
Brownian bridge.

We use the space D([0, 1]2) endowed with the topology of Skorokhod (see
[5]). It consists of functions from [0, 1]2 to R which are at each point right
continuous (with respect to the natural partial order of [0, 1]2) and admit
limits in all “orthants”. For the sake of completeness, we treat also the one-
parameter process, i.e. truncation of the first column of the unitary matrix,
and the case of permutation matrices.

Actually, Farrell considered first the (deterministic) discrete Fourier trans-
form (DFT) matrix

Fjk =
1√
n
e−2iπ(j−1)(k−1)/n , j, k = 1, . . . , n , (1.1)

and proved that after random truncation, a Haar unitary matrix has the
same limiting singular value distribution. In a still more recent paper ([1]),
Anderson and Farrell explain the connection with liberating sequences. In
some sense, the randomness coming from the truncation is stronger than
the randomness of the initial matrix. Here, we have considered also the
DFT matrix, but we can as well consider any (random or not random)

matrix whose elements are all of modulus n−1/2, for instance a (normalized)
complex Hadamard matrix.

The paper is organized as follows. In Sec. 2 we provide some definitions.
Section 3 is devoted to our main results, the convergence of one-parameter
(Theorem 3.2) and two-parameter processes (Theorems 3.5 and 3.8). In Sec.
4, we introduce the subordination method, which allows to give the proofs
of the latter theorems as examples of application. In Section 5, we go back
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to the direct method, used in ([15]) which does not assume that the result of
deterministic truncation is known. This point of view leads to conjectures.

2. Notation

We introduce the random processes that we will consider in this paper
and the various limiting processes involved.

2.1. The main statistics. Let U(n) (resp. O(n)) be the group of unitary
(resp. orthogonal) n × n matrices and U = (Uij) its generic element. We

equip U(n) (resp. O(n)) with the Haar probability measure π(n)(dU).
To define two systems of projective Bernoulli choices of rows and columns,
we will need two independent families of independent random variables uni-
formly distributed on [0, 1] so that we can treat the randomness coming
from the truncation as an environment. More specifically, the space of en-
vironments is Ω = [0, 1]N × [0, 1]N, whose generic element is denoted by
ω = (Ri, i ≥ 1, Cj , j ≥ 1). We equip Ω with the probability measure dω
which is the infinite product of copies of the uniform distribution. In the
sequel, “for almost every ω” will mean “for dω - almost every ω.”

For the one-parameter model, we introduce two processes with values in
D([0, 1]):

B(n)
s (U) =

⌊ns⌋∑

1

|Ui1|2 , (2.1)

B(n)
s (ω,U) =

n∑

1

|Ui1|21Ri≤s . (2.2)

For the two-parameter model, we introduce processes with values inD([0, 1]2):

(1) T (n)(U) defined by

T
(n)
s,t (U) =

⌊ns⌋∑

i=1

⌊nt⌋∑

j=1

|Uij |2 ,

(2) T (n)(ω,U) defined by

T (n)
s,t (ω,U) =

n∑

i=1

n∑

j=1

|Uij |21Ri≤s1Cj≤t . (2.3)

The counting processes S(n) and S′(n) are defined by

S(n)
s (ω) =

n∑

i=1

1Ri≤s , S′
t
(n)

(ω) =
n∑

j=1

1Cj≤t , (2.4)

and their normalized version S̃(n) and S̃′
(n)

by

S̃(n)
s = n−1/2

(
S(n)
s − ns

)
, S̃′

(n)

t = n−1/2
(
S′(n)

t − nt
)
. (2.5)
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2.2. Gaussian processes and bridges. The classical Brownian bridge
denoted by B0 is a centered Gaussian process with continuous paths defined
on [0, 1], of covariance

E
(
B0(s)B0(s

′)
)
= s ∧ s′ − ss′ .

The bivariate Brownian bridge denoted by B0,0 is a centered Gaussian pro-
cess with continuous paths defined on [0, 1]2 of covariance

E
(
B0,0(s, t)B0,0(s

′, t′)
)
= (s ∧ s′)(t ∧ t′)− ss′tt′.

The tied-down bivariate Brownian bridge denoted by W (∞) is a centered
Gaussian process with continuous paths defined on [0, 1]2 of covariance

E[W (∞)(s, t)W (∞)(s′, t′)] = (s ∧ s′ − ss′)(t ∧ t′ − tt′).

Let also W(∞) be the centered Gaussian process with continuous paths de-
fined on [0, 1]2 of covariance

E[W(∞)(s, t)W(∞)(s′, t′)] = ss′(t ∧ t′) + (s ∧ s′)tt′ − 2ss′tt′.

It can be defined also as

W(∞)(s, t) = sB0(t) + tB′
0(s) (2.6)

where B0 and B′
0 two independent one-parameter Brownian bridges.

At last we will meet the process denoted by B0 ⊗B0 which is a centered
process with continuous paths defined on [0, 1]2 by

B0 ⊗B0(s, t) = B0(s)B
′
0(t)

where B0 and B′
0 are two independent Brownian bridges. This process is

not Gaussian, but it has the same covariance as W (∞).
Similarly, if F and G are two processes with values in D([0, 1]), defined

on the same probability space, we denote by F ⊗G the process with values
in D([0, 1]2) defined by

F ⊗G(s, t) = F (s)G(t).

For simplicity we denote by I the deterministic trivial process Is = s.

3. Convergence in distribution

We present unified results in the cases of the unitary and orthogonal
groups. For this purpose we use the classical notation

β′ =
β

2
=

{
1/2 in the orthogonal case,

1 in the unitary case.
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3.1. One-parameter processes. Let us begin with the one-parameter pro-

cesses, where
law−→means convergence in distribution inD([0, 1)). We present

successively the results for the deterministic and random truncations.

Lemma 3.1. Under π(n),

n1/2
(
B(n) − I

)
law−→

√
β′−1B0 . (3.1)

This convergence (3.1) is well known since at least Silverstein [23] (in the
case β′ = 1). It can be viewed as a direct consequence of the fact that the
vector (|Ui1|2, i = 1, . . . , n) follows the Dirichlet (β′, . . . , β′) distribution on
the simplex.

Theorem 3.2. (1) (Quenched) For almost every ω, the push-forward of

π(n)(dU) by the map

U 7→ n1/2
(
B(n)(ω,U)− n−1S(n)(ω)

)
(3.2)

converges weakly to the distribution of
√

β′−1B0.

(2) (Annealed) Under the joint probability measure dω ⊗ π(n)(dU)

n1/2
(
B(n) − I

)
law−→

√
1 + β′−1B0. (3.3)

3.2. Two-parameter processes. Let us continue with the two-parameter

processes, where now
law−→ means convergence in distribution in D([0, 1]2).

We study three models. In the first one, U is the DFT matrix defined in
(1.1). In the second one, U is sampled from the Haar measure on U(n) or
O(n). Though the proof is much more involved than in the first model,
the annealed convergence gives the same limit. At last, for the sake of
completeness, we state here a result when U is chosen uniformly among
n× n permutation matrices.

3.2.1. DFT. Here, there is no randomness in U , so that we have the decom-
position:

T (n) =
S(n) ⊗ S′(n)

n
= nI ⊗ I + S̃(n) ⊗ S̃′

(n)
+ n1/2

(
S̃(n) ⊗ I + I ⊗ S̃′

(n)
)
.(3.4)

Theorem 3.3. If U is the DFT matrix (or more generally if U is any matrix
such that |Uij |2 = 1/n a.s. for every i, j), then under the probability measure
dω

n−1/2
(
T (n) − ET (n)

)
law−→ W(∞) . (3.5)

Proof. It is straightforward since the processes S(n) and S′(n) are indepen-
dent. From (3.4) we have successively

ET (n) = n−1
E

(
S(n) ⊗ S′(n)

)
= nI ⊗ I,

n−1/2
(
T (n) − ET (n)

)
= n−1/2

(
S̃(n) ⊗ S̃′

(n)
)
+ S̃(n) ⊗ I + I ⊗ S̃′

(n)
.
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Applying Donsker’s theorem, we get

(S̃(n), S̃′
(n)

)
law−→ (B0, B

′
0)

so that

n−1/2
(
S̃(n) ⊗ S̃′

(n)
)
→ 0

in probability and

S(n) ⊗ I + I ⊗ S̃′
(n) law−→ B0 ⊗ I + I ⊗B′

0 = W(∞) .

�

3.2.2. Haar unitary or orthogonal matrices. The case of deterministic trun-
cation was treated in our previous paper and recalled now.

Theorem 3.4 ([14]). Under π(n),

W (n) := T (n) − ET (n) law−→
√

β′−1W (∞) . (3.6)

The case of random truncation is ruled by the following theorem, which is
the main result of the present paper.

Theorem 3.5. (1) (Quenched) For almost every ω, the push-forward of

π(n)(dU) on D([0, 1])2 by the mapping

U 7→ V(n) := T (n)(ω,U)− S(n)(ω)⊗ S′(n)(ω)

n
(3.7)

converges weakly to the distribution of
√

β′−1W (∞).

(2) (Annealed) Under the joint probability measure dω ⊗ π(n)(dU),

n−1/2
(
T (n) − ET (n)

)
law−→ W(∞) .

Remark 3.6. Let Mp,q = Up,q (Up,q)∗ and Ms,t = Us,t
(
Us,t

)∗
. For s, t

fixed, the random variables T
(n)
s,t and T (n)

s,t are linear functionals of the em-

pirical spectral distribution of M ⌊ns⌋,⌊nt⌋ and Ms,t respectively. For classical
models in Random Matrix Theory, the convergence of fluctuations of such
linear functionals do not need a normalizing factor, since the variance is
bounded (the eigenvalues are repelling each other). Here, this is indeed the

case for T
(n)
s,t (see [16] for the complete behavior for general tests functions).

But, in the case of T (n)
s,t , we have Var

(
E[T (n)

s,t |ω]
)
= O(n), which demands a

normalization. Notice however that the main source of this variance lies in
the fluctuations of the number of columns and lines removed from the initial
matrix, rather than in the matrix itself.
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3.2.3. Permutation matrices. Let us call p(n) the uniform measure on the
group Sn of permutation matrices of {1, . . . , n}. The deterministic trunca-
tion was treated by Chapuy.

Theorem 3.7 ([9]). Under p(n) we have

n−1/2
(
T (n) − ET (n)

)
law−→ W (∞). (3.8)

Here is the result for the statistics obtained by the random truncation.

Theorem 3.8. (1) (Quenched) For almost every ω, the push-forward of

p(n) by the mapping

U 7→ n−1/2

(
T (n)(ω,U)− S(n)(ω)⊗ S′(n)(ω)

n

)

converges weakly to W (∞).
(2) (Annealed) Under the joint probability measure dω ⊗ p(n)(dU)

n−1/2
(
T (n) − ET (n)

)
law−→ B00 . (3.9)

4. Proofs by subordination

We present here proofs of Theorems 3.2, 3.5 and 3.8 whose key point is a
representation by subordination.

4.1. Preliminaries.

Proposition 4.1. Assume that U is a random unitary matrix such that the
matrix whose generic entry is |Uij |2 has a distribution invariant by multi-

plication (right or left) by permutation matrix. Let T̂ (n) be defined by

T̂
(n)
s,t (ω,U) = T

(n)

n−1S
(n)
s (ω),n−1S′

l
(n)(ω)

(U) .

Then for every ω the push-forward of π(n)(dU) by the mapping U 7→ T (n)(ω,U)

is the same as the push-forward of π(n)(dU) by the mapping U 7→ T̂ (n)(ω,U).

As a result the law of T (n) and T̂ (n) have the same distribution under
dω ⊗ π(n)(dU).

Proof. Let R = (R1, . . . , Rn) and C = (C1, . . . , Cn) be two independent
samples of uniform variables on [0, 1]. The corresponding reordered sam-

ples are R̃ = (R(1), . . . , R(n)) and C̃ = (C(1), . . . , C(n)), and the associated
random permutations are σ and τ , are defined by

R(i) = Rσ−1(i) , C(j) = Cτ−1(j), i, j = 1, . . . , n .
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Moreover σ and R̃ (resp. τ and C̃) are independent. With these notations,
we have

T (n)
s,t =

n∑

i,j=1

|Uij |21Ri≤s1Cj≤t =
n∑

i,j=1

|Uσ−1(i)τ−1(j)|21R(i)≤s1C(j)≤t

=
∑

i≤S
(n)
s ,j≤S′(n)

t

|Uσ−1(i)τ−1(j)|2 = T
(n)

n−1S
(n)
s ,n−1S′(n)

t

(σUτ−1) ,

where we have identified the permutations σ and τ with their matrices. Let
F be some test function from D([0, 1]2) to R. We have

E[F (T (n)(ω,U))|ω] = E[F (T
(n)

n−1S(n),n−1S′(n)(σUτ−1))|ω] .

Since the distribution of (|Uij |2)ni,j=1 is invariant by permutation we get

E[F (T (n)(ω,U)|ω] = E[F (T
(n)

n−1S(n),n−1S′(n)(U))|ω]

or, in other words

E[F (T (n)(ω,U)|ω] = E[F (T̂ (n)(ω,U)|ω] ,
which ends the proof. �

Now, the key point to manage the subordination of processes is the fol-
lowing proposition.

Proposition 4.2. Let d be 1 or 2 and let A(n) be a sequence of processes

with values in D([0, 1]d) such that A(n) law−→ A. Let S(n) and S′(n) be two

independent processes defined as in (2.4) and independent of A(n).

• If d = 1, set A(n) =
(
A(n)

(
n−1S

(n)
s )
)

, s ∈ [0, 1]
)
. Then

(
A(n), S̃(n)

)
law−→ (A,B0);

• If d = 2, set A(n) =
(
A(n)

(
n−1S

(n)
s , n−1S′

t
(n)
)

, s, t ∈ [0, 1]
)
. Then

(
A(n), S̃(n), S̃′

(n)
)

law−→ (A,B0, B
′
0),

where A,B0, B
′
0 are independent and B0 and B′

0 are two independent (one-
parameter) Brownian bridges.

Notice that the marginal convergence of S̃(n) (or of (S̃(n), S̃′
(n)

)) is nothing
but Donsker’s theorem.

Proof. Let us restrict us to the case d = 1 for simplicity. We follow the
lines of proof of Theorem 1.6 of Wu [24]. According to the Skorokhod
representation theorem, we can build a probability space and stochastic

processes A(n), A, S̃(n), B0 on it such that

• all processes are D([0, 1]) valued

• A(n) and S̃(n) are independent and A(n) law
= A(n) , S̃(n) law

= S̃(n)
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• A and B0 are independent and A
law
= A , B0

law
= B0

• A(n) and S̃(n) converge a.s. to A and B0, respectively.

Set S(n) = n1/2S̃(n) +nI. The convergence a.s. of S̃(n) entails the conver-
gence a.s. of n−1S(n) to I as a D([0, 1])-valued non-decreasing process. Here
the limiting subordinator is continuous. We are exactly in the conditions of
Theorem 1.2 of [24], which allows to say

a.s.− lim
n

An ◦ S(n) = A

and of course

a.s.− lim
n

(An ◦ S(n), S̃(n)) = (A,B0) .

Now, we conclude, going down to the convergence in distribution,

(An, S̃
(n))

law−→ (A,B0) ,

where A and B0 are independent. �

4.2. Proof of Theorem 3.2. From Proposition 4.1 (stated for one-parameter
processes), we have the equality in law (conditionally on ω)

{B(n)
s (ω, .) , s ∈ [0, 1]} law

= {B(n)

n−1S
(n)
s (ω)

(.), s ∈ [0, 1]} (4.1)

and then we decompose

n1/2

(
B

(n)

n−1S
(n)
s (ω)

− s

)
= n1/2

(
B

(n)

n−1S
(n)
s (ω)

− n−1S(n)
s

)
+ S̃(n)

s . (4.2)

If we set A(n)(s) = n1/2
(
B

(n)
s − n−1⌊ns⌋

)
, Lemma 3.1 above says that we

are exactly in the assumptions of Proposition 4.2. Both processes of the
RHS of (4.2) converge in distribution towards two independent processes,

distributed as
√

β′−1B0 and B0 respectively, hence the sum converges in

distribution to
√

1 + β′−1B0. �

4.3. Proofs of Theorems 3.5 and 3.8. From Proposition 4.1, we reduce

the problems to the study of T̂ (n). Let us first remark that

E[T (n)|ω] = E[T̂ (n)|ω] = n−1S(n)(ω)⊗ S′(n)(ω) . (4.3)

If we set

Ŵ (n)(ω,U) = T̂ (n)(ω,U)− E[T̂ (n)|ω] (4.4)

we have the decomposition:

T̂ (n) − ET̂ (n) = Ŵ (n) + S̃(n) ⊗ S̃′
(n)

+ n1/2
(
I ⊗ S̃′

(n)
+ S̃(n) ⊗ I

)
. (4.5)
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4.3.1. Proof of Theorem 3.5. For the quenched fluctuations of Ŵ (n), we

are exactly in the assumptions of Proposition 4.2, with A(n) = Ŵ (n) and

A =
√

β′−1W (∞), thanks to Theorem 3.4. This implies in particular that
(1) holds.

For (2), from Proposition 4.2, we see also that

(Ŵ (n), S̃(n), S̃′
(n)

)
law−→ (

√
β′−1W (∞), B0, B

′
0) (4.6)

where the three processes are independent. This implies

Ŵ (n) + S̃(n) ⊗ S̃′
(n) law−→

√
β′−1W (∞) +B0 ⊗B′

0

and consequently

n−1/2
(
Ŵ (n) + S̃(n) ⊗ S̃′

(n)
)
→ 0

in probability. Looking at the decomposition (4.5) and using again the
convergence

I ⊗ S̃′
(n)

+ S̃(n) ⊗ I
law−→ W(∞)

we conclude that

n−1/2
(
T̂ (n) − ET̂ (n)

)
law−→ W(∞)

which is equivalent to the statement of (2). �

4.3.2. Proof of Theorem 3.8. We are now in the assumptions of Proposi-
tion 4.2, with A(n) = n−1/2(T (n) − E(T (n))) and A = W (∞) thanks to The-
orem 3.7. This implies in particular that (1) holds.

For (2), from Proposition 4.2, we see also that
(
n−1/2Ŵ (n), S̃(n), S̃′

(n)
)

law−→ (W (∞), B0, B
′
0) (4.7)

where the three processes are independent. This implies

n−1/2
(
T̂ (n) − ET̂ (n)

)
law−→ W (∞) +W(∞) ,

where the two processes in the RHS are independent. The equality in law

B0,0
law
= W∞ +W∞

was quoted in [13] section 2. �

Remark 4.3. In the way leading from Theorem 3.4 to Theorem 3.5, we can
see that the Haar distribution of random unitary matrices is not involved
in the proofs, except via the invariance in law by permutation of rows and
columns (which is the core of Proposition 4.1). In a recent work, Benaych-
Georges [3] proved that, under some conditions, the unitary matrix of eigen-
vectors of a Wigner matrix induces the same behavior for the asymptotics
of T (n) as under the Haar distribution. In the same vein, Bouferroum [7]
proved a similar statement for the unitary matrix of eigenvectors of a sam-
ple covariance matrix. We could ask if it is possible to take benefit of these
results to give an extension of our theorem to more general random unitary
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matrices. Actually, these authors proved that if the eigenvalues are ordered
increasingly and if we call U< the matrix of corresponding eigenvectors, un-
der some assumptions, the process T (n)(U<) − ET (n)(U<) converges in law

to
√

β′−1W (∞) as in Theorem 3.4. To be able to apply Proposition 4.1, we
would have to check the invariance of the law of the matrix (|(U<)ij |2) under
multiplication (left or right) by a permutation matrix. A short look reveals

that if σ is a permutation, then in both models σM (n)σ∗ and M (n) share
the same eigenvalues, and σU< is the matrix of eigenvalues of σM (n)σ∗.
But they may not have the same distribution if they are complex. Even if

we restrict to real Wigner matrices, we have indeed σU<
law
= U< but the

other type of equality in law (right permutation) is in general not true. For
further remarks on the type of unitary matrices which could give the same
convergence, see Section 5.

5. About direct proofs of the main results and two

conjectures

First, let us remark that in the Haar and permutation models, the key tool
of the above approach to random truncation was the subordination machine.
It assumes that we know the previous results on the deterministic truncation.
Going back to the proof of this latter result in the Haar case [14], we see that
estimates of moments of all degrees of monomials in entries of the unitary
matrix are needed. We can ask if a direct method to tackle the random
truncation demands so high moments estimates. This fact, among others,
legitimates an interest for direct proofs, starting from the representation
(2.3) in the Haar and permutation models and from the representation (2.2)
for the one-dimensional process.

A second striking fact in the study of the two-parameter process is that
in Theorems 3.3 and 3.5(2), the limiting processes are the same. In other
words, the behavior of the sequence of DFT matrices is the same as the mean
behavior of sequence of Haar matrices. If we define U(∞) := ×∞

n=1U(n), we
can then ask how large is the set

E := {u = (U (n), n ∈ N) ∈ U(∞) | n−1/2(T (n)(., U (n))−nI ⊗ I)
law−→ W(∞)} .

Actually, it is equivalent to consider ω as the random object and the col-
lection of U(n), n ∈ N as the space of environments. There are several
choices to equip U(∞) with a probability measure such that its marginal

on U(n) is the Haar measure π(n). In [8], the authors introduced the no-
tion of virtual isometry. They consider a family of projections pm,n from

U
(n) to U

(m) for m < n and define the subset U(∞) of U(∞) of u such

that pm,n(U
(n)) = U (m) for every m,n with m < n. They conclude that

there exists a unique probability measure π on U(∞) (equipped with the

cylindrical σ-algebra) whose n-th marginal is π(n) for every n. Their con-
struction is also compatible with the framework of permutations (replace

π(n) by p(n) and π by p). It could be noticed that the DFT sequence belongs
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to U(∞) \ U(∞). Besides, in [20], Jiang “inspired by a common statistical
procedure for simulating a sequence of Haar distributed matrices in statis-
tical programs” assume that (U (n), n ∈ N) is an independent sequence. The
same remarks hold for O(∞) := ×∞

n=1O(n).
In the following subsections, we will give alternate proofs of Theorems 3.2

and 3.5 (annealed). We propose also two conjectures about weak conver-
gences conditionally upon u, for π - almost every u ∈ U(∞) (resp. O(∞)),
where π is any probability measure whose marginals are Haar measures on
U(n) (resp. O(n)). At last we treat the permutation process.

5.1. The one-parameter process.

5.1.1. Alternate proof of Theorem 3.2 (annealed). The process

G(n) :=

{
n1/2

n∑

1

|Ui1|2 (1Ri≤s − s) , s ∈ [0, 1]

}

is an example of a so-called weighted empirical process. We could then apply
Theorem 1.1 of Koul and Ossiander [21, p. 544], and use the representation
of (|U11|2, . . . , |Ui1|2, . . . , |Uin|2) by means of gamma variables to check con-
ditions therein. But we prefer to give (the sketch of) a proof that is more
self-contained and closer to what will happen in the two-dimensional case.

A possible method for the finite dimensional convergence of G(n) is to use
the Lindeberg strategy of replacement by Gaussian variables. It says that
if G1, . . . , Gn are independent Brownian bridges, then {G(n)(s) , s ∈ [0, 1]}
and {n1/2

∑n
1 |Ui1|2Gi(s) , s ∈ [0, 1]} have the same limits if

lim
n

E

[
n∑

1

(
n1/2|Ui1|2

)3
]
= 0 (5.1)

which holds true since E|Ui1|6 = O(n−3). Then it remains to see that

{
n1/2

n∑

1

|Ui1|2Gi(s) , s ∈ [0, 1]

}
law
=





(
n

n∑

1

|Ui1|4
)1/2

G1(s) , s ∈ [0, 1]





and to prove

lim
n

n

n∑

1

|Ui1|4 = 1 + β′−1 (5.2)

in probability. This latter task may be performed using moments of order
one and two of the above expression. We skip the details.
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To prove tightness, we revisit criterion (14.9) of Billingsley [6]. For r <
s < t, we have

E

[(
G(n)(s)− G(n)(r)

)2 (
G(n)(t)− G(n)(s)

)2]
= O((s − r)(t− s))

×E


∑

i 6=j

|Ui1|2|Uj1|2 +
∑

i

|Ui1|4

 (5.3)

Since
∑n

1 |Ui1|2 = 1 and limn E
(
n
∑n

1 |Ui1|4
)
= 1 + β′−1,we have

sup
n

E


∑

i 6=j

|Ui1|2|Uj1|2 +
∑

i

|Ui1|4

 < ∞ (5.4)

and the proof is ended.

5.1.2. Conjecture 1. Inspecting the above proof, we see that if all the con-
vergences and bounds for statistics built from U (i.e. (5.1), (5.2) and (5.4))
were almost sure, we could claim a quenched convergence in distribution.
Of course, we probably need higher moments calculus.
Conjecture 1. For π - almost every u, the push-forward of dω by the
mapping

ω 7→
√
n
(
B(n)(ω,U)− I

)

converges weakly to the distribution of
√

1 + β′−1B0.

5.2. The Haar process.

5.2.1. Alternate proof of Theorem 3.5 (annealed). For a complete proof in
this flavor, see [15]. We start from the following decomposition, analogous
to (4.5):

T (n) − ET (n) = V(n) + S̃(n) ⊗ S̃′
(n)

+ n1/2
(
I ⊗ S̃′

(n)
+ S̃(n) ⊗ I

)
(5.5)

where V(n) is defined in (3.7), or explicitly by

V(n)
s,t (ω,U) =

∑

ij

(
|Uij |2 − n−1

)
[1Ri≤s − s][1Cj≤t − t] (5.6)

(compare with Ŵ (n)). The scheme consists in proving

(1) the convergence of V(n) to
√

β′−1W [∞) in the sense of finite dimen-
sional distributions;

(2) the tightness of the sequence n−1/2V(n) in D([0, 1]2).

It seems to be similar to the one above in the one-dimensional case, nev-
ertheless there are two differences. First, we do not study T (n), but V(n)

which is its “involved” part. Second, we did not succeed to prove directly
the tightness of V(n) but only that of n−1/2V(n). Actually we know that a
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stronger result holds true, since as a consequence of Theorem 3.5 (quenched),

V(n) law−→
√

β′−1W (∞), but using Theorem 3.5 here defeats the point.
For the finite dimensional convergence we use again the Lindeberg strat-

egy replacing first the processes 1Ri≤s − s by Brownian bridges βi(s) and

afterwards replacing the processes 1Cj≤t− t by Brownian bridges β̃j(t). The
original process and the new one have the same limit as soon as

lim
n

E

n∑

i,j=1

|Uij|6 = 0 (5.7)

(which is true, since again E|Uij |6 = O(n−3)). To simplify, let us explain
what happens for the one-dimensional marginal after the above replacement.

Let X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn), two independent standard
Gaussian vectors in R

n. We thus study the bilinear non symmetric form

Qn :=
n∑

i,j=1

Xi(|Uij |2 − 1/n)Yj

built from the non symmetric matrix V =
(
|Uij |2 − 1/n

)
i,j≤n

. The charac-

teristic function of Qn is computed by conditioning upon X and U ; taking
into account the Gaussian distribution of Y we are lead to study the qua-
dratic form

Q̂n :=

n∑

i,j=1

XiHijXj , Hij = (V V ∗)ij , i, j = 1, . . . , n

and we have to prove that

lim
n

Q̂n = β′−1 , (5.8)

in probability. It can be checked with straightforward calculations of mo-

ments of order 1 and 2 of Q̂n, demanding moments of order 8 of the entries
of U to be computed.

To prove the tightness of n−1/2V(n) we can use a criterion of Davydov and
Zitikis [12] (notice that several criteria for tightness known in the literature,
such as Bickel-Wichura [5] or Ivanoff [19], failed in this model). A sufficient
condition is:

E

(
V(n)
s,t

)6
≤ C(max(s, t))3 (5.9)

as soon as max(s, t) ≥ n−1. With a careful look at dependencies, we reach:

E
U
(
V(n)
s,t

)6
=

∑

ik,jk,k=1,...6

(
6∏

k=1

Vikjk)E(
6∏

k=1

Bik)E(
6∏

k=1

B′
jk
). (5.10)

Since the Bi and B′
j are independent and centered, in the RHS of the above

equation, the non-zero terms in the sum are obtained when the ik (resp. the
jk) are equal at least 2 by 2. Using the following properties:
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• |E((Bi)
k)| ≤ E(Bi)

2 ≤ s for 2 ≤ k ≤ 6
• |E((B′

j)
k)| ≤ E(B′

j)
2 ≤ t for 2 ≤ k ≤ 6 ,

it was checked in [15] that (5.9) holds true.

5.2.2. Conjecture 2. Inspecting the above proof, we see that if all the con-
vergences and bounds for statistics built from U (i.e. (5.7), (5.8) and (5.9))
were almost sure, we could claim a quenched convergence in distribution.
This would require sharp analysis of homogeneous polynomials in the entries
of V hence of U .

Conjecture 2. For π - almost every u, the push-forward of dω by the map

ω 7→ n−1/2
(
T (n)(ω,U (n))− nI ⊗ I

)

converges weakly to the distribution of W(∞). In other words π(E) = 1.

5.3. The permutation process. For the permutation process we have a
complete picture, i.e. a convergence conditionally upon u, hence a direct
proof of Theorem 3.8 (annealed).

Theorem 5.1. For every u ∈ ⊗∞
n=1Sn, the push-forward of dω by the map-

ping

ω 7→ n−1/2
(
T (n)(ω,U (n))− nI ⊗ I

)

converges weakly to the distribution of B00.

Proof. If σ(n) is the permutation associated with U (n), we have

T (n)
st =

n∑

i=1

1Ri≤s1C
σ(n)(i)

≤t .

If we fix u, we fix σ(n) for every n. It is clear that the sequence Cσ(n)(i), 1 ≤
i ≤ n has the same distribution as Ci, 1 ≤ i ≤ n. We have then (condition-
ally)

n−1/2(T (n)(., U (n))− nI ⊗ I)
law
= Xn

where

Xn :=

(
n−1/2

(
n∑

i=1

1Ri≤s1Ci≤t − nst

)
, s, t ∈ [0, 1]

)

is a classical two-parameter empirical process. In [22] it is proved that this
process converges in distribution to B00. If F is any bounded continuous
function of D([0, 1)2) in R we may write, for every u,

E

[
F
(
n−1/2(T (n)(., U (n))− nI ⊗ I)

) ∣∣∣ u
]
= EF(Xn)) →n→∞ EF(B00)

which concludes the proof. �
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