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Modelling the boundary layer problem

Consider the problem of a boundary layer flow in forced convection on a semi-infinite plane plate. The characteristic properties of the fluid are assumed to be constant. The

∂U ∂x

+ ∂V ∂y = 0 (1a)

U ∂U ∂x + V ∂U ∂y = - 1 ρ dP dx + ν ∂ 2 U ∂x 2 (1b) 
U ∂T ∂x + V ∂T ∂y = a ∂ 2 T ∂y 2 . ( 1c 
)
With boundary conditions:

T | y=0 → T w T → T ∞ pour x = 0 T → T ∞ when y → ∞ U | y=0 = V | y=0 = 0 U → U ∞ pour x = 0 U → U ∞ when y → ∞.
The equation for the reduced current function of the dynamic boundary layer are derived from equations (1a) et (1b) via similarity method. Following [START_REF] Golbabaei | Analytical solution of forced-convective boundary-layer flow over a flat plate[END_REF], [START_REF] Moghimi | Approximate Analytical Solution to Flow over a Flat Plate by Variational Iteration Method[END_REF] and [START_REF] Alpaslan | The Differential Transformation Method and Pade Approximant for a Form of Blasius Equation[END_REF] we set ψ(x, y) = √ U ∞ νxf (η) the current function where η = U ∞ νx y the similarity variable. It is easily shown that:

f (η) + 1 2 f (η)f (η) = 0, (2) 
this is the Blasius equation with the boundary conditions:

f (0) = 0, f (0) = 0, f (∞) = 1. (3) 
f (η) is the reduced current function.

The equation of thermal boundary layer for the reduced enthalpy θ is derived from the equation (1c):

θ (η) + P r 2 f (η) θ (η) = 0, (4) 
subject to the boundary conditions:

θ(0) = 1 , θ(∞) = 0.
It is noted that the solution of the equation of momentum is decoupled from the solution of energy. However, the solution of the energy equation is always connected to the solution of the pulse.

Resolution of the system of equations by the Variational Iterations Method

The equations ( 2) and (4) will form a system of equation and will be solved by the Variational Iteration Method. (VIM) developed in 1999 by He [START_REF] He | Approximate analytical solution for seepage flow with fractional derivatives in porous media Computer[END_REF][START_REF] He | Non-Perturbative Methods for Strongly Nonlinear Problems[END_REF][START_REF] He | International Journal of Modern Physics B(World Scientific), Some asymptotic methods for strongly non-linear equations[END_REF]. It was shown by many authors that this method is more powerful than existing techniques such as the Adomian method [3] and [START_REF] Adomian | A review of the decomposition method in applied mathematics[END_REF], perturbation method, etc. The method gives rapidly convergent successive approximations of the exact solution if such a solution exists. The variational iteration method (VIM) is now widely used for analytic treatment of the linear and nonlinear systems of partial differential equations. It reduces the calculation size and overcomes the difficulty of handling nonlinear terms.

Variational Iteration Method

Consider the general non linear system,

Lu(t) + N u(t) = g(t), (5) 
Where L is a linear operator, N a non linear operator and g(t) is a continuous function. According to He (2006), He & Wu (2007) [START_REF] Amirfakhrian | Modification of Hes variational iteration method by Taylors series for solving second order non-linear partial differential equations[END_REF][START_REF] Salehpoor | Revised Variational Iteration Method for Solving Systems of Ordinary Differential Equations[END_REF][START_REF] Syed Tauseef Mohyud-Din | Variational Iteration Method for solving discrete KDV equation[END_REF][START_REF] Mahmood | Homotopy Perturbation Method and Variational Iteration Method for Volterra Integral Equations[END_REF], the following corrective functional can be constructed:

U n+1 (t) = U n (t) + t t0 λ[LU n (s) + N Ũn (s) -g(s)]ds, (6) 
where λ is a Lagrange multiplier, which can be identified optimally by means of variational theory. The subscript n represents the n th order of approximation. Ũn is considered as a restricted variation, ie δ Ũn = 0. Thus we determine λ as defined above, after which the successive approximations U n+1 (x, t), n ≥ 0 of the U (x, t) solution will be easily obtained using λ computed from a initial guess U 0 [START_REF] Abbasbandy | Numerical method for non-linear wave and diffusion equations by the variational iteration method[END_REF]. The solution of ( 5) is given by

U = lim n→∞ U n . (7) 
The solution of the linear problems can be obtained in a single iteration step because of the exact identification of the Lagrange multiplier. The method also provides an effective method for managing non-linear behaviour. At the end of a few iterations, a high degree of accuracy can be achieved. Application to our problem: consider the differential equations system

f (η) + 1 2 f (η) f (η) = 0 θ (η) + P r 2 f (η) θ (η) = 0 (8) 
With boundary conditions:

f (0) = 0, f (0) = 1, θ(0) = 1, f (∞) = 1, θ(∞) = 0. (9) 
According to the variational iteration method, we derive from ( 5) and ( 6) the following correct functional:

     f n+1 (η) = f n (η) + η 0 λ 1 (s)(f n (s) + 1 2 f n (s)f n (s))ds θ n+1 (η) = θ n (η) + η 0 λ 2 (s)(θ n (s) + P r 2 f n (s)θ n (s))ds, (10) 
where λ 1 and λ 2 are the Lagrange multiplier. The stationarity conditions for(10) yields:

λ 1 = 0, λ 2 = 0, 1 + λ 1 | s=η = 0, 1 -λ 2 | s=η = 0, λ 1 | s=η = 0, λ 2 | s=η = 0, λ 1 | s=η = 0, so λ 1 (s) = - (s -η) 2 2
and λ 2 (s) = s -η. With the Taylor development:

   f 0 (η) = f 0 (0) + ηf 0 (0) + η 2 2 f 0 (0) + R n (x) θ 0 (η) = θ 0 (0) + ηθ 0 (0) + R n (η). ( 11 
)
and using the initials conditions (9) we can have:

   f 0 (η) = a 0 η 2 2 + O(η 3 ) θ 0 (η) = θ 0 (0) + ηθ 0 (0) + O(η 2 ), (12) 

Result and comparison

The following tables and graphs compare the values of f (η) and θ(η) with those obtained by the Adomian decomposition method and the numerical method [START_REF] Golbabaei | Analytical solution of forced-convective boundary-layer flow over a flat plate[END_REF]. 

η

Conclusion

The Variational Iteration Method has been successfully applied to the resolution of the convection heat transfer problem with specified boundary conditions. The solutions obtained are compared with those of the Adomian decomposition method and those of the numerical method. The excellent agreement of the VIM solutions and the solutions obtained through the other methods shows its reliability and efficiency. The iteration is stopped at the order 7 and for this order we already obtain polynomial expressions with a high degree. This method provides complex but highly accurate analytical solutions and is an effective tool for solving boundary layer problems and other linear and non-linear problems.
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 2 Figure 2: Comparison of the results of three methods for θ(η).

Table 1 :

 1 Result by VIM, Adomian and Numerical for f (η) if P r = 1. Comparison of the results of three methods for f (η).

		VIM	Adomian Numerical	η	VIM	Adomian Numerical
	0	0	0	0	2.6 1.0639868 1.0639869	1.0725060
	0.2 0.0065859 0.0065859	0.0066409	2.8 1.2212897 1.2212899	1.2309773
	0.4 0.0263396 0.0263396	0.0265598	3	1.3859260 1.3859262	1.3968083
	0.6 0.0592395 0.0592395	0.5973465	3.2 1.5570016 1.5570018	1.5690951
	0.8 0.1052295 0.1052295	0.1061082	3.4 1.7336377 1.7336381	1.7469502
	1	0.1642024 0.1642024	0.1655717	3.6 1.9149925 1.9149935	1.9295253
	1.2 0.2359847 0.2359847	0.2379488	3.8 2.1002800 2.1002831	2.1160299
	1.4 0.3203229 0.3203229	0.3229816	4	2.2887826 2.2887911	2.3057466
	1.6 0.4168731 0.4168731	0.4203208	4.2 2.4798556 2.4798731	2.4980398
	1.8 0.5251940 0.5251940	0.5295181	4.4 2.6729185 2.6729204	2.6923612
	2	0.6447450 0.6447451	0.6500244	4.6 2.8674226 2.8671706	2.8882482
	2.2 0.7748893 0.7748894	0.7811934	4.8 3.0627717 3.0608776	3.0853207
	2.4 0.9149025 0.9149026	0.9222901	5	3.2581491 3.2479336	3.2832739
				4		

Table 2 :

 2 Result by VIM, Adomian and Numerical method for θ(η) if P r = 1.
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