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Optimal Measurement Pose Selection for Joint Stiffness Identification of
an Industrial Robot Mounted on a Rail

David Guérin, Stéphane Caro, Sébastien Garnier, Alexis Girin

Abstract— The paper focuses on the identification of elasto-
static properties of an industrial serial robot mounted on
a rail. It proposes an identification procedure in order to
find the optimal robot configuration to minimize the impact
of measurement errors on the identification accuracy of the
stiffness parameters. An experimental setup is designed to
perform the identification of all stiffness parameters under
industrial conditions. The proposed identification procedure
is easy to use and takes little time.

I. INTRODUCTION

Nowadays, several industrial companies are interested in
analysing the possibility to employ serial robots for industrial
machining operations. Indeed, serial robots can be more
flexible than computer numerical control (CNC) machines
and also cost-effective, but, serial robots are usually not as
stiff as a CNC machine and they are not designed specifically
to perform machining operations.

The IRT Jules Verne launched in 2013 the project
ROBOFIN with several industrial partners (DAHER, DCNS,
STX France, Loiretech, Multiplast, Europe Technologies and
Coriolis Composites) to investigate machining operations on
large size pieces performed by a KUKA KR500 L480-2 robot
mounted on a 18 meters long rail.

In order to improve machining capabilities of industrial
serial robots it is necessary to detect the main factors that are
responsible to the robot inaccuracy. Since the introduction
of serial robots in industry, several studies have focused on
their geometric parameters identification and calibration [1],
in order to improve their accuracy. The geometric calibration
is mainly focused on the identification of the geometric
parameters and joint offsets.

To improve the efficiency of a robot, calibration of
non-geometric parameters has to be considered as well.
Identification and calibration of robot stiffness parameters
(elasto-static calibration) is essential too for a serial ma-
chining robot [2]. When a serial robot performs machining
operations, the efforts applied on the robot end-effector
cause deformations on the robot components, reducing the
quality of the machined parts. Generally, for an industrial
serial robot the compliance of the bodies is assumed to
be negligible with respect to the joint compliance [3], [4]
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Fig. 1. KR500 L480-2 MT mounted on rail located at IRT Jules Verne

and [5]. Nowadays, there are still many research works
focusing on the robot stiffness identification. Gautier et al.
[6] proposed an off-line joint stiffness identification method
based on motor torque output data. In Milutinovic et al. [7]
the stiffness identification is applied to a 5-axis serial robot
used to perform machining operations, in order to analyse the
impact of each joint’s compliance on the robot stiffness. In
[8], a stiffness identification was performed to a Mitsubishi
PA10-6CE, in order to improve static positioning accuracy
of the robot.

During machining operations, the robot can be subjected
to chattering. Pan et al. performed some studies about the
elasto-dynamic identification of serial robots. Their research
work aimed at avoiding chatter by selecting the optimal
cutting parameters [9]. Other non-geometric parameters can
affect robot efficiency. Gong et al. [10] studied the impact
of thermal effects on serial robot deformations.

In industrial environment, robot parameters identification
may be time consuming. Hence, some works have focused
on the optimisation of measurement configurations [11],
[12]. The study described in [13] and [14] is focused on
the optimisation of the measurement configurations for robot
stiffness identification. In this paper, a method is proposed
to decrease the time required for the stiffness identification
experiments by providing a simple method easy to use and
by minimising the number of measurements configuration.
Moreover, this method has been developed, to improve the
identification accuracy and is based on the work of Wu et
al. [15] and has been adapted to a serial robot mounted on a
rail. This paper also presents an experimental setup used to
identify all stiffness parameters. Section II presents the track
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Fig. 2. Experimental setup used to exert an external wrench on the robot
end-effector

mounted robot and measurement equipment. Section III
deals with the kinematic modelling and stiffness modelling
of the robot. Section IV details the method used to determine
the optimal measurement configurations. Section V provides
simulation results. Section VI deals with the conclusion and
the future work.

II. ROBOTIC CELL AND EXPERIMENTAL SETUP

The presented work aims to investigate machining opera-
tions performed with a serial robot mounted on a rail. The
following case study has been taken into consideration. The
robotic machining cell located at the IRT Jules Verne and
shown in Fig. 1 is composed of a KUKA KR500 L480-2
MT robot and a rail. The robot rated payload is equal to
480 kg. The rail is 18 m long and has been developed by
Sud-Ouest Système company. In what remains, the KUKA
KR500 L480-2 MT robot will be referred to as KR500.
In order to identify the stiffness parameters of the KR500
and the rail, a solicitation effector developed at IRCCyN
is mounted on the KR500 end-effector. Moreover a chain
with an embedded turnbuckle is attached to the solicitation
effector at one end and to the floor at the other end, namely,
at point Pa = [xpa

ypa
zpa

], as illustrated in Fig. 2.
The aim of this experimental setup is to be cost effec-

tive with no extra infrastructure and easy to integrated in
industrial environment. Moreover this setup can be used to
identify all stiffness parameters of the presented robotic cell.

An identification procedure will be developed in Section
IV in order to find the robot configurations associated with
the optimal measurement poses and the optimal location of
the attachment point, Pa, such that the effect of measurement
errors on the identification accuracy of the stiffness param-
eters is a minimum. In this identification procedure, the

Fig. 3. Kinematic drawing of the KR500 L480-2 MT mounted on a rail

TABLE I
MDH PARAMETERS OF THE KR500 ROBOT MOUNTED ON A RAIL

j αj [rad] dj [mm] θj [rad] rj [mm]

1 −π/2 0 0 r1

2 π/2 0 θ2 1048

3 π/2 500 θ3 0

4 0 1300 θ4 0

5 π/2 55 θ5 1525

6 −π/2 0 θ6 0

7 π/2 0 θ7 290

Cartesian coordinates of points P1, P2, P3, Pl1 and Pl2 will
be measured by a Leica Laser Tracker and retroreflectors.

III. ROBOT STIFFNESS MODELLING

A. Kinematic modelling and parametrization

Fig.3 illustrates a kinematic drawing of the KR500
mounted on a rail. The modified Denavit Hartenberg (mDH)
parameters are used to parametrize the KR500 robot and the
rail.

• the zj axis is along the axis of joint j
• the xj axis is aligned with the common normal between

zj and zj+1.
• the origin Oj is the intersection point of zj and xj

The mDH parameters of the KR500 mounted on a rail are
given in Table I.

The direct kinematic model gives us the relation between
the end-effector twist, t, and the joint rates vector q̇,
expressed in the base frame Fb:

t = J(q)q̇ (1)

where q = [r1 θ2 θ3 θ4 θ5 θ6 θ7]
T is the joint coordinate

vector, q̇ = [ṙ1 θ̇2 θ̇3 θ̇4 θ̇5 θ̇6 θ̇7]
T is the joint velocity
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vector, r1 is the prismatic joint length and [θ2 ... θ7] are the
revolutes joint angles. J is the kinematic Jacobian matrix of
the KR500 mounted on a rail.

B. Stiffness model

Performing machining operations with a serial robot gen-
erates an external wrench on the robot end-effector. This
external wrench may produce elastic deformations in the
robot. The robot links are assumed to be rigid. The
elasticity of the rail is modelled by a linear elastic spring
along the direction of the rail. The revolute joint stiffness
is characterized by a linear elastic torsional spring. The
Cartesian stiffness matrix KX of the KR500 mounted on
a rail is expressed as:

KX = J−TKqJ
−1 (2)

where Kq is the diagonal joint stiffness matrix expressed as:

Kq =



kr1 0 0 0 0 0 0
0 kθ2 0 0 0 0 0
0 0 kθ3 0 0 0 0
0 0 0 kθ4 0 0 0
0 0 0 0 kθ5 0 0
0 0 0 0 0 kθ6 0
0 0 0 0 0 0 kθ7


(3)

Zhang et al. [16] showed that the Cartesian stiffness
matrix KX can be rewritten as follows:

KX = J−T
l KqJ

−1
m (4)

where Jm is the Jacobian matrix expressed at the measure-
ment point and Jl is the Jacobian matrix expressed at the
loading point. Therefore, the relationship between the end-
effector displacement δd and the external wrench w can be
expressed as:

δd = JmK−1
q JTl w (5)

where δd = [δp φ]T is the vector of the end-effector
displacement, with δp and φ being respectively the point-
displacement and the rotational error of the robot end-
effector. w = [f m]T is the vector of external wrench
(forces and moments).

In order to consider the measurement errors and the point-
displacement of the measurement points Eq. (5) is rewritten
as:

δpi = Aix+ εi (i = 1, ..., n) (6)

where δpi is the point-displacement of the ith measure-
ment point, x is the vector of joint compliances, x =
[1/kr1 , 1/kθ2 , ..., 1/kθ7 ]

T and εi denotes the measurement
error due to the Leica laser tracker. The matrix Ai is
composed of the columns of matrix Jl and Jm , and the
external force f applied on the loading point, namely,

Ai = [Jm1,i
JTl1,ifi|...|Jm7,i

JTl7,ifi](i = 1, ..., n) (7)

Fig. 4. Drawing representation of the criterion εTP
ac [17]

IV. OPTIMAL STIFFNESS IDENTIFICATION FOR A TRACK
MOUNTED ROBOT

A. Problem statement

A method defined in Wu et al., in 2012 [15] proposed a
criterion to obtained optimal measurement poses to identify
stiffness parameters of an industrial serial robot. This
methodology is focused on the test-pose (TP) base approach.
The test-pose is a particular robot configuration in which
very good accuracy is required after compensation due to
the machining operation to be realized. For experimental
validation a vertical wrench was applied on a Kuka KR270-2
robot [17]. In this case, the first joint stiffness cannot be
identified, because it is not solicited. Therefore, some other
experiments are required for the identification of this first
joint stiffness.

In the case of the robot mounted on a rail, an experi-
ment with a vertical wrench leads to similar results for the
identification of the first prismatic joint stiffness and the
first revolute joint stiffness. Then, the experimental setup
presented in Section II is used in order to solicitate all the
stiffness of all joints.

Note that the method developed in [15] is used to find the
optimal measurement poses for the joint stiffness identifica-
tion of the KR500 mounted on a rail shown in Fig. 1. How-
ever, the optimisation problem at hand has been enhanced
in order to find the optimal location of the base attachment
point Pa.

B. Adapted methodology

The criterion εTPac is employed to evaluate the root-mean-
squared error of the robot end-effector deflection for a given
test pose, as illustrated in Fig 4.

εTPac = σ2trace

A0

(
n∑
i=1

ATi Ai

)−1

AT
0

 (8)

where the matrix A0 amounts to matrix Ai, defined in
Eq.(7), evaluated at the test-pose, σ = 0.03mm is the
standard deviation of the measurement noise as used in [17]
for the same measurement device.
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TABLE II
CRITERION εTP

ac [10−2 mm], DEFINED IN EQ. (8), AS A FUNCTION OF

THE NUMBER OF MEASUREMENT POSES AND THE NUMBER OF

EXPERIMENTS, WHILE CONSIDERING THE OPTIMAL LOCATION OF THE

BASE ATTACHMENT POINT Pa

num of exp number of measurement poses
m0 = 3 m0 = 4 m0 = 6 m0 = 12

n = 3 1.980

n = 4 — 1.706

n = 6 1.400 — 1.385

n = 12 0.990 0.985 0.979 0.969

Fig. 5. εTP
ac as a function of the number of measurement poses, m0, and

the number of measurements, n.

To minimize the effect of measurement errors on the
robot end-effector pose error evaluation after error com-
pensation, we should find optimal measurement configura-
tions qopti = [ropt1i

θopt2i
θopt3i

θopt4i
θopt5i

θopt6i
θopt7i

]T of the
KR500 robot and find the optimal position of the base
attachment point Pa. The z-coordinate, zpa, of point Pa
expressed in the base frame Fb, is equal to −0.891mm due
to the height of the rail. The optimisation of coordinate
ypa is redundant with the optimisation of joint length r1
because this axis is assumed to be perfectly collinear with
axis yb. Therefore, ypa is set to 6 m. As a consequence, the
following optimisation is solved in order to find the optimum
measurement poses and the optimum location of the base
attachment point Pa:

Thus, the optimisation problem can be formulated as
follows

min εTPac

over x = [qopt1 , ...,qoptm0
, xpa ]

T

subject to

Pb



0m ≤ ropt1i
≤ 14m

−70 ˚ ≤ θopt2i
≤ 70 ˚

zθopt7i

≥ 500mm

‖f‖2 = 4000N
2m ≤ xpa ≤ 6m

(9)

Fig. 6. εTP
ac as a function of xpa for n = 12 and m0 = 3

where m0 is the number of measurement poses.
In our case, the direction of the external force applied on

the end-effector is defined by the position of the attachment
point and the position of the robot end-effector. In the
experimental setup the direction of external forces is obtained
from the locations of points Pl2 and Pl1 located at the both
ends of the spring (as shown in Fig. 2). Thus, the direction
of external forces is expressed as follows :

u =
Pl2 − Pl1
||Pl2 − Pl1 ||2

(10)

The external force is expressed as:

f = ||f ||.u (11)

C. Optimisation results

The optimisation problem has been launched with a
genetic algorithm for a single test-pose and for several
measurement poses. It is noteworthy that the measurements
can be repeated in the measurement poses in order to ease
the experimentations.

The test-pose is defined by the following robot joint
coordinate vector qTP and the force fTP applied on the robot
end-effector

qTP=[8.5m − 10◦ 35◦ 39◦ 81◦ 22◦ − 10◦]T (12)
fTP=[−124.5N −175.4N −209.1N]T (13)

Table II gives the values of criterion εTPac as a function
of measurement poses and number of experiment. Figure 5
illustrates the value of εTPac as a function of the number of
measurement poses, m0, and the the number of measure-
ments, n. It is apparent that εTPac is a minimum when n = 12
and m0 = 12. To improve the time required to achieve the
stiffness identification for a same number of experiments, a
minimum number of measurement configurations is needed.
As a conclusion in order to minimize the number of robot
configurations to make the experiments, twelve experiments
will be performed with three measurement poses. It means
that four measurements are made in each measurement pose.

Equations (14) to (16) give the joint angles vectors asso-
ciated with the three optimal measurement poses.

qopt1 =[5.3m − 37.3˚ 57.6˚ 80.8˚ 101.2˚ − 27˚ − 82.2˚]T (14)
qopt2 =[14m 69˚ 33.9˚ − 33.8˚ 107.5˚ 29.2˚ 116˚]T (15)
qopt3 =[4.7m 19˚ 12.2˚ 75.4˚ 89.4˚ 39.7˚ 117.1˚]T (16)
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TABLE III
NOMINAL JOINT STIFFNESS VALUES

[N/m] [N m/rad]

kr1 kθ2 kθ3 kθ4 kθ5 kθ6 kθ7
8.107 3.8.106 6.6.106 3.9.106 5.6.105 6.6.105 4.7.105

Equation (17) gives the optimal Cartesian coordinates of
the base attachment point Pa expressed in the base frame Fb.

xpa=5.04m, ypa = 6m, zpa = −0.891m (17)

Fig. 6 presents value of the criterion εTPac as a function of
xpa for twelve experiments and three measurement poses.

V. SIMULATION

To simulate the stiffness identification we consider the
measurement poses defined by Eqs. (14) to (17) for the test-
pose defined by Eq. (12) and (13). This section aims to show
the impact of the stiffness identification on the estimation of
the robot end-effector deflection around the defined test-pose
and for poses defined in the global workspace.

A. Evaluation of the joint stiffness values

The joint stiffness identification is performed by using the
experimental setup presented in Section II. It is assumed
that the geometric calibration has been realized. The spring
scale is used to measure the magnitude of the external forces.
Thus, to obtain the direction of external forces f , a set of two
SMR (Spherical Mounted Retro-reflector) are placed at the
ends of the Spring scale at points Pl1 and Pl2 . To measure
the displacement of the robot end-effector, three SMR are set
above (P1, P2 and P3).A measurement error is considered
for each measurement. Moreover, the measurement system
is a Leica Laser Tracker. Measurement errors are taken in a
spherical coordinate system. Angles θ and φ are respectively
taken in the intervals [0, π/2] and [−π, π] with a uniform
distribution, the radius r follows a normal distribution.

r ∼ N (µ, σ) (18)

with µ = 0 and σ = 0.03mm. Eq. (6) expressed the
displacement of the end effector as a function of the vector
of nominal joint compliances presented in Table III and
measurement errors. This equation can be computed as
follows to take into account the number of measurement
points, p, and the number of optimal measurement poses,
m0:

B =



A1
1

...
Aj
i

...
Ap
m0


i = 1, ...,m0

j = 1, ..., p
(19)

TABLE IV
IDENTIFIED JOINT STIFFNESS VALUES

Joint Standard deviation Bias
number σkqe

.[106] unit % bkqe .[10
5] unit %

1 1.5831 N/m 1.979 2.474 N/m 0.309

2 0.0027 N m/rad 0.072 −0.003 N m/rad 0.008

3 0.0245 N m/rad 0.371 0.0008 N m/rad 0.001

4 0.0150 N m/rad 0.383 −0.0192 N m/rad 0.049

5 0.0367 N m/rad 6.554 0.0174 N m/rad 0.311

6 0.0053 N m/rad 0.799 0.0008 N m/rad 0.012

7 0.0290 N m/rad 6.172 0.0201 N m/rad 0.428

and

c =



δp1
1

...
δpji

...
δppm0


i = 1, ...,m0

j = 1, ..., p
(20)

In that case, the estimates value of joint compliances xqe
can be obtained with the generalized inverse of B as follows:

xqer = (BT
r Br)

−1BT
r cr r = 1, ..., 200 (21)

where r is the number of repetitions of measurements.
Table IV presents the standard deviation, σkqe , and the

bias, bkqe , for the joint stiffness identification performed 200
times, the percentage of estimation error is also expressed
in the Table IV to highlight the joints that are mainly
responsible for the stiffness measurement inaccuracy.

These results are used further to evaluate the impact of the
stiffness identification results on the estimation of the end-
effector displacement in the global workspace and around
the test-pose when an external wrench is applied on it.

B. Estimation of the robot end-effector displacement

Repetitive machining operations do not necessarily require
a high accuracy in terms of stiffness identification. However,
a correct estimation of the robot deflection is essential. The
criterion illustrated hereafter aims to represent the accuracy
of the estimation of the robot end-effector displacement.
Thus, the smaller µjpi represent the better displacement
compensation.

µjpi =
||δpjni − δp

j
ei||2

||δpjni||2
i = 1, 2, 3

j = 1, ..., 1000
(22)

where j is the number of validation measurement, i is
the number of measurement point, δpjni is the nominal
displacement of the robot end-effector, which is calculated
with the nominal stiffness values presented in Table III.
δpjei is the estimation of the robot end-effector displacement
calculated with the joint stiffness values given in Table IV.
The joint stiffness estimation is computed as:

kqe ∼ N (µkqe , σkqe) (23)
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TABLE V
VALIDATION MEASUREMENTS

µpi [10
−3]

i Test-poses measurement Global workspace measurement

1 1.6 6.8

2 1.9 6.8

3 2.0 6.8

where µkqe is the average value of kqe and σkqe is the
standard deviation of kqe .

Moreover, the compensation of the end-effector pose error
should be better around the test-pose defined in Eqs. (12) and
(13).

Accordingly, a simulation is performed with a set of
1000 validation measurement configurations taken around the
test-pose, and an other set of 1000 validation measurement
configurations taken randomly in the global workspace of
the KR500 mounted on a rail. For each measurement, the
displacement of the robot end-effector is measured at points
P1, P2 and P3. Then, the criterion µpji

is calculated with
respect to the nominal displacement δpjni. Table V provides
the results of those simulations.

It is apparent that the estimation of the robot end-effector
displacement is identified with an accuracy of 0.16% to
0.2% around the test-pose and with an accuracy of 0.68%
in the global workspace. Note that only the effect of the
measurement errors on the evaluation of the robot end-
effector pose error, while subjected to external wrenches,
has been considered in the scope of this paper.

VI. CONCLUSION

This paper dealt with a methodology to identify all stiff-
ness parameters of an industrial serial robot mounted on a
rail. Moreover, an existing test-pose based approach was
used to identify the joint stiffness values of the KUKA
KR500 MT robot mounted a rail, while minimizing the
effect of measurement errors on the end-effector pose error
evaluation after compensation. This method provides opti-
mal measurement configurations adapted to the experimental
setup.

In order to obtain the optimal measurement configurations,
we firstly had to define the robot kinematic model. Then,
we used the optimisation measurement configurations to run
the simulations. Outcomes show the interest of using the
optimisation method with defined machining configurations,
called test pose.

In future work, the proposed methodology will be im-
proved to consider the effect of the masses of the bodies
on the robot deflection and the geometric errors. Moreover,
a enhanced stiffness model of rail will be developed and
some experimental validations will be performed in order to
identify the geometric and stiffness parameters of the KUKA
KR 500 MT robot mounted on a rail shown in Fig. 1.
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