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New method for decoupling the articular stiffness identification :
application to an industrial robot with double encoding system on its 3

first axis

Alexandre Ambiehl1, Sébastien Garnier2, Kévin Subrin2 and Benoit Furet2

Abstract— In order to be able to perform complex and
arduous tasks, stiffness articular identification of industrial
robots is a current approach to predict the deflection under
static or dynamic loading. Manufacturers propose new features
to take the loading into account and a new generation of
industrial robot equiped with double encoding systems are
proposed. However, current methods brings some drawbacks
when the ratio between the stiffness arm and the wrist one is
too high. In this paper, we propose a new approach to take this
aspect into account by decoupling the arm identification and the
wrist one. We compare then our method regarding two current
methods and applied it on this new industrial robot. The results
highligh the stability and the quality of the stiffness articular
estimation with and without activating the double encoding
system. On our data, we are able to take into account 84% of
the global deflection.

I. INTRODUCTION

The increasing competitiveness between companies re-
quires means of production which meet an expected function-
ality at a reduced investment cost. This financial rationaliza-
tion encourages industrial robotic to compete with machine
tools as regards tasks for which the volume of the workspace
is large and does not require a great accuracy (up to 0.1mm).
However, the behavior of robots must be improved to an-
swer more specifically to the needs of customers in terms
of accuracy and quality. Manufacturers propose new and
adapted manipulators architectures. These improvements are
represented through the integration of more rigid gearboxes,
more powerful engines, mass compensator, parallelogram
closed loop, the integration of the spindle in the 5th link.
This paper focuses on a new feature i.e. the integration of
a double encoding systems for a better control of the 3 first
axis during strong loadings. In fact, the main deflection on
a serial robot is localized at its joints [1]. This integration
allows to delete a part of the deflection inside the axis (axes
torsion, elastic deformation of the reductors). In the rest of
the paper, we will consider as "arm" the 3 first axis and we
call "wrist" the 3 last one of the robot.

Currently, many work proposes ways to improve the
accuracy and more generally the behavior of industrial robot.
In fact, due to its serial architecture, the robot has an
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anisotropic behavior in its workspace i.e. its performance is
dependent on its positioning, its configuration, its distance to
its singularity. Then, works rely on the identification of the
whole parameters of an industrial robot (link length, offset,
kinematic parameters, dynamic parameters) to improve its
absolute accuracy and its behavior regarding the task it must
perform. Many factors influence the accuracy of the robot
such as elastic deformation[2], [3] , thermal deformation[4],
modelling errors[5], [6] . Identification is performed via
online or offline methods [7], [8]. As far as stiffness iden-
tification is concerned, main approaches are offline based
on an exteroceptive or proprioceptive measurement of the
deflection of the robot due to a static weight. Current
approaches on this subject have some limits we will discuss
and we present here a new method that we compare with
what authors proposed [9], [10].

This paper is organized as follows. Section II presents the
stiffness modelling background. Section III defines the new
method based on a decoupling approach to first identify the
3 first axis and the 3 last one. Section IV presents the results
via the use of 3 methods on the industrial robot with double
encoding system. Section V gives the conclusion and the
perspective of the paper.

II. STIFFNESS MODELLING BACKGROUND

Conservation Congruence Transformation(CCT) was pro-
posed by Chen and Kao [1] to define the spatial Cartesian
stiffness matrix of a serial robot. We first define the notation
and we develop the approach.

A. Jacobian Matrix

The Jacobian matrix pJh of the robot relates the joint rates
q̇ to the twist of the end effector namely.[

pV
pw

]
=
[
pJh
] [
q̇
]

(1)

pV is the translation speed of the end effector expressed
in p coordinate system, pw is the rotation speed of the end
effector expressed in p coordinate system, q̇ is the articular
speed,

[
pJh
]

is the Jacobian matrix which defines the speed
of h element expressed in p coordinate system.

The static model of the robot can be introduced in the
same way.

Γ =
[
pJh
]T [pWh

]
(2)
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with Γ the torque applied to the joint, pJh the Jacobian
matrix and pWh the wrench applied to the end effector.

B. Cartesian stiffness matrix formulation via complete pose
method

The cartesian stiffness matrix of a robot depends on
its configuration, links stiffness, control loop stiffness and
actuators mechanical stiffness. In this paper, the last two
sources of stiffness are considered. The links of the robot
are assumed to be rigid, the damping is neglected and the
stiffness of the joints is represented with linear torsional
springs. The spatial cartesian stiffness of a serial robot can
be defined by:

W = Kx.∆X (3)

with
Kx = J−T .(Kθ −Kc)J

−1 (4)

W is the six-dimensional wrench vector composed of the
forces and torques applied on the end-effector on a given
point and expressed in R0. KX is the 6x6 cartesian stiff-
ness matrix of the robot expressed in R0. ∆X is the
six-dimensional vector composed of the translational and
rotational displacements of the end-effector expressed in R0.
J is the Jacobian matrix of the robot defined in (1). Kθ is
the diagonal joint stiffness matrix defined as follows:

Kθ =



kθ1 0 · · · · · · · · · 0

0 kθ2
. . .

...
...

. . . kθ3
. . .

...
...

. . . kθ4
. . .

...
...

. . . kθ5 0
0 · · · · · · · · · 0 kθ6


(5)

Dumas et al. [9] highlight that to facilitate the estimation
of the stiffness identification that Kc must be negligle. They
present the definition of a criteria to have a good conditioning
of the Jacobian matrix and they place the robot in such a way
that, they can lead to the following approximation :

Kx ≈ J−TKθJ
−1 (6)

The stiffness identification takes the form :

W = J−TKθJ
−1δp with δp =

[
δpm δprad

]T
(7)

For a given configuration, the measurement of the deflection
(δp) in translation (δpm) and rotation (δprad) due to a
wrench W allows to identify the stiffness via the Complete
Pose method. Unfortunately, this equation introduces various
bottlenecks. On one hand, we observe some compensation
effects. The stiffness values for the 3 first axes of the robot
and the 3 last one have a ratio of 10 (See Tab. II). During
the identification, we can observe a over-estimation of the 3
first axis leading to a negative stiffness. That has no physical
meaning. On the other hand, the position and the orientation
with and without loading is measured. However, it is not
homogeneous (Length in meter and orientation in rad). To
take this aspect into account, a common approach concerns

the normalization of the Jacobian Matrix by means of a
normalizing length called characteristic length and denoted
as L [11]. Unfortunately, this value depends on a numerical
optimization, it is not single and depends on the initial
condition to be determined. This normalization will be used
in section IV. Lets JN to be the normalized Jacobian matrix
:

JN =

[
1
LI3X3 03X3

03X3 I3X3

]
(8)

In order to avoid the normalization, an approach leading
by[10], [12] allows an identification with partial pose which
takes into account only the position of the robot δpm.

C. Decoupling the measurement of the displacement point
and the force application point

Equation (7) lets appear the same Jacobian and it is
necessary, for the identification, to define at the same point
the loading and the displacement. Unfortunately, it implies to
have a deep knowledge of the geometry which is not perfect.
Based on that, we can introduce in the formula, the Jacobian
for the loading Jw and the Jacobian for the displacement
Jm. In fact, we can write :

Γ = JTw f δp = Jmδθ Γ = Kθδθ f = Kxδp (9)

Taking the partial derivatives of (17) and

∂Γ

∂θ
=
∂JTw
∂θ

f + JTw
∂f

∂p

∂p

∂θ
(10)

neglecting Kc =
∂JTw
∂θ

f , it can be write:

Kθ = J twKxJm (11)

Then, the paper will consider :

δp = JmK
−1
θ JTwW (12)

D. Flange and wrist center identification

A serial robot carries a flange on which 3 targets are
positionned (Fig. 1). The position of these 3 targets allow
to define the position and the orientation of the end effector
in the space. A laser tracker with an accuracy of around
0.02mm (depending on the distance between the laser tracker
and the target) is used. It allows the measurement of the
coordinate on a point on the laser tracker frame or in a
particular frame which has been identified via the well-
known circle point method[13]. A R0 frame located on the
robot base is then identified after a revolution of axis 1 and
axis 2 . Identification methods permit to localize the targets
positioning regarding the modeling of the robot. Then, the
circle point method is used to define the link length. The
approach leading by [9] considers the barycenter of P10,
P11 and P12. To improve this approach, we look for the
localization of Pwrist, the wrist center i.e. the intersection of
the 3 last axis. PTCP is a point on the flange surface which
intersects the 6th axis (named : Tool Center Point). These
points are defined by P10, P11 and P12. During the revolution
of axis 4 to 6, they sweep the surface of a sphere whose
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center is Pwrist. We present here a metrological method
which allows a correct identification of the center of the
wrist.

Fig. 1. Our workcell to perform the stiffness identification

Trilateration Algorithm: The knowledge of Pwrist and
PTCP is realized in a specific configuration of the robot.
In this configuration, −→x0 is colinear to −→z6 (Fig. 2).

Fig. 2. Construction of the center of the wrist

The use of the circle point method via the revolution of
axis 5 and axis 6 allows to define R0Pwrist. It is then possible
to identify the position of P1X with X = 0, 1, 2 regarding
Pwrist via the trilateration formula which identifies P10, P11

and P12 targets positioning regarding Pwrist and PTCP (Fig.
3). From (13) and (14), we are able to define two wrist
centers namely R0Pwrist−1 and R0Pwrist−2 where the closer
of our theoretical one is chosen :

R0Pwrist−1 =R0 P1X + xex + yey + zez (13)
R0Pwrist−2 =R0 P1X + xex + yey − zez (14)

We write here only the formula considering P10. The same
formula has to be considered with P11 and P12.

x =
(PwristP10)2 − (PwristP11)2 + d2

2d
(15)

y =
(PwristP10)2 − (PwristP12)2 + i2 + j2

2j
− i

j
x (16)

z =
√

(PwristP10)2 − x2 − y2 (17)

and

ex =
P11 − P10

‖P11 − P10‖
; i =< ex, P12 − P10 >

(18)

ey =
P12 − P10− < i, ex >

‖P12 − P10− < i, ex > ‖
; j =< ey, P12 − P10 >

(19)
ez = ex × ey; d = ‖P11 − P10‖

(20)

These equations allow to normalize the problem. It defines
the intersections of 3 spheres. In this way, with 1000 mea-
surements regarding various positions of the 4th to 6th axis,
the center of the wrist is defined by less than 0.1mm (see
Tab. I)

TABLE I
POSITIONNING OFFSET OF THE WRIST

Name Xmes Ymes Zmes offset
P10 1245.71 -310.11 239.20 0.06
P11 1245.73 -309.99 239.16 0.06
P12 1245.72 -310.05 239.19 0.01

Barycenter 1245.72 -310.05 239.18

Fig. 3. Definition of the trilateration frame

III. A NEW METHOD FOR THE STIFFNESS
IDENTIFICATION : DECOUPLING THE ARM AND WRIST

As a novelty regarding the state of the art, we identified
the articular stiffness by decoupling the 3 first axis and 3 last
one on the industrial robot.

A. Decoupling between the wrist and the arm of the robot

This expression allows to take into account the location to
perform the measurement of the displacement and the force.
We consider 2 stiffness matrixes with the stiffness of the 3
first axis (Kθ123) and the 3 last one (Kθ456 ) such as :

Kθ =

[
Kθ123 0

0 Kθ456

]
(21)
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Kθ123 =

k1 0 0
0 k2 0
0 0 k3

 and Kθ456 =

k4 0 0
0 k5 0
0 0 k6


(22)

Equation (12) becomes :

δp = JmK
−1
θ123

JTwW + JmK
−1
θ456

JTwW (23)

In order to simplify the lecture of the various equation,
we divide the matrixes in 4 sub-matrixes such as:

Jmi =

Jmi1,1 Jmi1,2 Jmi1,3
Jmi2,1 Jmi2,2 Jmi2,3
Jmi3,1 Jmi3,2 Jmi3,3

 (24)

Jwi =

Jwi1,1 Jwi1,2 Jwi1,3
Jwi2,1 Jwi2,2 Jwi2,3
Jwi3,1 Jwi3,2 Jwi3,3

 (25)

Equation (12) can be write as :

δp =

[
Jm1 Jm2

Jm3 Jm4

] [
K−1
θ123

0
0 0

] [
Jw1 Jw2

Jw3 Jw4

]T
·W+[

Jm1 Jm2

Jm3 Jm4

] [
0 0
0 K−1

θ456

] [
Jw1 Jw2

Jw3 Jw4

]T
·W (26)

Using the transposition relation by blocks, the equation
becomes :

δp =

[
Jm1

Jm2

Jm3
Jm4

] [
K−1
θ123

0
0 0

] [
JTw1

JTw2

JTw3
JTw4

]
·W+[

Jm1 Jm2

Jm3 Jm4

] [
0 0
0 K−1

θ456

] [
JTw1

JTw2

JTw3
JTw4

]
·W (27)

δp =

[
Jm1

Jm2

Jm3
Jm4

] [
K−1
θ123

JTw1
K−1
θ123

JTw3

0 0

]
·W+[

Jm1 Jm2

Jm3 Jm4

] [
0 0

K−1
θ456
· JTw2

K−1
θ456
· JTw4

]
·W (28)

We can finally write δp following a matricial product
linked to the arm stiffness and a matricial product linked
to the wrist stiffness :

δp =

[
Jm1
·K−1

θ123
· JTw1

Jm1
·K−1

θ123
· JTw3

Jm3
·K−1

θ123
· JTw1

Jm3
·K−1

θ123
· JTw3

]
·W+[

Jm2
·K−1

θ456
· JTw2

Jm2
·K−1

θ456
· JTw4

Jm4
·K−1

θ456
· JTw2

Jm4
·K−1

θ456
· JTw4

]
·W (29)

We introduce now the values of the wrench W :

W =
[
F M

]T
=
[
Fx Fy Fz Mx My Mz

]T
(30)

In order to perform the identification, we only consider
the position of the end effector i.e. we will use only δpm.
Moreover, considering only the arm about (23) (Only K−1

θ123
),

the first part of (29) can be developed and reduced. We lead
to this equation :

δpm =



Jm11,1

Jm12,1

Jm13,1



Jw11,1

Jw12,1

Jw13,1

Jw31,1

Jw32,1

Jw33,1



T 
Fx
Fy
Fz
Mx

My

Mz


Jm11,2

Jm12,2

Jm13,2



Jw11,2

Jw12,2

Jw13,2

Jw31,2

Jw32,2

Jw33,2



T 
Fx
Fy
Fz
Mx

My

Mz


Jm11,3

Jm12,3

Jm13,3



Jw11,3

Jw12,3

Jw13,3

Jw31,3

Jw32,3

Jw33,3



T 
Fx
Fy
Fz
Mx

My

Mz





T

1/k1
1/k2
1/k3

 (31)

In order to solve the problem, it is necessary to condition
the equations in order to be able to construct Aarm and
Awrist. In order to avoid a geometrical transformation,
AP1X
wrist is considered on a given point P1X with X=0,1,2

such as:

Aarmkarm = δdarm with karm =
[

1
kθ1

1
kθ2

1
kθ3

]T
(32)

AP1X
wristkwrist = δdP1X

wrist with kwrist =
[

1
kθ4

1
kθ5

1
kθ6

]T
(33)

In order to evaluate the arm stiffness, we define two
matrixes Barm and Carm such as :

Barm =
[
A1
arm−1 ... Ajarm−i ... Aparm−m

]T
i=1,...,m
j=1,...,p

(34)
Carm =

[
δdarm−1 ... δdarm−i ... δdarm−m

]T
i=1,...,m

(35)
p is the number of measurement points and m is

the number of tested configuration. In this way, the
state vector

[
1/k1 1/k2 1/k3

]T
is able to converge to[

1/kθ1 1/kθ2 1/kθ3
]T

. In order to identify the wrist
stiffness, we followed the same procedure :

δpP1X
wrist = AP1X

wristkwrist (36)

and

δpPwrist1X = δpP1X
tot − δp1Xwrist−model (37)

with
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δp1Xwrist−model =

[
Jm1 Jm2

Jm3 Jm4

] [
K−1
θ123

0
0 0

] [
Jw1 Jw2

Jw3 Jw4

]
.W

(38)
Where Jm and Jw are written at the measured point P1X

with X=0,1,2.

IV. APPLICATION ON AN INDUSTRIAL ROBOT WITH
DOUBLE ENCODING SYSTEM

A. Complete pose Method (Fig. 4)

We develop the approach on an industrial robot with dou-
ble encoding system to identify our new approach to identify
the articular stiffness. We compare the three approaches : 2
were defined in the state of the art. It concerns the Complete
Pose[9] based on the reconstruction of a frame (center
PTCP ) on the flange based on the measurement of P10 to
P12 in R0. The calculation of the loading W is positioned
at PTCP with a geometrical transformation. The Jacobian
R0JPTCP is defined from the geometrical model with the link
length calculed via the circle point method. The definition
of the articular stiffness uses the following equation which
takes into account the positioning, the rotation of the flange
and the normalization of the Jacobian matrix.

δp = R0JNPTCPKθ
R0JTNPTCP

WPTCP (39)

Fig. 4. Approach followed by [2]

B. Partial Pose method (Fig. 5)

The partial pose method proposed by[10] uses a numerical
optimization of the robot modelling and tools transformation
to link P10 to P12 to the flange. This method uses direct
measurement data only. This approach aimed at finding the
configuration that ensures the best robot positioning accuracy
after geometric error compensation. The measured loading
Wmeasured allows to define the articular stiffness with a
Jacobian in a consistent way via numerical optimization. The
following equation is used considering only the positioning
δpm.

δpm = R0JP1X
Kθ

R0JTwWmeasured (40)

Fig. 5. Approach followed by [5]

C. Decoupled Partial Pose method (Fig. 6)

In our approach, we take the best of the two methods
presented before. The measurement of P10 to P12 is per-
formed in R0 and no geometrical transformation is applied.
To use the decoupling effect, the loading is placed at the
center of the wrist via the trilateration method which allows
a metrological knowledge of the manipulator. In this way,
4 Jacobian matrixes are defined such as R0JP10

, R0JP11
,

R0JP12
and R0JPwrist .

δpm = R0JP1X
Kθ

R0JTwWPwrist with X = 0, 1, 2 (41)

Fig. 6. Our new approach

D. Comparison between the three methods

TABLE II
IDENTIFICATION METHODS USED TO IDENTIFY THE ARTICULAR

STIFFNESS : MEAN & STANDARD DEVIATION - 106Nm/rad

Method kθ2 kθ3 kθ4 kθ5 kθ6
CP inac-
tive

3.2 &
0.58

1.5 &
0.43

0.24 &
2.7

0.21 &
0.026

0.051 &
0.012

CP
active

7.4 &
8.5

2.1 &
1.7

-0.24 &
0.22

0.37 &
0.12

0.44 &
0.007

PP inac-
tive

3.4 &
0.067

2.2 &
0.06

0.89 &
0.21

6.9 &
22

0.11 &
0.028

PP
active

6.5 &
0.27

4 &
0.25

1& 0.3 2.7 &
2300

0.087 &
0.014

DPP in-
active

3.2 &
0.039

2.6 &
0.04

0.42 &
0.057

0.23 &
0.008

0.089 &
0.018

DPP ac-
tive

5.6 &
0.1

6.3 &
0.22

0.46 &
0.057

0.35 &
0.012

0.079 &
0.012

To highlight the performances of our new method, we
active the double encoding system. It leads to a stiffer
arm which allows to compare the different approaches. We
present in Tab. II, the values of the articular stiffness (mean
and standard deviation). We highlight in "bold" the values
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which not to seem correct on our point of view. With the
Complete Pose method, we notice that the stiffness of the 4th

axis is under-estimated and can be negative when activating
the double encoding system. As far as Partial Pose without
decoupling is concerned, the 5th axis is not given with an
enough accuracy based on the standard deviation. We present
now the cartesian deflection to evaluate the quality of the
convergence of our algorithm.

E. Cartesian deflection

Cartesian deflection shows the impact of a loading on the
stiffness behavior of the robot. Based on this asumption,
we notice, because of the anisotropic behavior of the robot,
that for the same loading, the displacement of Pwrist is not
the same. This value is the norm of δpm. For the same
loading, the activation of the double encoding system allows
to avoid 40% of the deflection with double encoding disabled
(considered as a reference to be compensated). The deflection
with the activation of the double encoding system is shown
in grey. To evaluate the performance of our algorithm, we
consider 19 configurations with double encoding enabled.
Randomly, on 10 configurations, we evaluate the articular
stiffness and we apply it on the 19 configurations. With the
CP method (Complete Pose method), we obtain a high vari-
ability and we are able to compensate 50% of the deflection.
With the PP method (Partial Pose method), the compensation
is better (80%) and with the DPP method (Decoupling Partial
Pose method) we reach a better compensation (84%). In this
way, we present at Fig. 7, the deflection and we make a focus
more specifically on the PP and DPP method (Fig. 8).

Fig. 7. Robot deflection : global deflection (grey), after compensation
with CP method (red), after compensation with PP method (blue), with
DPP method (green)

V. CONCLUSION AND PERSPECTIVES

In this paper, we present a new indentification method for
a better evaluation of the articular stiffness of an industrial
robot. We based our approach on a metrological measure-
ment with a physical meaning. We propose a geometrical
definition of the flange transformation. We bring in this
way a better localization of the center of the wrist via the
trilateration method. This allows to remove a variability on
the loading calculation to take it into account at the center
of the wrist. The results highlight that we are able to take

Fig. 8. Zoom based on the previous picture : PP method (blue) and DPP
one (green)

into account 84% of the deflection. Unfortunately, we do not
have a perfect solution to compensate the positioning of the
robot in its workspace. To improve it, we can first look for
better postures to perform the identification. Secondly, the
modelling take into account the behavior of the joint. Links
stiffness must be considered. In all the case, the process must
be studied to adapt the quality of the stiffness identification.
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