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Introduction 

 Rare earth (RE) doping of silicon host matrices has been widely studied as a method to add 

light emitting sources to integrated optoelectronics devices using the RE inter-4f transitions that 

offer multiple wavelength emission. Typically, those transitions, forbidden in the case of a free ion, 

are partially allowed by the crystal field and result in a very low absorption cross section inducing a 

non-efficient excitation and thus limiting the applications.1 Ce3+ ion is different due to a 5d-4f 

transition involved resulting in a large absorption cross section (10-19 cm-2) compared to the other RE 

ions (10-21 cm-2). An intense broad luminescence band from these Ce3+ ions is observed in a wide 

spectral range from 380 nm up to 600 nm under various excitations ranging from 300 nm to 400 nm 

due to the strong oscillator strengths2 and many energy levels of the 5d band involved.3 

Furthermore, in the case of Ce3+ ion having only one electron within the 5d orbital, which participate 

in the formation of the chemical bonding, this 5d band is strongly dependent on the local 

environment, resulting in a large Stockes shift depending on the host matrix composition.2–4  

These different major properties of Ce3+ ion (e.g. intense luminescence, broad absorption/emission 

band, dependence of the excitation/emission wavelength on the crystal structure, etc.) have been 

developed for many applications such as phosphors for cathodoluminescence light sources,5 

scintillators for elementary particles,6 or detectors for ionizing radiation.7 Two other applications 

became extensively explored, namely quantum cutting for solar cells and UV emitting devices.8,9 For 

the former, the quantum cutting effect is created with help of Ce3+-Yb3+ co-doping in glasses,9,10 

phosphor8,11 or bulk crystal matrices.12 Although much effort has been spent on depositing such 

matrices on commercial silicon solar cells,11,13 their properties are still not silicon technology 

compatible. That is why recent researchers have turned to investigate host matrices easily integrable 

on silicon such as silicon oxide.14,15 Regarding the Ce doped devices devoted to light emitting devices 

on silicon, the feasibility of a CeO2 and Ce2Si2O7 LEDs has been demonstrated,16,17 while a Ce-doped 

SiOx matrix shows a strong emission of the Ce3+ ion.18,19   

Unfortunately, it exists some major drawbacks hampering such applications. In particular, Ce3+ and 

other RE3+ dopants have a low solubility limit. For instance, this leads to Ce clustering in SiOx after 

annealing at 900°C.19 In addition, silica based LEDs present a short durability after several hot carrier 

injection cycles under high applied voltage because of its large 9 eV bandgap.20 To overcome the 

above mentioned drawbacks, the silicon compatible Si3N4 host matrix is also studied as an alternative 

approach. Indeed, the Si3N4 has much higher RE ions solubility in comparison to SiOx counterpart, 

thus inhibiting RE ions clustering.21,22 Moreover, its lower bandgap (4-5 eV)23 can improve both 

electrical conductivity and the onset voltage for the electroluminescence signal.24,25 Since the 

presence of oxygen is crucial for a Ce3+ emission,26 one possibility is to combine advantages of SiO2 

(i.e. presence of oxygen) and Si3N4 (i.e. lower band gap and higher solubility). In that regards, the 

SiOxNY matrix retains the advantages of both matrices as it was demonstrated for a LED based on 

Ce3+-doped SiOxNy .
20  

 

In this context, it is interesting to investigate how the Ce element is incorporated into SiOxNy. In the 

past, Ce doping from metallic target was reported.18,19,27 However, metal targets are very sensitive to 

surface oxidation due to the electronic affinity between Ce and O elements thus their use requires a 

very high temperature (~1400 °C). Above all, the Ce metallic target contains more Ce element than 

the CeO2 target. Such high purity can result in inhomogeneous Ce dopants deposition and favor the 
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growth of Ce clusters at high annealing temperature. Thus, an alternative solution is to sputter from 

a CeO2 target, with both benefits of a chemical stability and a much lower target temperature 

required during the deposition process. This approach can generate Ce4+ ions which are optically 

inactive due to their electronic configuration. Nevertheless, numerous studies have demonstrated 

the efficient emission of Ce3+ in samples deposited from CeO2 targets.15–17 Unfortunately, depositing 

from CeO2 target requires a post-growth annealing step at high temperature to form optically active 

Ce3+ ions which could generate Ce clusters due to the high thermal budget. Considering the above 

mentioned arguments, we believe that doping the SiOXNY host matrix with Ce appears to be an 

interesting approach for achieving efficient cerium emission.  

 In this work, a CeO2 target was used to incorporate Ce3+ ions in a SiOxNy matrix by reactive 

magnetron sputtering which is easily compatible with Si processing technology. Despite the use of a 

CeO2 target which contains optically inactive Ce4+ ions, a specific Ce3+ ion emission is obtained with an 

annealing temperature (TA) of 700 °C. XPS, Rutherford backscattering spectroscopy (RBS) and 

spectroscopic ellipsometry measurements on Ce-doped SiOxNy show the influence of nitrogen 

composition on the host matrix structure. Photoluminescence (PL) and photoluminescence excitation 

(PLE) experiments were carried out to study in the first step, the Ce3+ ion excitation mechanisms, 

specifically the link between nitrogen content and the Ce excitation. A second part is focused on the 

Ce3+ emission in function of the Ce concentration at high nitrogen flow, in order to optimize the PL 

intensity. 

 

Experiment section 

Ce doped SiOxNy thin layers were deposited at room temperature by magnetron reactive sputtering 

on p-type doped 250 µm thick 2” (100 oriented) Silicon wafer. The working pressure was fixed at 3 

mTorr and the argon flow was set at 8 sccm. Two sets of samples have been deposited using CeO2 

and Si targets. A set of fours Ce doped samples was grown under variable N2 flux and a second set of 

four samples with different cerium doping, including  one undoped as reference. In the case of this 

specific reference sample, the CeO2 target was replaced by a SiO2 target to ensure  oxygen 

incorporation in the matrix. No study has been performed above 2 sccm N2 flux because the 

deposition chamber atmosphere was not enough plasmogenic, stopping the plasma and then the 

deposition process. The atomic compositions as well as the refractive index measurements have 

confirmed the same stoichiometry between undoped and doped layers. Films were then annealed at 

different temperatures (TA) from 600 °C to 1000 °C using Classic Thermal Annealing (CTA) setup for 1 

h under flowing N2. 

Structural analysis were performed using a Fourier transform infrared spectrophotometer (FTIR), 

Thermo Nicolet Nexus 750 II working in the 400-4000 cm-1 range with a 5 cm-1 resolution at Brewster 

angle, while RBS measurements were carried out at the Edwards Accelerator Laboratory of Ohio 

University using a 4.5 MV tandem accelerator. The film thicknesses and refractive indexes were 

obtained with help of UVISEL VIS-FGMS Ellipsometer using an incident angle of 70°. The experimental 

data were recorded in the 1.5 - 6 eV range with a 0.01 eV resolution and fitted using DeltaPsi2 

software in order to obtain the thickness and the refractive index values. Except if mentioned 

otherwise, this later is given at 1.95 eV (636 nm). 

http://dx.doi.org/10.1039/c7nr06139k
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For the PL spectroscopy, a Lot-Oriel 1 kW Xenon lamp connected to an OMNI300 monochromator 

resulting in a 20 nm wavelength wide excitation band was used to excite the sample between 325 

nm and 370 nm. The detection system consisted in a photomultiplier tube R5108, (Hamamatsu 

Photonics) attached to a 300 OMNI monochromator (Gilden Photonics) and a SR830 lock-in amplifier 

referenced at the excitation light beam chopped frequency. A ThermoFisher Scientific K-Alpha 

spectrometer was used for surface and in-depth XPS analysis. The monochromatic Al-Kα source (hν = 

1486.6 eV) was used with a spot size of 200 μm in diameter. The spectra in full energy range (0 - 1150 

eV) were obtained with a constant pass energy of 200 eV whereas high resolution spectra were 

obtained with constant pass energy of 40 eV, respectively. Depth profile analysis was obtained 

through Ar+ sputtering using 500 eV low mode and 500 microns raster width. The estimated 

sputtering rate was 0.2 nm/s resulting in the etching time between 0 s and 960 s needed to reach the 

substrate. The XPS measurements were performed at different depths; however only spectra 

collected at the film center are presented here. Note that carbon t was detected on the surface 

coming from natural pollution and was not taken into account. Electron microscopy analysis was 

performed with a JEOL 2010F electron transmission microscope (TEM) with a Field Emission Gun 

(FEG) electron source operated at 200 kV and whose resolution was 2 Å. The digitalized images were 

processed by the Gatan’s DigitalMicrograph software. The TEM was equipped with an energy 

dispersive X-ray spectrometer (EDX-EDAX setup) for chemical analyses. The EDX profiles were 

performed using a 1 nm probe for 30 points over a distance of 100 nm. The cross sectional samples 

were prepared using a Focused Ion Beam (FIB) Helios DualBeam nanolab660 system. To protect the 

film surface from the gallium ions beam induced damage, a protective carbon layer and two platinum 

layers were deposited on the sample’s surface. 

Results and Discussions 

In order to study the behavior of the photoluminescence (PL) of Ce-doped SiOxNy films, a set of 

samples has been deposited with the same RF power density on silicon (4.3 W.cm-2) and CeO2 (0.45 

W.cm-2) targets, under different nitrogen fluxes. The emission spectra as well as the structural 

analysis are presented and discussed below. 

 

 

 

Photoluminescence and Photoluminescence excitation  spectroscopy 
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Figure 1. (a) PL spectra of Ce-doped SiOxNy samples grown with different nitrogen fluxes and annealed 

at 700°C under 325 nm excitation normalized by the film thicknesses, (b) PL (solid line) and PLE 

(dashed line) spectra of Ce-doped SiOxNy deposited with a 2 sccm nitrogen flux. 

Figure 1a displays photoluminescence (PL) spectra of the four Ce-doped SiOxNy films grown with four 

different N2 flow rates (0.5, 0.75, 1 and 2 sccm) and using 325 nm excitation. Because no emission 

was observed (not shown) for as deposited layers, all the samples Figure 1a were annealed at 700 °C. 

A low intensity and broad PL band centered at ~400 nm is observed for the samples grown with the 

three lowest N2 fluxes (0.5 sccm, 0.75 and 1 sccm). Such a broad emission band is the signature of 

band tails (BT) originating from localized states associated with defects such as dangling bonds in the 

host matrix.25,28–30 In the past, various studies have reported the role played by such localized states 

structuring the BT acting as sensitizers for RE emission. 22 Indeed, this observed BT peak blue shifts 

greatly with the excitation wavelength decrease (λexc= 500 nm, BT peak centered at 550 nm while for 

λexc=300 nm, it is peaking at 400 nm).28 Detection of the almost same peaks for the three samples 

grown at low N2 fluxes shows that the Ce emission, or at least other emitter centers, are not efficient 

and only the BT emission appears. 

For the N2 flow rate of 2 sccm a broad and intense PL band peak position red-shifted to 450 nm. The 

observed PL intensity is 90 times higher than that of BT from samples deposited at lower N2 flow 

rates. This PL emission could originate from different emitting centers including: (i) states localized in 

the BT, (ii) Ce3+ ions assisted by oxygen vacancies in CeO2 involving Ce4+ ions following the Kroger-

Vink notation:  4���� +	�	
 => 		2���� + 2���� + �� + �
	�	  with V0 referring to oxygen vacancy,16,31 

(iii) formation of Ce oxide single crystals (Ce6O11) when taking into consideration  the post-growth 

low TA treatment (< 800°C),31 or (iv) "isolated" Ce3+ ions.  

Concerning the case (i), the increase of the N2 flux could provide an increase of the localized states 

density leading to the rise of the PL intensity. However, the 90 nm red shift of the PL peak maximum, 

especially if the excitation wavelength is unchanged, excludes the origin of the BT emission. The 

emitter centers could appear in the CeO2 films (case (ii)) or in the Ce6O11 crystallized phase (case (iii)). 

These points will be discussed separately later. To  investigate the Ce3+ emission possibility (case (iv)), 

the PLE spectra of Ce-doped SiOxNy matrix deposited with a 2 sccm N2 flux was compared to its PL 

spectrum counterpart (Figure 1b). The PLE spectrum shows a wide excitation peak (FWHM ~75 nm) 

with a maximum at 370 nm. The observed PLE band is characteristic of the 5d level of Ce3+ ion due to 

the transition from the 2
F5/2 ground level.19 In the present study, Ce3+ ions are directly excited from a 

http://dx.doi.org/10.1039/c7nr06139k
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370 nm excitation wavelength what is consistent with previous studies. For example, for Ce-doped 

phosphor, the PLE peak was centered at 357 nm and its FWHM was ~75 nm,32 while for Ce-doped 

SiO1.5, a similar matrix to the one studied here, a PLE peak was centered at 300 nm with a FWHM of 

almost 50 nm.19 Moreover, an important Stokes shift of 97 nm (5600 cm-1) was found, which is similar 

to the one observed in Ce3+ ion doped inorganic matrices.33  

 

 

        

 

     

Figure 2. Schematic representation of possible scenarios illustrating the formation of  Ce optical 

centers in SiOxNy matrix deposited with reactive N2  flux at 2 sccm (a) α: cluster formation reducing 

Ce
3+

ion emission intensity (b) β: Ce oxidation state depending on nitrogen content (c) γ: nitrogen 

effect on Ce surrounding media 

Assuming that the increase of PL intensity is not due to an important rise in the Ce concentration (see 

below Section RBS), the emitting centers are activated by an higher reactive N2 flux (between 1 sccm 

to 2 sccm) during growth. At this stage, we shall also consider the different plausible scenarios of an 

activation of such Ce emitting centers affected by the N incorporation as schematically illustrated in 

Figure 2.  

Case (α): Nitrogen is known to reduce the RE clustering effect.34 The N incorporation should 

prevent Ce clusters formation and favors the Ce3+ emission (see Figure 2a).  

Case (β): Especially in presence of an oxygen excess in the layer, oxide defects are known to 

favor the Ce4+ formation. Thermal treatment reduces the number of oxide defects, helping a 

valence conversion of Ce from (IV) to (III).35,36 The introduction of N could also change the 

local distribution of oxygen and facilitate the conversion from optically inactive Ce4+ ion to 

optically active Ce3+ ion as shown in Figure 2b.36 

Case (γ): The strong dependence of the Ce 5d band on the surrounding host structure could 

be involved. In this scenario, two indiscernible mechanisms could apply at the same time. 

http://dx.doi.org/10.1039/c7nr06139k
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First, the increase of the N content in the matrix changes the local environment of the Ce ion, 

inducing a broadening of the electronic cloud, also known as the nephelauxetic effect,37 

which could lower the energy necessary for an optical activation. Second, it has been 

reported that the Ce ions emission could be killed when surrounded by Si atoms.19 The higher 

N2 flux could reduce the number of Si neighbors around Ce ion and create a favorable 

emission environment. Those two last mechanisms resulting from the different surroundings 

of the Ce ion are schematized in Figure 2c.  

In the following, structural investigations are carried out to answer these different assumptions 

concerning the nature and the way how such emitting centers are excited in the Ce-doped SiOxNy 

sample produced under a 2 sccm N2 flow. 

Microstructural analysis – TEM observations 

TEM, HRTEM and Fast Fourier Transform (FFT) images from Ce-doped SiOxNy samples deposited with 

0.75 sccm and 2 sccm N2 fluxes and annealed at 700°C and 900°C are presented Figure 3. 

 

Figure 3.  TEM pictures of Ce-doped SiOxNy deposited with (a) 0.75 sccm N2 flux upon annealing at 700 

°C. (b) and (c) 2 sccm N2 flux upon annealing at 900 °C and 700 °C, respectively. Panels (a), (b) and (c) 

contains HRTEM images with the corresponding FTT analysis (d) Ce ions profile distribution from (c) 

extracted from EDX measurement. The vertical line indicates the maximum EDX background signal 

not related to Ce ions. 

In each case, a bright field image is shown and an HRTEM image from a small region of the film is 

enlarged at the bottom left handside of the image. At the top left handside, FFT of the HRTEM image 

is depicted. Both 700°C and 900°C annealed films display amorphous and homogeneous films 

without phase separation whatever the N2 flux. Note that for as-grown samples deposited with 0.75 

sccm and 2 sccm, the same amorphous film structure has been found (not shown). Concerning the 
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SiOx host matrices with 1<x<2, some previous studies have been reported with respect to different 

RE doping and post-growth TA. For example, in SiO2, Tb or Eu-oxide clusters have been identified in 

the middle of the film after annealing at 900 °C,38 while in Er-doped silicon rich silicon oxide (SRSO), 

Er-clusters appears after annealing at 800 °C, limiting for both cases the luminescence efficiency.39 

Concerning the Ce doping, the same clustering effect has been observed at TA =900°C in SiO1.5.19,35,40 

However, in the present study, all the HRTEM images do not show lattice fringes and very diffuse 

rings characteristic of amorphous materials are observed in the FFT images. In other words, no trace 

of Ce clustering effect has been detected in any film annealed at 700 °C or 900 °C. This result 

confirms that the introduction of nitrogen in silicon-based matrix prevents the formation of RE 

clusters,22 even at low N2 flow (0.75 sccm). Since no RE clustering has been detected for any N2 flow 

studied, the scenario of an activation of emitting centers (case (α)) can be excluded.  

For deeper investigation, EDX analysis was performed as a function of depth on the 2 sscm sample 

for a 700°C annealing (Figure 3d). It was concluded that Ce ions are present across the whole film 

thickness with an increased signal intensity close to the substrate over a thickness of a few 

nanometres, meaning a diffusion of Ce ions towards the substrate-film interface upon annealing. The 

EDX signal detected in the substrate is the background and not related to the presence of Ce ions. 

This diffusion has already been seen in other systems for high TA (1200°C) treatments where Ce 

silicate is formed at the substrate-film interface.35 But in our case, the analysis on as-deposited layer 

shows the same Ce distribution profile indicating that this is not due to the thermal budget. This 

migration is due to the diffusion of Ce into the region near the interface as a way to lower the energy 

of the system .22,38 In addition, no Ce oxide (e.g. CeO2  or Ce6O11)16,27 or eventually Ce silicates (e.g. 

Ce2Si2O7 or Ce4.667 (SiO4)3O))27 have been detected in samples annealed at 900 °C (see Figure 3b) 

eliminating such luminescence centers discussed previously. Thus, since the BT can be excluded as 

discussed above, the observed PL band intensity detected at 450 nm for layer deposited under N2 gas 

flow at 2 sccm seems to be related to the isolated Ce3+ ion luminescence centers.  

XPS analysis 

XPS was performed to investigate the nature of Ce ions involved, because Cerium ions can exist both 

under trivalent (Ce3+) or tetravalent (Ce4+) forms. Indeed, since the target used was CeO2, one can 

expect that the potential presence of Ce4+ ions in the samples could be a barrier for any applications 

due to its non-optical activity. Thus, it is necessary to determine the Ce oxidation level in the samples 

which can be determined by XPS measurements. High resolution XPS spectra were fitted for a 

sputtering time of 240s corresponding to the middle of the film thickness. The O, Si, N and Ce 

concentrations were 4.9, 62.5, 32.0, 0.6 at.% for 0.75 sccm sample and 11.1, 45.6, 42.7, 0.6 at.% for 2 

sccm sample, respectively and are correlated with the RBS measurements (see RBS section - Figure 

7).   
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Figure 4. (a) XPS signature of Ce-3d core level for two SiOxNy as-deposited matrices with 0.75 and 2 

sccm of N2 flux in the middle of the film, (b) corresponding XPS profiles of Ce-3d 
 
distribution  

XPS spectra of the as-deposited films with 0.75 sccm and 2 sccm N2 flow are displayed in Figure 4a. 

The spectra are very similar for both films. Two large peaks emerge at about 880-890 eV and 900-910 

eV fitted with four components given in table 1 and typically attributed to a Ce3+ ion signature. 

 

 Table 1: XPS determined Ce-3d peaks attribution, binding energy and separation energy between 

components and for films grown with different N2 flux rates.   

Peak 
Assignment  

Binding 
Energy 

(eV) 

Separation 
Energy  

(eV) 

Binding 
Energy 

(eV) 

Separation 
Energy  

(eV) 

Binding 
Energy 

(eV) 

Separation 
Energy  

(eV) 
 0.75 sccm 2 sccm 41 (Table 4) 

vo 881.7 
4.4 

881.9 
4.2 

881.2 
4.0 

v' 886.1 886.1 885.2 

uo 899.6 
4.9 

900.1 
4.7 

898.9 
4.2 

u' 904.5 904.8 903.1 
 

The energy separations of the film grown with 2 sccm are closed to those observed in Si3N4 matrix 

(see Ellipsometry section) with v'-vo=4.2eV and u’-uo=4.7 eV. Independently of the charge correction, 

Anandan et al. found, from CeO2 deposited on Si3N4 (annealed at 600 oC) the following characteristic 

differences in the peaks associated with Ce3+
, v'-vo=4.0 eV and u’-uo=4.2 eV (Table 1).41 Taking into 

account that CeO2 on Si3N4 and Ce doped Si3N4 are different systems, the energy differences found by 

XPS are consistent. The XPS characteristic peak at 918 eV, usually attributed to Ce4+ ion, is not 

detectable in this study.41,42 This also indicates that the cerium electronic state is exclusively Ce3+. 

Figure 4b shows the Ce3+ ions distribution in two selected films as a function of depth. In order to 

explain the obtained results, we have calibrated the experimental data using the relationship 

between the etching time and layer thickness. Three different zones were identified: the deposited 

film with thickness ~100 nm, the substrate and an interface region located between the substrate 

and film with an approximate thickness of 35 nm. Figure 4b shows that in the as-deposited films, Ce3+ 

ions are detected for both films in similar concentrations of 0.5-0.6 at.%. On the other hand, in the 

interface region under N2 flux rate at 2 sccm, an increase of Ce3+ ions concentration is detected 

indicating the migration of the Ce element toward the substrate-film interface and confirming the 
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conclusion of the TEM analysis presented in Figure 3d (see TEM section). At the same time, the Ce3+ 

migration is less pronounced, and even does not seem to occur, for the sample deposited under 

lower N2 flux rate of 0.75 sccm. Indeed, due to the lower incorporation, a less strain should be 

induced in the interface region resulting in a reduced Ce3+ ions migration.22 Note that Ce3+ ions 

appear to be detected in the substrate making think of a diffusion in the substrate. This is only due to 

the size of the X-ray spot (200 µm) and the lack of lateral resolution of the Ar+ sputtered crater and 

should not be taken into account.  

In summary, the N2 flow seems not to play a role in the changing of the cerium ions oxidation state 

during the deposition, since Ce4+ ions are not present within the films. Thus, the possible emission as 

suggested by scenario β, involving Ce4+ ions correlated with oxygen vacancies in CeO2 to produce a 

Ce3+ emission, is highly unlikely. For both N2 flows, the oxidation state of Ce is fully (III), under which 

Ce3+ ions are optically active allowing a possible Ce activation and PL signal in SiOxNy layers. Only the γ 

hypothesis is able to explain the observed PL emission under high N2 flow which would influence the 

microstructural environment of the 5d band.  
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Figure 5. Fitted XPS spectra (a) Si 2p and (b) O 1s on Ce-doped SiOxNy samples with 0.75 sccm and 2 

sccm flux rates and annealed at 700°C. The blue values are the peak positions in eV units. 

Figure 5a shows the Si-2p fitted XPS spectra of the two annealed samples fabricated with 0.75 and 2 

sccm N2 flows. No analysis on Ce-Si bonding could be done on the Si 2p spectra, because of the very 

low Ce concentration (i.e. 0.6 at.%) with respect to Si (i.e. 32-46 at.%). So only the Si chemical 

environments with O and N major elements can be discussed. Considering these two spectra, 

significant differences appear. For the 0.75 sccm spectrum, six components were required to obtain a 

fit, while only four are found for the sample produced with 2 sccm N2 flow. For the latter, the major 

Si2p3/2-Si2p1/2 doublet located at 101.9 eV-102.5 eV is typical of a Si3N4 bonding state,41,43–45 and is 

dominant in the spectrum. The doublet peaking at lower energy (101.0 eV-101.6 eV) is attributed to 

a poorer nitrogen environment for the Si atoms, typically SiNx (x<4/3) and has minor contribution.44 

Thus, reducing the N2 flow (0.75 sccm) favors the 101.0 eV-101.6 eV doublet while the 101.9 eV-

102.5 eV Si3N4 one decreases compared to the sample grown with 2 sccm flow. Note that the 99.7 

eV-100.3 eV doublet typical of a Si0 environment from the elemental Si disappears for the highest N2 

flow. No Cerium silicate was observed by TEM and in addition, the Si4+ chemical state, generally 

observed in Cerium silicate (e.g. Ce4.67Si3O13, Ce2SiO5, or Ce2Si2O7) at around 103-104 eV, has not been 

detected either confirming the absence of such Ce clusters46,47. 
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Considering the O1s spectra, the major component is located at around 532.1 eV for both samples 

and is attributed to a SiOxNy environment as mentioned in the literature (Figure 5b).48
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Figure 6. Ns 1s core levels XPS spectra of Ce-doped SiOxNy samples fabricated with N2 flow rates 

values of 0.75 and 2 sccm. 

N 1s XPS spectra are displayed in Figure 6 for both N2 flows. The spectra exhibit a major component 

centered at around 397.8 eV which is typical of a nitride environment and logically attributed to a 

silicon nitride bonding with the formation of a SiNx (x<4/3) phase.44,49,50 However, the full-width half-

maximum (FWHM) of the 2 sccm sample is larger (1.63 eV) than that of the 0.75 sccm counterparts 

(1.21 eV). This enlargement could come from two components, but not enough spectrally split to be 

well fitted (not shown here). We can assume the presence of SiOxNy bondings in the 2sccm sample 

because of the higher content of O (10 at.% versus 4 at.%). 

To conclude, these XPS results show that the cerium element is in Ce3+ valence state. A Si-rich SiNx 

(x<4/3) matrix is achieved for low N2 flow (0.75 sccm) with free Si atoms, while for higher N2 flow (2 

sccm), a matrix with both Si3N4 and SiOxNy bondings without free Si atoms is obtained. To get more 

information on the different layers, RBS measurements, spectroscopic ellipsometry and FTIR 

measurements have been carried out and results are presented in the following sections. 

Composition by RBS analysis 

Figure 7 displays the RBS measurements of the as-deposited samples with a N2 flow varied from 0.5 

sccm to 2 sccm and deposited with a constant RF power density on Si and CeO2 targets fixed at 4.3 

W/cm² and 0.4 W/cm², respectively. 
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Figure 7.  Si, N, O and Ce atomic concentrations of the Ce-doped SiOxNy films as a function of N2 flow 

obtained by RBS analysis (� symbols) and XPS measurements (�symbols). 

Low concentrations are measured from 8.9 to 12.8 at.% for oxygen and 1.2 to 0.3 at.% for cerium 

with respect to N2 flow. This O amount is provided from the CeO2 target. The concentrations deduced 

from the XPS measurements are consistent with the RBS results. The low discrepancy in Ce 

concentration values among XPS (0.6 at. % Ce at 2 sccm) and RBS (0.3 at. % Ce at 2 sccm) techniques 

can be explained by the use of different radiation source and the fact that XPS is a surface sensitive 

technique. It appears that the N incorporation is done at the expense of the Si. Indeed, the significant 

concentration increase of N atoms occurs (~16 to 46 at. %) along with a decreasing of Si (~70 to 40 

at.%) in the same extend (30%). This same behavior was observed in previous studies in Er-doped 

silicon-rich oxynitrides (SRON) with the same experimental set up.51 This was also observed in the 

case of PECVD technique for the N and O incorporations, which substitute to Si atoms in order to 

form SiOxNy.
52 The composition found with RBS measurements are in the same tendency as in XPS 

analysis (see Figure 7). 

Ellipsometry analysis 

The ellipsometry technique allows the determination of the optical parameters of the films such as 

the sub-layer thicknesses and the wavelength dependence of the optical index of each involved 

material. In this regard, we have conducted ellipsometry analysis for the as-deposited samples. The 

real part of the refractive index versus the wavelength is plotted in Figure 8a for several as-deposited 

samples grown with different N2 fluxes (solid lines). Those curves were compared to optical indexes 

curves for the Si, Si3N4 and SiO2 phases (full lines). As expected, the Si peak centered at 375 nm is not 

observed for any of the as deposited layers, indicating that there is a mix of elements in the same 

phase instead of highlighted phase separation (i.e. Si, Si3N4 and SiO2). The refractive index (left scale) 

and layer thickness (right scale) are displayed as function of N2 flow (see Figure 8b), with horizontal 

dashed lines depicting the Si, Si3N4 and SiO2 refractive indexes. For samples grown at low N2 flow (0.5 

sccm), the refractive index is equal to 3.8 at 1.95 eV (636nm) which corresponds to Si, confirming the 

low N2 incorporation in the layer. Increasing N2 flow decreases the refractive index of the layers 

down to values corresponding to the refractive index of stoichiometric Si3N4 (nSi3N4 ≈ 2.0). For the 

samples grown at higher N2 flow (2 sccm), the refractive index is even slightly below 2.0 (n≈1.9) 
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which corresponds to SiOxNy matrix with low oxygen concentration.53 Concerning the layers 

thicknesses, a decrease of almost 30 % is observed, when the N2 flow changes. Indeed, the mean free 

path of particles in the plasma decreases with increasing N2 flow so that the deposition rate is 

reduced leading to a decrease of the thickness of the films.22,54  
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Figure 8. (a) Refractive index as a function of the wavelength according to the N fluxes and different 

stoichiometric phases (b) Refractive index and thickness evolution of the as-deposited Ce-doped 

SiOxNy films as a function of N2 flow. 

 

Bruggeman model 

From the ellipsometry data, a modeling of the material taking into account 3 phases has been carried 

out by using the effective medium theory (EMT).53,55 The modeling took into account only the 500-

700 nm part of the measured spectrum since the experimental data do not show the Si peak at 375 

nm. The EMT theory is described by the equation (1):    

VVVVSiSiSiSi � �Si	Si	Si	Si	----				�hhhh
�SiSiSiSi				+	+	+	+	2222�hhhh

�++++VVVVSiO2SiO2SiO2SiO2 � �SiO2SiO2SiO2SiO2	----				�hhhh
�SiO2SiO2SiO2SiO2 				+	+	+	+	2222�hhhh

�++++VVVVSi3N4Si3N4Si3N4Si3N4 � �Si3N4Si3N4Si3N4Si3N4	----	�hhhh
�Si3N4Si3N4Si3N4Si3N4++++2222�hhhh

�==== �	----				�hhhh
�++++2222�hhhh

 

where VSi, VSiO2, VSi3N4 are the volume fractions of Si, SiO2 and Si3N4 phases respectively, and εSi,	εSiO2	
and	εSi3N4	the dielectric permittivities of each phase, εh is the dielectric permittivity of the host matrix 

and ε	 is the one measured by ellipsometry. In the Bruggeman effective medium approximation, ε is 

taken equal to εh and the layer is considered as a random mixing of three phases (here Si, Si3N4 and 

SiO2). The sum of the three individual volume fractions is equal to 1. This approach results in the 

following equations (2) and (3):  

VVVVSiSiSiSi++++VVVVSi3N4Si3N4Si3N4Si3N4				++++				VVVVSiO2SiO2SiO2SiO2=1=1=1=1  (2) 

VVVVSi	Si	Si	Si	. %� εεεεSiSiSiSi----εεεεhhhh
εεεεSiSiSiSi++++2222εεεεhhhh

� ---- � εεεεSiO2SiO2SiO2SiO2----εεεεhhhh
εεεεSiO2SiO2SiO2SiO2++++2222εεεεhhhh

�& ++++VVVVSi3N4Si3N4Si3N4Si3N4	. %� εεεεSi3N4Si3N4Si3N4Si3N4----εεεεhhhh
εεεεSi3N4Si3N4Si3N4Si3N4++++2222εεεεhhhh

� ---- � εεεεSiO2SiO2SiO2SiO2----εεεεhhhh
εεεεSiO2SiO2SiO2SiO2++++2222εεεεhhhh

�&++++� εεεεSiO2SiO2SiO2SiO2----εεεεhhhh
εεεεSiO2SiO2SiO2SiO2++++2222εεεεhhhh

�=0=0=0=0   (3) 

 

 

(1) 
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Table 2. Calculated volume fractions of different phases as function of N2 flow predicted by the 

Bruggeman model. 

 

 

 

 

The phases volume fractions have been deduced from the least squares method and displayed in 

Table 2 with the εh deduced from the refractive index of  Figure 8a for each N2 flow, while εSi,	εSiO2	
and	εSi3N4 were taken from database.56 The O concentration was taken from RBS measurements to 

have an approximation of the VSiO2 phase and was injected into the equations passing from an 

equation with 3 unknowns to 2 unknowns. The data in Table 2 shows that a low N2 flow (0.5 sccm) 

leads to a huge Si content, as expected, while for the intermediate N2 flows (0.75 sccm and 1 sccm) 

the volume fractions of the Si and Si3N4 phases reverse. Finally, Si3N4 phase is predominant for a high 

N2 flow (2 sccm), with an increase of the SiO2 volume fraction linked to the important Si phase 

reduction, that explains the achievement of a refractive index below Si3N4 one (see Figure 8b). 

As seen above (see TEM section), although the microscopy analysis does not reveal a phase 

separation for any TA, the Bruggeman model can give the behavior of the atomic concentration 

through the phase proportion (Eq.3). The atomic fractions (()) of each species + (i=Si, Si3N4 and SiO2) 

are deduced from the phase volume fractions, with help of equations 4, 5 and 6,in order to obtain 

the atomic fraction of Si, N and O, respectively: 

,-. = /-.. 0-.1-.
+ 2. /-.234. 0-.2341-.234

+ /-.56. 0-.561-.56
	   (4) 

,3 = 4. /-.234. 0-.2341-.234
    (5) 

 ,5 = 7 − (,-. + ,3)   (6) 

where ρi and Mi are the density and the molar weight of the phase i. 57 

Nitrogen Flux (sccm) 0.50 0.75 1.00 2.00 

Volume fractions 

VSi 0.88 0.50 0.19 0.03 

VSi3N4 0.01 0.35 0.65 0.70 

VSiO2 0.11 0.15 0.16 0.27 

χ² 0.13 0.09 0.04 0.004 
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Figure 9. Comparison of Si and N atomic concentrations in Ce-doped SiOxNy films deduced from RBS 

measurements and Bruggeman modeling. 

Figure 9 shows a comparison of the atomic concentrations obtained by RBS measurements and by 

Bruggeman modeling. The N and Si atomic concentrations obtained by Bruggeman modeling are 

close to the ones deduced from the RBS experiments for N2 flux going from 0.75 up to 2 sccm flux. 

For the 0.5 sccm flux, a larger difference is observed which can be explained by the uncertainty of the 

measured ε parameter. Indeed, for the low N flux, the layer is mainly composed of silicon deposited 

on a Si substrate. The ellipsometry measurements are not precise enough because of the weak index 

contrast between the Si substrate and the subsequent film. Finally, the modeling demonstrates that 

with a N2 flux below 2 sccm, a Si "phase" is present and likely kills the expected luminescence of Ce 

ions, as observed previously for enriched Ce-doped SiO1.5 films on Si.40 The γ scenario mentioned 

above in the optical analysis part, involving the surrounding media of Ce, is then confirmed. For 2 

sccm, the samples contain mainly two phases (Si3N4 and SiO2) which exhibit a Ce PL signal since no 

free Si phase is detected. 

Fourier transform infrared spectroscopy  

FTIR analysis was performed to characterize the influence of N2 flux on the Si-N bonds, as well as the 

Si-O bonds resulting from the O atoms supplied by the sputtering of the CeO2 target. Figure 10 

displays FTIR spectra measured at Brewster angle of as-deposited samples with different N2 flows.  
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Figure 10. Infrared spectra (FTIR) of the Ce-doped SiOxNy films depending on nitrogen flow. 

For the sample grown at the lowest N2 flow (0.5 sccm), an almost flat spectrum is observed without 

sharp peak. The N2 flux favors the N incorporation as evidenced by the appearance of two vibration 

bands around 840 and 990 cm-1 for 0.75 sccm. Those two peaks correspond to TOSi-N transversal 

optical mode and LOSi-N longitudinal optical mode58 and shift towards high energies with increasing 

flux. The LOSi-N band blueshifts from 1000 cm-1 for 0.75 sccm to 1060 cm-1 for samples grown at 1 

sccm and 1125 cm-1 for the 2 sccm, respectively, while the TOSi-N band shifts in a lesser extent. Those 

band shifts have already been observed in SiNx:H films and SiNx films. In SiNx:H films, the shift was 

attributed  to the replacement of a N atom by a H atom in a Si-N bond.59 In SiNx films, Debieu and 

al.58 observed this same blueshift and noted also that the TOSi-N band position is less sensitive to the 

composition. The origin of this blueshift is attributed to a better organization of the layer. Indeed, an 

N incorporation tends to stabilize Si3N4 phase as mentioned in Table 2.  
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Figure 11. (a) Infrared (FTIR) spectrum of SiNx film for a 2sccm N2 flux, (b) infrared spectrum of Ce 

doped SiOxNy sample deposited with 2 sccm N2 flux. 

 

Among the different N2 fluxes, a PL emission is only observed for the 2 sccm sample (Figure 1a) which 

is then investigated hereafter. To identify the Si-N peaks in the 2 sccm sample, a SiNx reference 
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sample with the same N2 flow rate at 2 sccm but without Ce and consequently without O doping has 

been deposited. It was found a refractive index close to Si3N4. Figure 11a shows the FTIR spectrum 

along with the fit revealing three peaks centered at 848, 974 and 1121 cm-1. Such peaks were 

identified in previous studies on SiNx matrices 22,23,60 and  correspond to the TOSiN, ≡ Si-N-Si ≡ bond 

and LOSiN mode, respectively.  With help of this first identification step on Si-N bonds, the FTIR 

spectrum of the Ce and O doping sample grown with 2 sccm N2 flow has been displayed in Figure 

11b. Three new peaks are detected in the fitting process and attributed to the Si-O bonds in addition 

to the three Si-N bonds observed in Si3N4 matrix. The Si-N bonds are centered at 856, 955 and 1140 

cm-1, close to the Si3N4 peak positions aforementioned above. Two peaks centered at 1065 and 1211 

cm-1 are ascribed to the TO3 Si-O transversal optical mode and LO3 Si-O longitudinal optical modes 

respectively confirming the oxygen incorporation in the layer. 61–65  The last peak at 1250 cm-1 

corresponds to the Si-O TO4 modes.66   

Therefore, the presented FTIR data and analysis confirm the existence of a phase similar to the 

expected Si3N4 phase, which support further the claim that synthesized Ce-doped SiOxNy material has 

a good organization. 

Excitation mechanism  

The discussion presented in the PL and PLE section, highlighted different assumptions and scenarios 

related to the nature of emitting centers and how they are respectively activated. Specifically, the (i) 

band tails, (ii) CeO2 and (iii) Ce clusters were excluded in favor of the (iv) presence of Ce3+ ions (see 

XPS section) and their signature in the PLE spectrum (see PL and PLE section). In the same way, the 

different scenarios were proposed to explain the Ce3+ emission for only a high N2 flux (2 sccm). 

Namely, we have considered three cases: (α) the decrease of Ce clusters formation with the N2 flux 

was mentioned as a possible cause; however no cluster was observed for any N2 flux investigated, (β) 

a possible modification of the oxidation state from Ce (IV) to (III) was also cited, but rejected by 

cross-checking the PL and XPS results. (γ) Finally, the surrounding host structure of Ce was 

considered. In this scenario, two different mechanisms were proposed: the nephelauxetic effect and 

Si atoms surrounding Ce that annihilate the emission. These last two mechanisms are discussed in 

details below. 

Concerning the nephelauxetic effect, the Ce3+ ion emission had been reported at different emission 

wavelengths depending on the host matrices. Usually, this emission is located in the UV-blue spectral 

region but could be observed also in the green or red regions for Ce3+ doped YSixOyNz or Y2O2S 

matrices, respectively.67,68 For our SiOxNy matrix, a previous study showed a red shift of Ce3+ ion 

emission from 400 nm for N-free samples to 476 nm for high N content (40 at. %).20 This PL shift, 

called the nephelauxetic effect, comes from the interaction between the 5d band and the local 

environment.69 Note that this effect is amplified by the fact that the N content is predominant 

compared to O as underlined by Y. Li et al.36,37 Such an effect is illustrated in Figures 12a and 12b for 

the extreme limits of the N content, respectively. 
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Figure 12. Schematic representation of the nephelauxetic effect (scenario γ), the Si atoms surrounding 

Ce and the band gap variation for (a) low and (b) high nitrogen flux. 

In our study, for samples grown at low N2 flux (0.5 to 1 sccm), the 5d band could be localized at 

higher energy owing to the nephelauxetic effect (lower wavelength 325 nm) (see Figure 12a). No Ce3+ 

ion emission was detected at 325 nm excitation wavelength (Figure 1a) and only the BT emission 

centered at  400 nm is detectable. If the shift caused by the nephelauxetic effect is so large then such 

excitation energy is not enough to excite the 5d band. Interestingly enough, even for higher 

excitation (275 nm) no emission is observed (not shown here), meaning that the nephelauxetic effect 

is not responsible for the Ce3+ ion optical activation. In this case, Si atoms surrounding Ce3+ ions 

blocks the Ce3+ ion emission. Indeed, the previous results shown that a higher Si concentration for 

lower N2 flux allow Ce3+ ions to back transfer their energy to neighbor Si atoms. Hence, such an 

environment kills the Ce3+ ion emission.70  

A last point needs more clarification. Even if using a RE like cerium is advantageous considering the 

Ce3+ ion direct excitation process present in our system as mentioned at the beginning of this study, 

the matrix absorption cannot be ignored nor the possible matrix-RE energy transfer. Due to the fact 

that N incorporation to the host matrix could be controlled, the matrix gap changes from a low value 

around 1.1 eV for the lowest N content (close to Si bulk) and tends to become similar to the Si3N4 

bandgap of 3.3 eV for higher N2 flux. The bandgap increases even further (~ 4.0 eV) for the samples 

grown with N2 flux at 2 sccm corresponding to SiOxNy. Therefore, due to the simultaneous crossing of 

the increasing bandgap and the nephelauxetic effect (i.e. lower energetic position of the 5d level),71,72 

one can expect an overlapping effect as schematically shown in Figure 12b. To have a deeper 

understanding of this overlap, the PLE spectrum and the corresponding PL spectra at different 

excitation wavelengths of the 2 sccm sample are shown in Figures 13a and 13b, respectively. The PLE 

spectrum is the same as Figure 1b, which indicated a direct excitation of the Ce3+,19,32 but now in a 

larger excitation range from 250 nm to 400 nm. In this range, the PL spectra (Figure 13b) have the 
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same shape as the Ce3+ ion emission seen in Figure 1a (excited at 325 nm ), whatever the excitation 

wavelengths between 250 nm and 400 nm. This fact demonstrates that Ce3+ ion can effectively excite 

in a large spectral range. 
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Figure 13. (a) PLE spectrum of Ce-doped SiOxNy measured in 250-400 nm spectral range and (b) the 

corresponding PL spectra of Ce
3+

 ion in SiOxNy samples deposited with a 2 sccm N2 flux annealed at 

700 °C. The inset in panel (a) shows the PLE spectrum of reference undoped SiOxNy sample. 

Then, either the 5d energy band is much enlarged at high N2 flux making direct excitation easy or the 

matrix comes into play and favors an indirect excitation mechanism. Indeed, the PL of the undoped 

SiOxNy, as reference sample, at high N2 flux (inset of Figure 13a), shows a maximum emission at 350 

nm when excited at 275 nm. This emission wavelength corresponds to the maximum excitation range 

detected in the Ce3+ PLE spectrum (Figure 13a). Such an overlap confirms an indirect energy transfer 

from the matrix to the Ce3+ ion (Figure 12b), for the shorter excitation wavelength (Figure 13a). In 

conclusion, a direct excitation of Ce3+ ions is predominant between 300 and 400 nm and an indirect 

excitation, from 250 nm to 275 nm at least, is possible via the matrix with the high N2 flux sample 

(Figure 13a), whereas such excitations mechanism are not possible for samples grown with low N2 

flux rates (0.5 to 1 sccm).  

Evolution of the photoluminescence with higher Ce concentration 

Taking into account all the growth parameters already discussed for achieving a good Ce3+ ion 

emission (i.e. 2 sccm N2 flux), a new set of Ce-doped samples deposited with higher RF power density 

applied on CeO2 target (up to 2.1 W/cm²) have been deposited. Specifically, this set includes the 

undoped SiOXNy reference sample (see inset of Figure 13a), the best Ce3+ ion emitting thin film (see 

Figure 1) containing 0.3 at.% of Ce measured by RBS and two additional Ce3+ ion samples having 4 

at.% and 6 at.% of Ce measured also by RBS. Figure 14a displays the PL spectra and Figure 14b shows 

the corresponding integrated PL intensity of these samples as a function of the RF power density 

applied and the Ce3+ concentration (integrated PL intensity was obtained by integrating the PL 

spectra between 400 and 675 nm). 
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Figure 14.  (a) PL spectra of SiOxNy: Ce
3+

 films deposited with different power densities applied on 

CeO2 target and (b) the corresponding integrated PL intensity. Insets show optical images of the 

SiOxNy: Ce
3+ 

samples under UV excitation at 340 nm and their corresponding RBS concentrations 

The PL intensity increases nonlinearly with the RF power density up to 2.1 W/cm² on CeO2 target 

corresponding to 6 at. %. This increasing of PL intensity attest a good incorporation of Ce3+ ions and 

an efficient optical activity even at high doping. Indeed, the PL intensity is almost 70 times higher at 6 

at.% compared to the 0.3 at.% film, and this important Ce3+ concentration is 6 times higher compares 

to other studies.20  

A similar PL intensity dependence on the dopant content was already observed in other matrices 

such as SiO2 
35,73, but a PL intensity saturation effect is detected due the formation of Ce clusters or 

silicates. In the present study, the integrated PL intensity shows monotonic increase with the rare 

earth doping level change, without saturation, confirming the lack of Ce cluster or silicate phase 

formation due do the presence of nitrogen. Furthermore, we have performed microscopy analysis 

(not shown here) which confirms that our films are amorphous without any evidence of crystalized 

precipitates even at the highest Ce content studied (6 at.%). Finally, to demonstrate that developed 

SiOxNy: Ce3+ thin films are efficient emitters, we took pictures of selected samples excited at 340 nm 

at room temperature (see Figure 14(b) insets). It can be seen that bright blue emission was observed 

under the regular room ambient lighting conditions, attesting to a good quantum yield of SiOxNy: Ce3+ 

with 6 at.% of Ce as compare to the 0.3 at.%. Under the same excitation/detection conditions, the 

undoped sample does not show observable visually emission. 

 

Conclusions  

In this study, we investigated the influence of reactive nitrogen flux during the deposition of Ce-

doped SiOxNy films on the matrix structure and the emission behavior of highly doped films.  

By increasing the N2 flux, four different matrices were deposited. The first one, at low N2 flux is 

composed mainly of bulk Si which is confirmed by the high Si concentration revealed by RBS. The 

fourth, at high N2 flow (2sccm), is a mixing of SiO2 and Si3N4 phases. The Si, SiO2, Si3N4 phase volume 

fractions have been deduced from the Bruggeman modeling.  FTIR data confirm the presence of Si3N4 

phases and characteristic interatomic bonds (Si-N and Si-O), of the SiOxNy matrix. Above all, the N 
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incorporation in the deposited film is well established during the process. The TEM images don’t 

show clusters or silicates after high temperature annealing, demonstrating the N incorporation 

effect.   

Photoluminescence measurements show a wide blue emission from 400 nm to 650 nm under UV 

excitation for samples grown at high nitrogen flux (2 sccm) and no emission for lower flux. After 

considering the possible luminescence centers including band tails, CeO2, Ce clusters, Ce3+ ions, the 

Ce3+ ion is identified by XPS analysis and PLE spectroscopy as the origin of the observed emission. The 

different scenarios relevant to activate the Ce3+ emission, according to the N incorporation, are also 

investigated. All the results converge to indicate that the change of Ce3+ ion environment explains 

the modification of the luminescence properties when free from Si phase. It was concluded that a Si 

phase is present only in the matrix for materials grown at low N content where it interacts with Ce3+ 

ions causing a non-radiative energy transfer between Ce3+ ion and its surrounding host structure. 

Furthermore, nitrogen induces a red shift of the Ce3+ ion emission as compared to Ce-doped SiOx due 

to the nephelauxetic effect. In addition, direct and indirect excitations have been highlighed for Ce3+ 

ions in SiOxNy host matrix: a direct excitation under 300 to 400 nm wavelength excitation and an 

indirect excitation via matrix-RE energy transfer is possible for lower wavelength excitation. 

Taking into account the optimized nitrogen growth parameters, Ce concentration was increased in 

the films giving a strong blue emission visible to the naked eye. The integrated intensity of samples 

doped up to 6 at. % shows no signs of quenching. Moreover heavily doped films are still amorphous 

and show no traces of Ce clusters or silicates formation. Ce doped silicon oxynitrides are promising 

donor materials in down-conversion (e.g. Ce3+-Yb3+) as well as light emitting device for 

electroluminescence due to the bright photoluminescence from Ce3+ ion and its high solubility in 

SiOxNy matrix. Such a material system is advantageous for these applications as compared with other 

Si based matrices where clustering and phase separation are observed. 
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