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I. INTRODUCTION

The Holstein-Primakoff transformation was originally created to treat the spin operators present in the Heisenberg model, aiming at a description of magnetization in ferromagnets [START_REF] Holstein | Field dependence of the intrinsic domain magnetization of a ferromagnet[END_REF]. It allows rewriting those SU (2) operators as a bosonic field given by creation and annihilation operators b † and b. Since then many branches of physics have benefited from this transformation in different contexts [START_REF] Ressayre | Holstein-Primakoff transformation for the study of cooperative emission of radiation[END_REF][START_REF] Persico | Coherence properties of the N -atom-radiation interaction and the Holstein-Primakoff transformation[END_REF][START_REF] Swanson | Domain walls and the Holstein-Primakoff transformations[END_REF][START_REF] Angelucci | Graded Holstein-Primakoff transformations and the semiclassical limit of strongly correlated electron systems[END_REF][START_REF] Nieto | Holstein-Primakoff/Bogoliubov Transformations and the Multiboson System[END_REF][START_REF] Kwok | Quantum criticality of the Lipkin-Meshkov-Glick model in terms of fidelity susceptibility[END_REF][START_REF] Tasgin | Single-mode nonclassicality criteria via Holstein-Primakoff transformation[END_REF][START_REF] Gyamfi | An Introduction to the Holstein-Primakoff Transformation, with Applications in Magnetic Resonance[END_REF].

One of these contexts is the use of semiclassical methods to approach phenomena of a quantum nature described by a Hamiltonian operator H [START_REF]Classical, Semiclassical and Quantum Dynamics in Atoms[END_REF][START_REF] Brack | Semiclassical Physics[END_REF]. A possible scheme is the search for a real function H(q, p) to act as a corresponding classical Hamiltonian, in the sense of the Hamilton equations of motion for the set of canonical variables q and p.

In possession of this Hamiltonian function, all the apparatus of the semiclassical methods becomes immediately available for the analysis of the system.

A conspicuous example where this program took place is the N -atom Jaynes-Cummings model, in which N two-level atoms, collectively described by SU (2) operators J ± and J z , interact with a single-mode radiation field, described by bosonic creation and annihilation operators b † 1 and b 1 . In the case of the Jaynes-Cummings model, the Holstein-Primakoff transformation made it possible to treat the electromagnetic field operators and the atomic operators on the same footing, in obtaining the classical Hamiltonian function H [START_REF] Emary | Quantum Chaos Triggered by Precursors of a Quantum Phase Transition: The Dicke Model[END_REF][START_REF] Hillery | Semiclassical expansion for nonlinear dielectric media[END_REF].

The procedure is summarized as

H b 1 , b † 1 ; J z , J ± → H b 1 , b † 1 ; b 2 , b † 2 → H (p, q) . (1) 
In this work, we propose an inversion of the Holstein-Primakoff transformation in a way to rewrite bosonic creation and annihilation operators b † and b as SU (2) pseudo-spin operators.

Fermionic creation and annihilation operators a † and a will be rewritten also as collective SU (2) operators with suitable combinations of quadratic operators, as is usually done. The prescription settled by Lieb [START_REF] Lieb | The classical limit of quantum spin systems[END_REF], for the obtainment of classical variables from spin operators, then makes very efficient the writing down of a Hamiltonian function. Here, therefore, the procedure to be followed is summarized as

H a, a † ; b, b † → H (J 1z , J 1± ; J 2z , J 2± ) → H (p, q) , (2) 
where (q, p) stands for all the necessary pairs of canonical conjugate variables. This program will be illustrated with a bilayer model undergoing a quantum phase transition, where pairs of fermions, electrons and holes in two separate layers, interact to form bosonic excitons. We will see that this proposal does not alter the quantum results known for the bilayer model and provides classical Hamiltonian functions which are written down more efficiently than those encountered in the literature. Moreover, the quantum phase transition present in this model is clearly seen in the behavior of the classical phase space.

In section II, we review the Holstein-Primakoff transformation and propose its inversion.

In section III, we apply that inversion to the bilayer model and calculate its energy spectrum as well as the expected mean value for the quantum observable associated with the number of excitons in the system; we write down the classical Hamiltonian function H (p, q) from the Hamiltonian operator H (J 1z , J 1± ; J 2z , J 2± ) and analyze the phase space (q, p) in terms of its orbits. Section IV presents a discussion of the results so obtained and concludes the article.

II. THE HOLSTEIN-PRIMAKOFF TRANSFORMATION AND ITS INVERSION

The subsection below describes succinctly the transformation idealized by Holstein and Primakoff in 1940 with the aim of treating spin operators in the form of bosonic ones [START_REF] Holstein | Field dependence of the intrinsic domain magnetization of a ferromagnet[END_REF]. In the following subsection, it is inverted so as to treat bosonic operators in the form of spin ones.

Consider a quantum system described by operators J z , J + e J -, satisfying usual commutation relations of SU (2) algebra, and also

J z |m⟩ = m |m⟩ J ± |m⟩ = J (J + 1) -m (m ± 1) |m ± 1⟩, (3) 
where |m⟩ is an eigenstate of the operator J z , with J integer or half-integer and m = -J, -J + 1, . . . , J. Here we take ℏ = 1.

Starting with relations (3), the Holstein-Primakoff transformation takes the definitions

N ≡ J1 -J z n ≡ J -m |ψ n ⟩ ≡ |m⟩ , (4) 
with 1 being the identity operator,

|ψ 0 ⟩ = |+J⟩ e |ψ 2J ⟩ = |-J⟩, and also b † |ψ n ⟩ = √ n + 1 |ψ n+1 ⟩ b |ψ n ⟩ = √ n |ψ n-1 ⟩ , (5) 
to rewrite

N |ψ n ⟩ = (J -m) |m⟩ = n |ψ n ⟩ J + |ψ n ⟩ = 2J -(n -1) √ n |ψ n-1 ⟩ J -|ψ n ⟩ = √ n + 1 √ 2J -n |ψ n+1 ⟩ . (6) 
In this way, the annihilation and creation operators b and b † , and the number operator N = b † b satisfy the commutation relations for bosons and rewrite the spin operators as

J z = J1 -b † b J + = √ 2J1 -b † b b J -= b † √ 2J1 -b † b. (7) 
Note that the bosonic operator N measures the "distance" to the maximum value m

= +J. Besides that, b † |ψ 2J ⟩ = 0 e b |ψ 0 ⟩ = 0.
With this prescription, the transformation bosonizes the spin system. This is the action initially aimed at by Holstein and Primakoff, and in this way it has been used in the literature.

B. Spinorization of a boson

We propose here an inversion of the Holstein-Primakoff transformation, in such a way to spinorize bosonic operators.

With the purpose of rewriting the bosonic field operators as SU (2) operators, we define

N ≡ J1 + J z n ≡ J + m |ψ n ⟩ ≡ |m⟩ . (8) 
Observe that, now |ψ 0 ⟩ = |-J⟩ e |ψ 2J ⟩ = |+J⟩, and N counts the number of excitations starting at the lowest eigenvalue of J z .

Therefore, the same relations (5) provide

J + |ψ n ⟩ = √ n + 1 √ 2J -n |ψ n+1 ⟩ J -|ψ n ⟩ = 2J -(n -1) √ n |ψ n-1 ⟩ (9) 
and rewrite the bosonic operators b, b † and N = b † b as

b † b = J1 + J z ( 10 
) b † = J + 1 √ J1 -J z (11) b = 1 √ J1 -J z J - (12) 
with J z , J + and J -satisfying the SU (2) commutation relations.

III. APPLICATION TO A BILAYER MODEL

Several instances of a bilayer model have appeared in the literature. Here we are interested in the model proposed to approach the experimental situation where Bose-Einstein condensation of excitons was described within two parallel layers [START_REF] Eisenstein | Bose-Einstein condensation of excitons in bilayer electron systems[END_REF]. The bosonic excitons were provided indirectly by electron-hole pairs associated with electrons in different layers. Suggested by the experiment, a Hamiltonian was proposed for the interaction of N/2 pairs of fermions (electrons) which can undergo an (electron-hole)-to-exciton quantum phase transition [START_REF] Moreira | Entanglement and classical instabilities: Fingerprints of electron-hole-toexciton phase transition in a simple model[END_REF].

A. Quantum treatment

We write the Hamiltonian for the bilayer model with N/2 electrons in each layer as

H = ϵ 1 N/2 k=1 a † k1 a k1 + a † k2 a k2 + ϵ 2 b † b + G √ N N/2 k=1 a † k1 a † k2 b + b † a k2 a k1 , (13) 
where the first two terms sum up the energies of electrons and excitons respectively, and G is the interaction parameter. With N electrons in the system, this constant number of particles can be used to eliminate the first sum and write the Hamiltonian scaled by ϵ 1 as

H = δb † b + g √ N N/2 k=1 a † k1 a † k2 b + b † a k2 a k1 , (14) 
with δ = ϵ 2 ϵ 1 -2 and g = G ϵ 1 . The procedure indicated in eq. ( 2) can then be brought to the scene with the bosonic operators b † and b being transformed into SU (2) operators J 2± and J 2z by using eqs. (10 -12). For the fermionic operators we take the quadratic combinations

J 1+ = N/2 k=1 a † k1 a † k2 = J † 1- (15) 
J 1z = 1 2 N/2 k=1 a † k1 a k1 + a † k2 a k2 - N 4 1, (16) 
which also satisfy SU (2) commutation relations.

With these new operators, and taking δ = 1 as energy unity, the bilayer Hamiltonian ( 14) reads

H = (J 2 1 + J 2z ) + g √ N J 1+ 1 √ J 2 1 -J 2z J 2-+ J 1-J 2+ 1 √ J 2 1 -J 2z . ( 17 
)
One can easily check that, the total number N of fermions being constant, the operator

N = N/2 k=1 a † k1 a k1 + a † k2 a k2 + 2b † b = 4J 2 1 + 4(J 1z + J 2z ) ( 18 
)
commutes with the Hamiltonian H, as also does the operator (J 1z + J 2z ). One can also note that the maximum value for the number of excitons in the system is N/2; therefore,

N = 4J 2 = 4J 1 .
It has been shown recently that quantum phase transitions can be evidenced not only by the ground state of the Hamiltonian but also by its excited states, what has been termed excited-state quantum phase transition [START_REF] Cejnar | Excited-state quantum phase transitions[END_REF]. For the model in question (eq. 14), the ground state and also the first excited states are realized in the subspace characterized by (m 1 + m 2 ) = 0, which is consistent with both eq.( 18) and N particles in the system. With this in mind, we diagonalize the operator H in the subspace spanned by the basis {|m, -m⟩} with m = -J, -J + 1, . . . , J. Our results are shown here with J = 100. In Fig. 1(a) there appear energy spectra for some values of the interaction parameter g, and in Fig. 1(b) it is shown the ground-state mean value for the number of excitons in the system, b † b = J 2 + ⟨J 2z ⟩, as a function of g. These results reproduce correctly those ones obtained previously for this model [START_REF] Moreira | Entanglement and classical instabilities: Fingerprints of electron-hole-toexciton phase transition in a simple model[END_REF]. In particular, one notes the manifestation of a quantum phase transition in the increase of the number of excitons, for values of the interaction parameter around g = 0.7. Also apparent are the inflection points in the spectra, at energies E = 0 for g ≥ 1/ √ 2. As g increases from zero the lower levels move, changing the curvature of the corresponding spectrum, until the appearance of the inflection point.

These lower levels keep moving downwards with the increase of g and become successively the inflection point. For a fixed value of g ≥ 1/ √ 2, all the states associated with the levels below the inflection point exhibit, with more or less intensity, the quantum phase transition, an illustration of the referred excited-state quantum phase transition [START_REF] Cejnar | Excited-state quantum phase transitions[END_REF].

B. Semiclassical treatment

In order to get a classical Hamiltonian function for the model, we take the prescription by Lieb [START_REF] Lieb | The classical limit of quantum spin systems[END_REF] 

j k = lim ℏ→0 J→∞ J k ℏ J (J + 1) (k = +, -, z) , (19) 
and use spherical coordinates (θ, φ) over the unitary sphere, as is usual in dealing with the limit of spin operators, to get

H = 1 + p 2 + g 1 + p 2 1 -p 1 2 cos(q 1 -q 2 ), (20) 
where p i = j iz = cos (θ i ) and q i = φ i are pairs of canonical conjugate variables.

The canonical transformation

p a = p 2 +p 1 2 q a = q 2 + q 1 p b = p 2 -p 1 2 q b = q 2 -q 1 , (21) 
followed by taking p a = 0, as imposed by m 1 + m 2 = 0 in the quantum treatment, leads to the final form

H = 1 + p + g (1 + p) 1 -p cos(q), (22) 
where the index b is no longer necessary. Once again, and interestingly, this result correctly reproduces the Hamiltonian obtained in [START_REF] Moreira | Entanglement and classical instabilities: Fingerprints of electron-hole-toexciton phase transition in a simple model[END_REF] using different transformations.

In Fig. 2 the phase space (q, p) is shown for values of g before and after the phase transition at g = 1/ √ 2. Librations around the equilibrium points at q = ±π and rotations nearby are associated respectively with the formation of excitons and the presence of pairs electron-hole in the system. A separatrix orbit between these, with energy E = 0, marks the inflection point of the quantum spectra. As g increases from zero, the rotations are deformed, until equilibrium points show up at the border p = -1, as long as their librations and the separatrix for increasing g; the phase transition takes place. Moreover, the number of excitons in the system, as shown in Fig. 1(b), can be reproduced by the computation of the area bounded by both the separatrix orbit and the border at p = -1 [START_REF] Moreira | Entanglement and classical instabilities: Fingerprints of electron-hole-toexciton phase transition in a simple model[END_REF]. 

IV. DISCUSSION AND CONCLUSION

When sensible, the process of obtaining a classical Hamiltonian function for a quantum system can be done in various ways (see [START_REF] Emary | Quantum Chaos Triggered by Precursors of a Quantum Phase Transition: The Dicke Model[END_REF][START_REF] Hillery | Semiclassical expansion for nonlinear dielectric media[END_REF][START_REF] De Aguiar | The classical analogue of the super-radiant phase transition in the Dicke model[END_REF] for the case of the N -atom Jaynes-Cummings model). We have shown in this work that the application of an inverse Holstein-Primakoff transformation to the bosonic operators produces a description made solely in terms of SU (2) operators, and the prescription by Lieb [START_REF] Lieb | The classical limit of quantum spin systems[END_REF] for the classical limit of these operators makes very efficient the attainment of a classical Hamiltonian.

The semiclassical methods then allow one to establish a variety of connections between the phase space and the results obtained with the quantum treatment. Specifically for the bilayer model treated here, the different types of orbits -librations and rotations -can be associated to different phases the system can experience, and the (dis)appearance of their separatrix signals a transition between those regimes.

We point out also that this program can be applied to different models, particularly those ones known as Curie-Weiss models. Work on these lines shall appear in near future.

FIG. 1 .

 1 FIG. 1. (a) quantum spectra for interaction parameter values g = 0 (straight line), 0.5, . . . , 3; (b) quantum mean value b † b . The phase transition occurs at g = 1/ √ 2.

FIG. 2 .

 2 FIG. 2. (a) classical phase space for g = 0.7; (b) classical phase space for g = 0.8, with the separatrix orbit shown in bold. The phase transition occurs at g = 1/ √ 2.
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