Numerical modelling of the tensile splitting test and its coupling with gas permeability

N. Benkemoun*, X. Jourdain[†], M. Choinska* and A. Khelidj*

*LUNAM Université, GeM, UMR CNRS 6183 IUT de Saint Nazaire, Université de Nantes, France

[†]LMT-Cachan (ENS-Cachan/CNRS/UPMC/PRES UniverSud Paris) 61 avenue du Président Wilson, 94235 Cachan Cedex, France

FraMCos-8, Toledo

Standard technique to determine the tensile strength of geomaterials such as concrete and rocks

< □ > < □ > < □ > < Ξ > < Ξ >

Standard technique to determine the tensile strength of geomaterials such as concrete and rocks

A cylindrical specimen is loaded along a diametral plane

Failure into two halves [Rocco et al., 1999]

・ロト ・ 日本・ ・ ヨト・

Introduction

Numerical investigation of the interaction between cracking and permeability in the context of the tensile splitting test for concrete material

Litterature results

- [Rodriguez-Ferran and Huerta, 2001] : numerical modelling of the tensile splitting test
- [Dufour et al., 2008] : crack opening from a damage model?
- [Choinska, Pijaudier-Cabot, Dufour and Huerta, 2008] : COUPling between the tensile splitting test/permeability and experimental results

Introduction

Numerical investigation of the interaction between cracking and permeability in the context of the tensile splitting test for concrete material

Litterature results

- [Rodriguez-Ferran and Huerta, 2001] : numerical modelling of the tensile splitting test
- [Dufour et al., 2008] : crack opening from a damage model?
- [Choinska, Pijaudier-Cabot, Dufour and Huerta, 2008] : COUPling between the tensile splitting test/permeability and experimental results

The proposed approach...

- mechanical model : cracking (strong discontinuity approach) and heterogeneous material (weak discontinuity approach)
- fluid model : interaction between cracking and permeability (Poiseuille law)
- meso-scale : two-phase material (cement paste + inclusions)

ヘロト ヘアト ヘビト ヘビト

Fine scale FE modelling : quasi-brittle heterogeneous material

- 3D geometric model
- Heterogeneous media representation
- Crack modelling

Fine scale FE modelling : hydro-mechanical coupling

hydro-mechanical coupling

Mechanical and hydro-mechanical results

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Fine scale FE modelling : quasi-brittle heterogeneous material

- 3D geometric model
- Heterogeneous media representation
- Crack modelling

Fine scale FE modelling : hydro-mechanical coupling
 hydro-mechanical coupling

Mechanical and hydro-mechanical results

4 Conclusions et perspectives

• • • • • • • • • • • •

• Goals : tridimensional representation + simple kinematics at the fine scale

ヘロン 人間 とくほどう ほうし

- Goals : tridimensional representation + simple kinematics at the fine scale
- Representation coming from models of particle [Kun, 1996] or discrete models [Delaplace, 2006]

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- Goals : tridimensional representation + simple kinematics at the fine scale
- Representation coming from models of particle [Kun, 1996] or discrete models [Delaplace, 2006]

Geometric modelling by a spatial lattice

[Schlangen and Van Mier, 1992] [Man and Van Mier, 2007]

- Goals : tridimensional representation + simple kinematics at the fine scale
- Representation coming from models of particle [Kun, 1996] or discrete models [Delaplace, 2006]

Fine scale FE modelling : quasi-brittle heterogeneous material

- 3D geometric model
- Heterogeneous media representation
- Crack modelling

Fine scale FE modelling : hydro-mechanical coupling
 hydro-mechanical coupling

Mechanical and hydro-mechanical results

4 Conclusions et perspectives

two phases material : mortar/aggregates [Wriggers, 2005] - [Hau-Kit Man, 2008]

Fast and efficient meshing process

two phases material : mortar/aggregates [Wriggers, 2005] - [Hau-Kit Man, 2008]

Fast and efficient meshing process

non conforming mesh

two phases material : mortar/aggregates [Wriggers, 2005] - [Hau-Kit Man, 2008]

Fast and efficient meshing process

- non conforming mesh
 - finite elements split into two parts

two phases material : mortar/aggregates [Wriggers, 2005] - [Hau-Kit Man, 2008]

Fast and efficient meshing process

- non conforming mesh
 - finite elements split into two parts
 - cutting position

two phases material : mortar/aggregates [Wriggers, 2005] - [Hau-Kit Man, 2008]

Fast and efficient meshing process

- non conforming mesh
 - finite elements split into two parts
 - cutting position
 - material properties jump (Young modulus, conductivity, permeability ...)

two phases material : mortar/aggregates [Wriggers, 2005] - [Hau-Kit Man, 2008]

Fast and efficient meshing process

- non conforming mesh
 - finite elements split into two parts
 - cutting position
 - material properties jump (Young modulus, conductivity, permeability ...)
 - ⇒ weak discontinuity (continuous displacement field and discontinuous deformation field)

[Moes et al., 1999]

two phases material : mortar/aggregates [Wriggers, 2005] - [Hau-Kit Man, 2008]

Fast and efficient meshing process

- non conforming mesh
 - finite elements split into two parts
 - cutting position
 - material properties jump (Young modulus, conductivity, permeability ...)
 - ⇒ weak discontinuity (continuous displacement field and discontinuous deformation field) [Moes et al., 1999]

イロト イロト イヨト イ

two phases material : mortar/aggregates [Wriggers, 2005] - [Hau-Kit Man, 2008]

Fast and efficient meshing process

- non conforming mesh
 - finite elements split into two parts
 - cutting position
 - material properties jump (Young modulus, conductivity, permeability ...)
 - ⇒ weak discontinuity (continuous displacement field and discontinuous deformation field) [Moes et al., 1999]

two phases material : mortar/aggregates [Wriggers, 2005] - [Hau-Kit Man, 2008]

Fast and efficient meshing process

- non conforming mesh
 - finite elements split into two parts
 - cutting position
 - material properties jump (Young modulus, conductivity, permeability ...)
 - ⇒ weak discontinuity (continuous displacement field and discontinuous deformation field) [Moes et al., 1999]

two phases material : mortar/aggregates [Wriggers, 2005] - [Hau-Kit Man, 2008]

Fast and efficient meshing process

- non conforming mesh
 - finite elements split into two parts
 - cutting position
 - material properties jump (Young modulus, conductivity, permeability ...)
 - \Rightarrow weak discontinuity (continuous displacement field and discontinuous deformation field) [Moes et al., 1999]

two phases material : mortar/aggregates [Wriggers, 2005] - [Hau-Kit Man, 2008]

Fast and efficient meshing process

- non conforming mesh
 - finite elements split into two parts
 - cutting position
 - material properties jump (Young modulus, conductivity, permeability ...)
 - \Rightarrow weak discontinuity (continuous displacement field and discontinuous deformation field) [Moes et al., 1999]

・ロト ・ 日本・ ・ ヨト・

two phases material : mortar/aggregates [Wriggers, 2005] - [Hau-Kit Man, 2008]

Fast and efficient meshing process

- non conforming mesh
 - finite elements split into two parts
 - cutting position
 - material properties jump (Young modulus, conductivity, permeability ...)
 - \Rightarrow weak discontinuity (continuous displacement field and discontinuous deformation field) [Moes et al., 1999]

・ ロ ト ・ 同 ト ・ ヨ ト ・

Fine scale FE modelling : quasi-brittle heterogeneous material

- 3D geometric model
- Heterogeneous media representation
- Crack modelling

Fine scale FE modelling : hydro-mechanical coupling
 hydro-mechanical coupling

Mechanical and hydro-mechanical results

4 Conclusions et perspectives

・ロト ・ 日本・ ・ ヨト・

quasi-brittle material [Armero and Garikipati, 1995] - [Wells and Sluys, 2002] [Benkemoun et al., 2012]

Explicit representation of the crack

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

quasi-brittle material [Armero and Garikipati, 1995] - [Wells and Sluys, 2002] [Benkemoun et al., 2012]

Explicit representation of the crack

- · cracking into the cement paste and interfaces debonding
- no mesh dependency
- crack opening values

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

```
quasi-brittle material [Armero and Garikipati, 1995] - [Wells and Sluys, 2002] -
[Benkemoun et al., 2012]
```

Explicit representation of the crack

- · cracking into the cement paste and interfaces debonding
- no mesh dependency
- crack opening values
- \Rightarrow strong discontinuity (discontinuous displacement field)

[Oliver, 1996]

```
quasi-brittle material [Armero and Garikipati, 1995] - [Wells and Sluys, 2002] -
[Benkemoun et al., 2012]
```

Explicit representation of the crack

- · cracking into the cement paste and interfaces debonding
- no mesh dependency
- crack opening values
- \Rightarrow strong discontinuity (discontinuous displacement field)

[Oliver, 1996]


```
quasi-brittle material [Armero and Garikipati, 1995] - [Wells and Sluys, 2002] -
[Benkemoun et al., 2012]
```

Explicit representation of the crack

- · cracking into the cement paste and interfaces debonding
- no mesh dependency
- crack opening values
- \Rightarrow strong discontinuity (discontinuous displacement field)

[Oliver, 1996]


```
quasi-brittle material [Armero and Garikipati, 1995] - [Wells and Sluys, 2002] -
[Benkemoun et al., 2012]
```

Explicit representation of the crack

- · cracking into the cement paste and interfaces debonding
- no mesh dependency
- crack opening values

FraMCos-8, Toledo

```
quasi-brittle material [Armero and Garikipati, 1995] - [Wells and Sluys, 2002] -
[Benkemoun et al., 2012]
```

Explicit representation of the crack

- cracking into the cement paste and interfaces debonding
- no mesh dependency
- crack opening values

⇒ strong discontinuity (discontinuous displacement field) [Oliver, 1996]


```
quasi-brittle material [Armero and Garikipati, 1995] - [Wells and Sluys, 2002] -
[Benkemoun et al., 2012]
```

Explicit representation of the crack

- cracking into the cement paste and interfaces debonding
- no mesh dependency
- crack opening values
- ⇒ strong discontinuity (discontinuous displacement field) [Oliver, 1996]


```
quasi-brittle material [Armero and Garikipati, 1995] - [Wells and Sluys, 2002] -
[Benkemoun et al., 2012]
```

Explicit representation of the crack

- cracking into the cement paste and interfaces debonding
- no mesh dependency
- crack opening values
- ⇒ strong discontinuity (discontinuous displacement field) [Oliver, 1996]

Fine scale FE modelling : quasi-brittle heterogeneous material

- 3D geometric model
- Heterogeneous media representation
- Crack modelling

Fine scale FE modelling : hydro-mechanical coupling
 hydro-mechanical coupling

3 Mechanical and hydro-mechanical results

4 Conclusions et perspectives

・ロト ・ 日下・ ・ ヨト・

Fine scale FE modelling : quasi-brittle heterogeneous material

- 3D geometric model
- Heterogeneous media representation
- Crack modelling

Fine scale FE modelling : hydro-mechanical couplinghydro-mechanical coupling

3 Mechanical and hydro-mechanical results

・ロト ・ 日下・ ・ ヨト・

[Jourdain et al., 2012]

Coupling features

• weak coupling : mass balance equation

ヘロト 人間 とくほ とくほう

[Jourdain et al., 2012]

Coupling features

• weak coupling : mass balance equation

Hydraulic model features

• double porosity [Choinska et al., 2009]

ヘロト 人間 とくほ とくほう

[Jourdain et al., 2012]

Coupling features

weak coupling : mass balance equation

Hydraulic model features

• double porosity [Choinska et al., 2009]

k_{iso}l + k_{ani}

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

[Jourdain et al., 2012]

Coupling features

• weak coupling : mass balance equation

Hydraulic model features

• double porosity [Choinska et al., 2009]

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

[Jourdain et al., 2012]

Coupling features

• weak coupling : mass balance equation

Hydraulic model features

• double porosity [Choinska et al., 2009]

$$k_{iso}\mathbf{l} + \mathbf{k}_{ani}$$

10⁻¹⁷ m²
intrinsic porosity

[Jourdain et al., 2012]

Coupling features

weak coupling : mass balance equation

Hydraulic model features

double porosity [Choinska et al., 2009]

$$k_{iso}$$
I + **k**_{ani}

 10^{-17} m^2

micro-cracks intrinsic porosity (opening, orientations, percolation)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

[Jourdain et al., 2012]

weak coupling : mass balance equation

Hydraulic model features

• double porosity [Choinska et al., 2009]

・ロト ・ 日下・ ・ ヨト・

Fine scale FE modelling : quasi-brittle heterogeneous material

- 3D geometric model
- Heterogeneous media representation
- Crack modelling

Fine scale FE modelling : hydro-mechanical coupling
 hydro-mechanical coupling

Mechanical and hydro-mechanical results

4 Conclusions et perspectives

・ロト ・ 日 ・ ・ ヨ ・ ・

tensile splitting test

- Imposed displacement at the top of the cylinder
- Cracking in the cement paste and debonding
- Inclusions diameter : 2, 4, and 8 mm
- E_{incl}/E_{paste} = 7

tensile splitting test

- Imposed displacement at the top of the cylinder
- Cracking in the cement paste and debonding
- Inclusions diameter : 2, 4, and 8 mm
- $E_{incl}/E_{paste} = 7$

tensile splitting test

- Imposed displacement at the top of the cylinder
- Cracking in the cement paste and debonding
- Inclusions diameter : 2, 4, and 8 mm
- $E_{incl}/E_{paste} = 7$

◆□ > ◆□ > ◆目 > ◆目

Mechanical results tensile splitting test

• Inclusions diameter : 2, 4, and 8 mm

-

・ロト ・ 日本・ ・ ヨト・

Mechanical results tensile splitting test

Inclusions diameter : 2, 4, and 8 mm

• Fracture energy increases with respect to diameter

・ロト ・ 同ト ・ ヨト

tensile splitting test

- Cracking in the cement paste and debonding
- Inclusions diameter : 2, 4, and 8 mm

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

tensile splitting test

- Cracking in the cement paste and debonding
- Inclusions diameter : 2, 4, and 8 mm

- crack opening for each element
- micro-cracking
- tortuous macro crack

tensile splitting test

Inclusions diameter : 2, 4 and 8 mm

◆□ > ◆□ > ◆目 > ◆目

tensile splitting test

Inclusions diameter : 2, 4 and 8 mm

- Number of broken elements decreases with respect to the diameter
- Average crack opening increases with respect to the diameter

・ロト ・ 同ト ・ ヨト

tensile splitting test

Inclusions diameter : 2, 4 and 8 mm

- Number of broken elements decreases with respect to the diameter
- Average crack opening increases with respect to the diameter
- How does permeability evolve with respect to the diameter?

・ロト ・ 同ト ・ ヨト

tensile splitting test

•
$$P_{in} = 2 \times 10^5$$
 and $P_{out} = 1 \times 10^5$ Pa

• Gas = air : M = 0.02895 kg.mol⁻¹ and μ = 1.82×10⁻⁵ Pa.s

•
$$k_{incl} = 10^{-25} \text{ m}^2$$
 and $k_{paste} = 10^{-16} \text{ m}^2$

Inclusions diameter : 2, 4 and 8 mm

the diameter

・ロト ・ 日下・ ・ ヨト・

tensile splitting test

•
$$P_{in} = 2 \times 10^5$$
 and $P_{out} = 1 \times 10^5$ Pa

• Gas = air : M = 0.02895 kg.mol⁻¹ and μ = 1.82×10⁻⁵ Pa.s

•
$$k_{incl} = 10^{-25} \text{ m}^2$$
 and $k_{paste} = 10^{-16} \text{ m}^2$

Inclusions diameter : 2, 4 and 8 mm

the diameter

・ロト ・ 日下・ ・ ヨト・

tensile splitting test

- $P_{in} = 2 \times 10^5$ and $P_{out} = 1 \times 10^5$ Pa
- Gas = air : M = 0.02895 kg.mol⁻¹ and μ = 1.82×10⁻⁵ Pa.s
- $k_{incl} = 10^{-25} \text{ m}^2$ and $k_{paste} = 10^{-16} \text{ m}^2$
- Inclusions diameter : 2, 4 and 8 mm

・ロト ・ 日 ・ ・ ヨ ・ ・

tensile splitting test

- $P_{in} = 2 \times 10^5$ and $P_{out} = 1 \times 10^5$ Pa
- Gas = air : M = 0.02895 kg.mol⁻¹ and μ = 1.82×10⁻⁵ Pa.s
- $k_{incl} = 10^{-25} \text{ m}^2$ and $k_{paste} = 10^{-16} \text{ m}^2$
- Inclusions diameter : 2, 4 and 8 mm

Fine scale FE modelling : quasi-brittle heterogeneous material

- 3D geometric model
- Heterogeneous media representation
- Crack modelling

Fine scale FE modelling : hydro-mechanical coupling
 hydro-mechanical coupling

Mechanical and hydro-mechanical results

Onclusions et perspectives

・ロト ・ 日下・ ・ ヨト・

Conclusion : hydro-mechanical coupling

Efficient tools

- Weak discontinuity : two-phase material
- Strong discontinuity : cracking
- ...naturally coupling with the fluid problem by the Poiseuille law
- Extension to others couplings : chloride transfert for instance

・ロト ・ 日下・ ・ ヨト・

Conclusion : hydro-mechanical coupling

Efficient tools

- Weak discontinuity : two-phase material
- Strong discontinuity : cracking
- ...naturally coupling with the fluid problem by the Poiseuille law
- Extension to others couplings : chloride transfert for instance

Obtained results

- Encouraging part : evolution of permeability with cracking
- Discouraging part : RVE?

Conclusion : hydro-mechanical coupling

Efficient tools

- Weak discontinuity : two-phase material
- Strong discontinuity : cracking
- ...naturally coupling with the fluid problem by the Poiseuille law
- Extension to others couplings : chloride transfert for instance

Obtained results

- Encouraging part : evolution of permeability with cracking
- Discouraging part : RVE ?

Upscaling information from the fine scale to the macro scale

- Mechanical information
- Multi-physics information

Developing fine scale model

- "Richer " fine mechanism
- Morphologic variability : random field [Roubin, 2010]
- 3D volumic

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Developing fine scale model

- "Richer " fine mechanism
- Morphologic variability : random field [Roubin, 2010]
- 3D volumic

・ロト ・ 日 ・ ・ ヨ ・ ・

Developing fine scale model

- "Richer " fine mechanism
- Morphologic variability : random field [Roubin, 2010]
- 3D volumic

Multi-physics problem development

• Couplings development (chemo-physics coupling, ex : Internal sulfatic reaction)

・ロト ・ 日 ・ ・ ヨ ・ ・

Developing fine scale model

- "Richer " fine mechanism
- Morphologic variability : random field [Roubin, 2010]
- 3D volumic

Multi-physics problem development

• Couplings development (chemo-physics coupling, ex : Internal sulfatic reaction)

Other method

Nitsche method : chloride propagation