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One of the promising ways to overcome the above mentioned difficulties is 

replacing the CNC machines by industrial robots, whose cost is competitive and 

workspace can be easily extended (by adding extra actuated axes). An example for 

such an application is presented in Fig. 1. Traditionally, the market of industrial robots 

is shared between handling, pick and place, assembling and welding. The processing 

(including machining), represents insignificant part of the market, less than 5%. 

According to PWC study (McCutcheon and Pethick, 2014) these shares will remain the 

same in the nearest future. Nevertheless, the share of robot-based machining is 

continuously growing. Large part of this market share corresponds to trimming that 

was traditionally a high-qualified manual work, but nowadays the robots become 

competitive here due to increasing of their accuracy. For machining, robots are 

attractive due to their large and extendable workspace and competitive price that 

makes them a cost-effective solution for machining of large dimension parts. However, 

the main obstacle for  utilization in machining is their relatively low accuracy

(about 0.7 mm) and repeatability (about 0.2 mm) compared to the CNC machines. 

Nevertheless, there are a number of efficient solutions to reduce manipulator 

positioning errors that were discovered in research labs and progressively applied in 

industrial environment. The latter allows robots to compete with CNC machines in 

terms of accuracy, while providing essentially larger workspace. 

Fig. 1. Example of machining process with robot 
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where 
n

K  is a specific cutting coefficient, which depends on the material properties 

and the cutting tool. 

The instantaneous force i
F  is usually presented in the cylindrical coordinate 

system as 0 [ , , ]i i i i T

r t z
F F FF , where , ,

r t z
F F F  are the radial, tangential and axial 

forces, respectively. The correspondence between this forces are defined by the 

rotation matrix 0 , ,
s

R  that depends on the tool orientation, i.e. the entering

angle , the helix angle
s
and the cutting angle 

0

Fig. 2. Cutting force in the machining process 
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Fig. 3. Typical industrial robot and its VJM-based stiffness model. 
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Fig. 4. Circularity evaluation using different industrial norms. 
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where 
0p is the center of the reference circle, r  is its radius, r defines the radius 

vector of the circle for 0 , the matrix ( )
i

R takes into account rotation of the 

target point by the angle 
i
, the superscripts ( )p  and ( )  indicate the position and

orientation part of the Jacobian matrix presented as (p)T ( )T[ , ]T
J J J . It should be

stressed that dynamics also affects the circularity; however, its influence is much 

lower comparing to the compliance errors caused by cutting forces.  
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The technique developed in this paper has been applied to the comparison study of 

four industrial robots of Kuka family. There were compared with respect to the 

circular machining task of 100 mm radius that was placed in different workspace 

points. Some details concerning the examined robots and their principal parameters 

are given in Table 1. These robots have similar kinematics and provide comparable 

repeatability/accuracy without loading. However, their payload capacities and 

workspace size are different. Elastostatic parameters of the examined robots have 

been identified using dedicated experimental study using methodology developed in 

our previous works (Klimchik et al., 2013b, Klimchik et al., 2014b). Corresponding 

results are presented in Table 2. 

5R mm

3z  90 0 7
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p
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n

K N

180
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Robot Repeatability 
Workspace 

volume 

Working 

radius, 

Maximum 

payload 

KR 100 HA 0.05 mm 46 m3 2.6 m 100 kg 

KR270 0.06 mm 55 m3 2.7 m 270 kg 

KR360 0.08 mm 118 m3 3.3 m 360 kg 

KR500 0.08 mm 68 m3 2.8 m 500 kg 

Robot 
1k 2k 3k 4k 5k 6k

KR100 HA 1.92 0.34 0.56 3.31 3.83 5.42 

KR270 0.54 0.29 0.42 2.79 3.48 2.07 

KR360 0.86 0.17 0.25 2.17 1.47 2.96 

KR500 0.47 0.14 0.19 0.72 0.95 1.44 
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Fig. 5. . 
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Fig. 6. Circularity maps for robot KR 270. 
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Robot min max Middle 

KR 100 HA  1.03 3.36 1.91 

KR270  0.84 3.13 1.64 

KR360  1.02 2.81 1.80 

KR500 0.41 1.42 0.76 
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Fig. 7. Circularity maps for robot KR 360. 
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Fig. 8. Circularity maps for robot KR 500. 
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Circularity 
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