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Abstract 6 

The impact of formic acid and glucose addition on the co-ensiling of cattle manure with 7 

straw was assessed during 4 months at laboratory scale. Feedstock deprived of additives 8 

lost 67% of its methane potential for prolonged ensiling. This was mainly due to the 9 

lack of water-soluble carbohydrates and to the high methanogenic activity of cattle 10 

manure. The use of co-substrates enhanced biomass and energy conservation during 11 

ensiling. The best storage performance was obtained for co-ensiling of cattle manure 12 

with glucose (100 g/kg of feedstock). For this condition, lactate production was 13 

extensive, which allowed biomass acidification, suppressed ammonia emissions and led 14 

to full preservation of methane potential after 4 months. Therefore, in field-scale 15 

storage, co-ensiling with a high easily fermentable sugar content co-substrate appears to 16 

be the most resourceful method to optimize cattle manure preservation. Application of 17 

this promising technique will have a major impact on the methane yield of agricultural 18 

biogas plants where cattle manure has to be stored for long periods. 19 
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Highlights 22 

 Ensiling of cattle manure with straw led to 67% methane potential losses  23 

 Ammonia emissions during ensiling were minimized with the use of co-substrates 24 

 Formic acid addition limited energy losses to 25% during ensiling 25 

 Full preservation of methane potential occurred for co-ensiling with 10% of glucose 26 

Abbreviations  27 

AA, acetic acid; AD, anaerobic digestion; ADF, acid detergent fiber; ADL, acid 28 

detergent lignin; BMP, biochemical methane potential; BU, butyric acid; CEL, 29 

cellulose; COD, chemical oxygen demand; FA, formic acid; HEM, hemicellulose; LA, 30 

lactic acid; LAB, lactic acid bacteria; LIG, lignin; NDF, neutral detergent fiber; NH3-N, 31 

ammonia nitrogen; TKN, total Kjeldahl nitrogen; TS, total solids; VS, volatile solids; 32 

WSC, water soluble carbohydrates; VFA; volatile fatty acids 33 

1. Introduction 34 

Cattle manure is a major input for agricultural biogas plants, especially in countries with 35 

intensive livestock systems. In France there are currently 267 of these installations [1] 36 

and nearly 87 Mt of cattle manure annually produced that may be mobilized for 37 

anaerobic digestion (AD) in the near future [2]. However, there are still several 38 

constraints slowing down the valorization of cattle manure. This includes the storage 39 

requirements and the consequences on the methane potential of cattle manure that it 40 

may entail. On the one hand, biogas plants should operate continuously and feedstock 41 

should be available throughout the year. Yet, cattle manure, such other agricultural 42 

wastes and crops, undergoes production fluctuations, which periodically leads to the 43 

need of storage during long periods. 44 
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The main issues related to the storage of cattle manure are that the current field-scale 45 

practices are not optimized for energy production purposes and scientific studies about 46 

this subject are scarce. Cattle manure is typically stored outdoors in contact of air, in 47 

order to carry out a simple and low-cost operation. This has several drawbacks: it leads 48 

to leachate generation, ammonia and odor emissions [3] and energy losses. Recently, 49 

Teixeira Franco et al. [4] evidenced that up to 74% of cattle manure’s biochemical 50 

methane potential (BMP) may be lost during 4 months of open-air storage. 51 

Nevertheless, the authors showed that anaerobic storage, or ensiling, may limit energy 52 

losses to a maximum of 46% after 4 months. 53 

Traditionally used as fodder conservation method, ensiling is a biochemical process that 54 

mainly rely on anaerobic conditions and biological acidification of the feedstock [5,6]. 55 

This biomass acidification consists in lowering the pH around 4.0 by organic acid 56 

production (especially lactic acid), which will impede further significant fermentative 57 

activity. The main reactions involved in carbon degradation during ensiling are 58 

represented in Figure 1.  59 

 60 

Figure 1 – Simplified diagram of carbon degradation during ensiling, including 61 
microorganisms, substrates and reactions. Efficient energy conservation will occur if the 62 

two last reactions are inhibited, especially the methanogenesis. 63 

While applied to specific crops, ensiling leads to full BMP conservation, even after 1 64 

year [7]. However, fresh cattle manure does not satisfy the chemical requirements for an 65 

efficient ensiling, whether due to its high moisture, low water soluble carbohydrates 66 



4 
 

(WSC) content, strong basic buffering capacity or endogenous microflora. For instance, 67 

without WSC or another source of easily fermentable sugars, hetero or homo-lactic 68 

fermentation cannot occur and lactic acid cannot be rapidly produced in a significant 69 

extent, so as to abruptly lower the pH value and inhibit further bacterial activity.  70 

To the best of our knowledge, few authors reported work on cattle manure storage. 71 

Teixeira Franco et al. [4] have approached the optimization of cattle manure silage 72 

before biogas production. The authors evidenced that co-ensiling with wheat straw may 73 

enhance methane conservation of cattle manure to more than 86% after 4 months. The 74 

decrease of moisture content and the alteration of buffering properties should be in the 75 

origin of this improvement. On the one hand, considering the actual market value of 76 

bio-methane, the additional revenue for this higher energy conservation rate (vs. open-77 

air storage) was estimated as 24-26 €/t per 4-months batch. On the other hand, the 78 

expected cost increase by silo construction is around 57 €/t. This shows that improved 79 

energy conservation should clearly overcome in less than a year the additional cost of 80 

silo construction if an efficient ensiling of cattle manure is carried out [4]. However, 81 

since few authors have worked on cattle manure storage and since there may exist a 82 

variability among biochemical properties of different manures, e.g. concerning the 83 

bacterial populations [8,9], these conclusions may not be generalized for all types of 84 

manure so far. 85 

The use of additives is considered as a resourceful method to ensure a good silage 86 

quality. Fermentation stimulants and inhibitors are two of the most important silage 87 

additives categories among the wide range of biological and chemical products 88 

commercially available. The role of fermentation stimulants is to encourage lactic 89 

fermentation either by supply of substrate (e.g. fermentable sugars), lactic acid bacteria 90 
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(LAB) or enzymes [5]. In contrast, inhibitors (acids) are also used to prevent biological 91 

activity of the degrading microorganisms by lowering the pH of the feedstock. These 92 

two types of silage additives are serving as a basis for most of ensiling research in 93 

recent years [7,10–17]. Nevertheless, none of these co-storage studies was performed 94 

with cattle manure. 95 

In order to assess the effects of additives on the ensiling of cattle manure with straw, 96 

laboratory experiments were conducted for up to 4 months. A fermentation stimulant 97 

(glucose) and an inhibitor (formic acid) were used as model molecules of co-substrates 98 

for ensiling. It is important to underline that glucose was used as a representative 99 

molecule of simple sugars that are conventionally consumed during the first steps of 100 

ensiling, such as other non-structural compounds (sucrose, fructose, xylose, starch, etc.). 101 

In real applications, glucose should be replaced by a substrate containing easily 102 

accessible sugars such as maize, sugar beet pulp or another fermentable sugar-rich 103 

substrate. A similar reasoning applies in the case of formic acid, by using low-pH 104 

wastes as the one assessed by Lianhua et al. [18]. Besides the evaluation of BMP during 105 

storage, the monitoring of fermentative profiles, organic matter losses and potential gas 106 

emissions were included in our work. Our objective is to contribute to the improvement 107 

of cattle manure management before energy production, which will have a major impact 108 

on the ammonia emissions and on the methane yield of agricultural biogas plants. 109 

2. Material and methods 110 

2.1. Feedstocks 111 

Fresh cattle manure (10% of total solids (TS) content) was collected on June 1st, 2016 112 

from an agricultural site in the Rhône-Alpes region of France (Gaec Béreyziat, Les 113 

Teppes, 01340 Béréziat, France) and it was stored at 4 °C before further use. A mixture 114 
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of fresh cattle manure and wheat straw was prepared at the laboratory and it was tested 115 

for ensiling. Wheat straw with 0.10 m maximum length was mixed with cattle manure 116 

in order to achieve a final TS content of 19%. The TS content of cattle manure with 117 

straw was chosen according to the recommendations of Teixeira Franco et al. [4] for the 118 

optimization of cattle manure storage.  119 

Besides the control assay (i.e. ensiling without silage additives), the following additives 120 

were added to cattle manure with straw at the beginning of each experiments (Table 1): 121 

formic acid, 8.2% of volatile solids (VS) content; glucose, 16.6%VS and; glucose, 122 

40.2%VS. The amount of each additives was selected through a short-term preliminary 123 

screening performed at the laboratory, in which the impact of the additive on the pH 124 

evolution was examined [19]. 125 

Table 1 – Ensiling conditions and treatments applied to cattle manure with wheat straw 126 

(% of total sample weight) 127 

Ensiling condition 
Additive 

TS content 
Molecule  Content 

Control - - 19.2±0.1 

Formic acid Formic Acid 2.0 20.4±0.1 

Glucose 4% Glucose 4.0 22.3±0.5 

Glucose 10% Glucose 10.0 24.9±1.4 

2.2. Experimental approach 128 

Laboratory trials were performed in 3.5 L airtight round plastic storage drums. In order 129 

to enable biogas output and at the same time minimizing headspace, silos were filled up 130 

to 2.55 L with raw material at packing density of 0.7 kg/L, the remaining volume being 131 

filled with gravel, using a geotextile membrane to separate it from biomass. Proper 132 

plastic lid and rubber ring were used for silo sealing and its airtightness was reinforced 133 

with silicone sealant. Then, silos were weighed and placed in a controlled-temperature 134 
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room at 25±2 °C. Storage duration varied between 7, 15, 30 and 120 days. A total of 16 135 

(4 operating conditions x 4 storage durations) ensiling assays were performed. 136 

2.3. Chemical analysis 137 

For each sample time, one silo (per tested condition) was sacrificed. It was opened and 138 

weighed. Then, biomass was homogenized and two samples were taken, which 139 

followed the experimental procedure illustrated in Figure 2. 140 

 141 

Figure 2 – Flowchart of the experimental procedure, including phase separation and 142 

chemical analysis 143 

The first sample was used for direct analyses on the crude material and the other one 144 

was mixed with water in order to get two fractions: a water-soluble phase and a 145 
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particulate phase. This leaching test was performed with a 10:1 water/TS ratio during 2 146 

h under constant bottle rotation. Phase separation was achieved by centrifugation (5000 147 

G; 10 min) followed by 0.7 µm particle size filtration. Finally, the particulate phase was 148 

dried at 70 °C until constant weight and ground at 2 mm theoretical length. Crude 149 

material/water-soluble and particulate samples were stored at 4 °C and -20 °C, 150 

respectively, until analysis. 151 

Crude material was analyzed for its TS/VS content and BMP. For the water-soluble 152 

phase, besides TS/VS content, pH, WSC, volatile fatty acids (VFA), chemical oxygen 153 

demand (COD), total Kjeldahl nitrogen (TKN) and ammonia nitrogen (NH3-N) 154 

fractions were determined. Particulate solid was analyzed for its TS/VS, COD, TKN 155 

and cell wall constituents. Feedstocks were not analyzed for COD, TKN and NH3-N 156 

content. 157 

TS was measured by oven drying at 105 °C during 24 h and VS was subsequently 158 

burned for 2 h at 550 °C. Since TS/VS contents are underestimated due to the loss of 159 

volatile compounds during the drying tests [20], the data were corrected according to 160 

the volatilization coefficients at 100 °C suggested by Porter and Murray [21]. pH was 161 

measured by a Consort C3020 device with a SP10B pH-electrode. WSC, lactic acid and 162 

formic acid contents were determined with high performance liquid chromatography 163 

(LC Module 1 plus, Waters) equipped with a Supelcogel™ C-610H column (300 x 7.8 164 

mm, Sigma-Aldrich), both refractive index (RID) and UV detectors and operating with 165 

H3PO4 0.1%v as solvent (flow rate of 0.5 mL/min). WSC content was estimated as the 166 

sum of glucose, xylose, galactose, mannose, arabinose and cellobiose and was 167 

determined using the UV detector (210 nm). Lactic acid and formic acid contents were 168 

obtained with the RID detector. Acetic, propionic, butyric, valeric and caproic acids 169 
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content were analyzed by gas chromatography (Shimadzu Corp.) equipped with a HP-170 

FFAP fused silica capillary column (30 m x 0.25 mm, Agilent Technologies), a flame 171 

ionization detector and using H2 as carrier gas. Total VFA was calculated as the sum of 172 

lactic, formic, acetic, propionic, butyric, valeric and caproic acids. Neutral detergent 173 

fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL) were analyzed 174 

through Van Soest and Wine [22] modified extractions method, based on FD U44-162 175 

standard [23]. Hemicellulose content was calculated as NDF minus ADF; cellulose as 176 

ADF minus ADL and; lignin as equal to ADL. TKN and NH3-N were determined 177 

through the procedure described in the NF EN 25663 standard [24]. COD of water-178 

soluble phase was determined through the colorimetric HACH procedure (method 179 

8000). COD of particulate phase was measured by a Walkley and Black [25] modified 180 

method, based on the NF ISO 14235 international standard [26]. 181 

The interest of our experimental procedure is to assess the composition and BMP based 182 

on the initial mass of product used, since the weight loss is measured. The results for the 183 

chemical analysis will thus be presented in two ways: based on %VSadded or %VSoriginal. 184 

VSadded relates to the organic matter of the sample analyzed. The results based on 185 

VSoriginal take into account the loss of volatile solids during storage and allow the study 186 

of the results based on the VS of the initial material. 187 

2.4. Biochemical methane potential tests 188 

Batch anaerobic digestion tests were conducted in a temperate room at 35 °C using 2L 189 

glass reactors. Vessels were filled with 5 gVS of sample, inoculum in way to keep a 190 

substrate/inoculum VS ratio of 0.5 and a certain volume of a mineral solution to achieve 191 

60% of the total volume of the vessel. The inoculum used (TS 2.3-3.3%wt; VS 1.5-192 

2.2%wt) was a digested sludge originating from the wastewater treatment plant of La 193 
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Feyssine, Lyon, France. The sludge used met the criteria for a good inoculum quality 194 

(e.g. pH, VFA, NH4
+) suggested by the international task group on the harmonization of 195 

BMP protocols [27]. The mineral solution, which contains essential elements to 196 

microbial growth and also gives the solution a buffer able to control any pH 197 

adjustments, was prepared according to the recommendations of ISO 11734 198 

international standard [28]. Once filled, reactors were purged with a N2/CO2 mixture 199 

(80/20%v) for about 5 minutes, sealed and equilibrated at 35 °C. Blanks with only 200 

inoculum and mineral solution were performed for each batch series in order to correct 201 

the BMP from residual methane production of the inoculum. All tests were performed 202 

in triplicates. 203 

Biogas production was determined by pressure measurement using a Digitron precision 204 

manometer. Biogas was released when the pressure exceeded 1200 hPa. Gas 205 

composition was analyzed using an Agilent 3000 micro gas chromatography with 206 

thermal conductivity detector (GC-TCD). Molsieve 5A (14 m length; pore size: 5 Å) 207 

and PoraPlot A (10 m length; 0.320 mm ID) columns were used as stationary phases for 208 

GC-TCD, with Argon and Helium as carrier gases, respectively. Biogas production and 209 

composition were analyzed at least 8 times during the incubation and BMP was 210 

considered achieved when daily vessel overpressure of controls equalized the sample 211 

ones. The BMP tests followed the recommendations provided by Holliger et al. [27]. 212 

3. Results and discussion 213 

3.1. Feedstock characterization 214 

Chemical properties of feedstocks are gathered in Table 1 and Table 2. Considering the 215 

pH value (8.3) and the TS content (19.2%) of fresh cattle manure with wheat straw, AD 216 

microflora should have proliferated during storage. However, energy sources of raw 217 
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material were mostly structural carbohydrates. Indeed, cellulose and hemicellulose 218 

contents of cattle manure were estimated as 36.1 and 30.6% of organic matter, 219 

respectively, while WSC fraction was negligible. This means that biomass acidification 220 

during storage should be preceded by hydrolysis of polymers, as in biogas production 221 

process [29]. Since hydrolysis reactions take several weeks to occur in substantial extent 222 

under ensiling conditions [30], fermentation of sugars will occur slowly. In the 223 

meantime, hydrogen-consuming reactions may have occurred, together with proteins 224 

mineralization and subsequent NH4
+/NH3 equilibrium. Besides, it was detected a rather 225 

high VFA content in cattle manure before storage. The fact that high pH and VFA 226 

content co-existed in the raw material evidenced that cattle manure had strong basic 227 

buffer compounds. Generally speaking, the biochemical properties of cattle manure 228 

make it not suitable for ensiling, due to the absence of easily fermentable sugars and the 229 

elevated pH. 230 

A proportional increase of TS content was observed with the use of co-substrates. This 231 

was expected since additives were used as pure compounds and not in solution. Since 232 

the activity of silage bacteria is at least in part vulnerable to changes in TS [5,31,32], 233 

this may have influenced the ensiling process. In the case of formic acid addition, the 234 

pH of the feedstock was affected as well. Indeed, it decreased to 3.5, which is a 235 

considerable lower value than the ones recommended by Kalač [33] for lactate silages 236 

(4.10-4.20 for TS content of 15-20%) and by Teixeira Franco et al. [4] for anaerobic 237 

stabilization of cattle manure with wheat straw (pH value of around 5.4-5.6). 238 

Concerning raw material with glucose addition, WSC content ascended to 16.6%VS 239 

(14.8%TS) and 40.2%VS (36.5%TS) for Glucose 4% and Glucose 10% conditions, 240 

respectively. Under these conditions, the WSC contents were quite superior than the 241 
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ones found in the literature for feedstock successfully acidified during ensiling (3-242 

14%TS) [10,16,34–37]. Thus, efficient acidification should occur for cattle manure 243 

treated with a co-substrate containing fermentable sugars if a proper amount of LAB is 244 

present. 245 

Table 2 - Chemical properties of biomass over ensiling duration (%VSadded/original).  246 

Assay 
Period 

(days) 

VS 

losses 

(%) 

Chemical characteristicsa 

pH LAb AAb BAb FAb VFAb WSCb HEMc CELc LIGc 

Control 

0 - 8.3 0.0 3.7±0.0 0.0 0.0 5.5±0.1 0.0 30.6±0.5 36.1±2.3 8.3±0.5 

7 2.5±0.0 7.1 0.0 3.4±0.1 0.4±0.0 0.0 5.7±0.1 0.0 28.5±0.4 34.1±5.0 8.1±1.1 

15 5.5±0.0 7.7 0.0 2.4±0.0 0.6±0.0 0.0 5.0±0.1 0.0 28.3±1.4 31.3±1.2 8.5±0.0 

30 14.8±0.1 8.2 0.0 0.2±0.0 0.5±0.0 0.0 4.2±0.1 0.0 25.1±0.4 31.1±4.2 9.1±1.1 

120 42.0±0.2 8.4 0.2±0.0 0.0 0.0 0.0 0.2±0.0 0.0 14.6±1.0 18.7±3.3 9.2±1.3 

Formic 

acid 

0 - 3.5 0.0 1.5±0.0 0.0 8.2±0.1 10.0±0.1 0.0 32.1±0.5 32.2±3.2 7.3±0.6 

7 0.4±0.0 3.6 0.4±0.0 1.2±0.0 0.1±0.0 8.8±0.2 10.9±0.3 0.0 30.5±0.6 31.5±1.7 6.8±0.3 

15 0.6±0.0 3.9 0.5±0.0 1.2±0.1 0.0 8.6±0.4 10.5±0.5 0.0 29.5±0.4 32.0±1.3 6.9±0.2 

30 0.7±0.0 3.8 0.6±0.0 1.1±0.1 0.1±0.0 9.8±0.4 11.9±0.4 0.0 29.1±1.5 32.7±8.8 6.2±1.6 

120 13.4±0.1 6.9 0.1±0.0 5.6±0.1 1.5±0.0 0.0 9.1±0.1 0.0 23.2±1.4 29.6±2.4 7.7±0.2 

Glucose 

4% 

0 - 7.9 0.0 1.8±0.1 0.0 0.0 2.6±0.1 16.6±0.5 27.3±1.1 30.9±4.6 10.5±1.1 

7 1.9±0.1 4.0 13.5±0.4 2.0±0.1 0.5±0.0 0.0 17.0±0.6 4.1±0.1 27.1±1.5 27.8±1.7 6.2±0.1 

15 2.5±0.1 4.1 15.2±0.4 2.0±0.1 0.7±0.0 0.0 18.9±0.5 2.0±0.1 24.8±1.3 26.2±1.9 5.0±0.2 

30 3.4±0.1 4.1 10.0±0.2 2.1±0.0 1.8±0.0 0.0 15.2±0.2 0.0 26.1±1.2 27.9±1.6 5.4±0.1 

120 9.0±0.3 5.4 0.0 2.2±0.1 3.2±0.1 0.0 10.9±0.3 0.0 25.6±0.3 29.6±0.5 6.1±0.1 

Glucose 

10% 

0 - 7.9 0.0 1.3±0.2 0.0 0.0 1.9±0.3 40.2±4.2 21.9±0.6 23.9±2.7 4.6±0.4 

7 1.5±0.2 4.0 11.2±0.2 1.8±0.0 0.3±0.0 0.0 14.1±0.2 34.0±0.5 18.2±0.6 19.4±1.5 4.0±0.2 

15 2.3±0.3 4.0 14.5±0.2 1.8±0.0 0.4±0.0 0.0 17.9±0.3 30.1±0.5 17.3±0.4 19.9±1.1 3.6±0.2 

30 2.7±0.3 3.8 15.1±0.1 2.0±0.0 0.6±0.0 0.0 18.2±0.8 24.2±0.2 17.4±0.8 19.2±0.8 3.5±0.0 

120 4.6±0.6 3.7 19.5±0.6 3.9±0.1 1.0±0.0 0.0 25.9±1.8 18.5±0.6 15.5±0.3 18.2±1.2 3.5±0.2 

a LA stands for Lactic Acid, AA for Acetic Acid, BA for Butyric Acid, FA for Formic Acid, HEM for Hemicellulose, CEL for 
Cellulose and, LIG for Lignin; b results based on %VSadded; 

c results based on %VSoriginal  

3.2. Effects of storage method on biomass preservation 247 

3.2.1. Fermentation profiles 248 

Anaerobic storage of cattle manure with wheat straw addition only (Control) did not 249 

promote a biomass acidification in the long-term, Table 2. In the first 7 days of storage, 250 

pH of control decreased to 7.1. Then, it constantly increased until the end of the storage 251 

period, reaching a value of 8.4 after 4 months. This can be explained by the evolution of 252 

VFA concentrations along ensiling duration. Indeed, there was a slight VFA 253 

accumulation in cattle manure during the first days of storage, mainly due to the short 254 
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production of butyric acid. In contrast, the acetate initially present in fresh cattle manure 255 

was almost totally lost during the first month of storage. This evidences that the 256 

methanogenic activity was already present at the beginning of storage and became 257 

predominant between 7 and 15 days of storage, which impeded biomass stabilization. 258 

This was confirmed by one-off composition measures of the gas produced during these 259 

experiments (results not shown): CH4/CO2 ratio was already 0.26 after 1 day and 0.61 260 

after 10 days of storage. Furthermore, since cattle manure was successfully ensiled with 261 

straw in our previous study [4], this suggested that methanogens concentration may vary 262 

from case to case. In fact, it is known that bacterial populations can be influenced by the 263 

characteristics of manure [8] which, according to Marañón et al. [9], may depend on the 264 

type of cattle, animal’s diet, as well as, on the time of the year. In any case, silage 265 

stabilization was not achieved for control assay and only trace concentrations of organic 266 

acids were detected after 4 months of storage.  267 

In addition, structural carbohydrates content regularly decreased for control silage. After 268 

4 months of storage, hemicellulose and cellulose concentrations were 14.6 and 18.7% of 269 

original VS, respectively. This represented a degradation of around 50% of the total 270 

original hemicellulosic and cellulosic compounds. Since no accumulation of WSC nor 271 

VFA was recorded during the same period, major organic and energy losses have 272 

occurred. Regarding organic matter, losses ascend to 14.8% after 30 days and 42.0% at 273 

the end of the storage. An average of 0.35% of organic matter was lost per day during 274 

this period. 275 

Co-ensiling with formic acid improved the conservation of cattle manure, especially for 276 

short periods of storage. During the first 30 days, formic acid was fully conserved and 277 

pH persisted below 4.0. In parallel, VFA content increased, which was supposed to be 278 
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partially caused by lactic acid production. This should be a result of acid hydrolysis of 279 

hemicelluloses by the existing organic acids in silage [5,38]. As a matter of fact, 280 

hemicellulose content of formic acid silage decreased to 29.1%VSoriginal after 30 days, 281 

while cellulose fraction was stable. However, between 30 and 120 days of ensiling the 282 

fermentation profiles reversed and both formic and lactic acids were consumed. At the 283 

same time, other organic acids were produced, notably acetate and butyrate. 284 

Consequently, VFA content decreased from 11.9%VSadded after 30 days to 9.1%VSadded 285 

at the end of storage. Due to that and to the fact that the VFA produced were weaker 286 

acids than formate and lactate, the pH value increased to 6.9 after 4 months of ensiling. 287 

One hypothesis that can be suggested for the fermentation shift is that the low pH of 288 

silage was only delaying the growth of methanogens. This would explain the slow pH 289 

increase in the first month of storage. Then, as pH increased, microbial growth became 290 

important and formic acid was further degraded into biogas, which also had an impact 291 

on the pH. Consequently, lactic acid must have been converted, e.g., into butyric acid 292 

by clostridial fermentation, which is a typical mechanism in poor quality silage [5]. 293 

Furthermore, the increased pH should have allowed the enzymatic hydrolysis of 294 

structural polymers for prolonged silage periods [38]; and the subsequent fermentation 295 

into VFA. This is corroborated by the accentuated decline of structural carbohydrates 296 

that was verified in the last 90 days of storage. Indeed, after 4 months of ensiling, 297 

hemicellulose content decreased to 23.2% of original VS. Finally, the two different 298 

phases of fermentation had an impact on the conservation of organic matter. After 1 299 

month, VS losses were lower than 1%, which ascended to 13.4% at the end of the 300 

storage. 301 
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Co-ensiling of cattle manure with glucose underwent a strong acidification in the early 302 

days of storage. Indeed, pH value of silage was 4.0 for both Glucose 4% and Glucose 303 

10% conditions after 7 days, which was due to the conversion of WSC into lactic acid 304 

(Table 2). This shows that the concentration of LAB in the original raw material was 305 

significant. Consequently, the lack of easily fermentable sugars probably blocked the 306 

conservation of cattle manure through the ensiling process of control trials. Silage 307 

acidification slowed down LAB activity but it was not completely stopped. For this 308 

reason, WSC continued to be consumed during the remaining ensiling period. After 15 309 

days of storage, lactic acid concentration was around 15%VSadded for both co-silages 310 

with glucose addition. After this period, two distinct fermentation pathways were 311 

observed for the experiments with glucose. On the one hand, for Glucose 10% 312 

condition, WSC was in large excess and lactic fermentation persisted until the end of 313 

the storage. As a result, after 4 months, pH value of Glucose 10% silage was 3.7 and its 314 

lactate concentration rose to nearly 20%VSadded. On the other hand, WSC of Glucose 315 

4% assay was extinguished between 15 and 30 days of ensiling. Coupled to that, there 316 

was a degradation of lactic acid and a significant increase of butyric acid content during 317 

this period. This suggests that the acid pH value (4.1) was unable to avoid clostridial 318 

activity since there was no more available substrate for lactate production. This 319 

clostridial proliferation led to a secondary fermentation that was mainly based on lactic 320 

acid consumption for the production of butyrate, carbon dioxide and hydrogen [5]. 321 

Between 30 and 120 days, clostridial fermentation led to full degradation of lactic acid 322 

on Glucose 4% silage. Besides butyric acid, other VFA were found, such as caproic and 323 

valeric acids (results not shown). Moreover, after 4 months of storage, the pH value of 324 

Glucose 4% increased to 5.4. This is explained by the fact that butyrate is a weaker acid 325 
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that lactate and because this reactional mechanism involves the consumption of two 326 

moles of lactic acid for the production of one mole of butyric acid. 327 

Additionally, co-ensiling of cattle manure with glucose enhanced the preservation of 328 

hemicellulosic and cellulosic compounds. Regarding Glucose 4% silage, degradation of 329 

structural carbohydrates was not significant. For Glucose 10%, around 27% of the sum 330 

of initial hemicellulose and cellulose fractions were missing. This degradation should be 331 

linked with an acid hydrolysis by the VFA produced during ensiling, as already 332 

mentioned by other authors [5,38]. This was not observed in the condition Glucose 4%, 333 

since the pH was higher. Nevertheless, the degradation of the structural carbohydrates 334 

for Glucose 10% did not led to energy losses since biomass was extremely well 335 

conserved under acidic conditions. Therefore the hydrolysis products were likely 336 

conserved either under the form of non-structural oligomers, simple sugars or organic 337 

acids. Consequently, VS losses were limited to 9.0% and 4.6% after 4 months for 338 

Glucose 4% and Glucose 10% assays, respectively. The poor conservation of organic 339 

matter for Glucose 4% silage should be connected to the secondary fermentation. 340 

3.2.2. Chemical oxygen demand balance 341 

Effects of ensiling and co-substrates on the COD of crude material and its water-soluble 342 

and particulate fractions are exposed in Figure 3. The evolution along ensiling time is 343 

related to VSoriginal in order to account for biomass weight loss in the COD balance. 344 

The most significant results were obtained for the ensiling of cattle manure without 345 

additives. Before storage, around 93% of the total COD was in the particulate phase. 346 

This is linked to earlier statements, evidencing that in cattle manure the majority of the 347 

energy sources were hardly bio-accessible. Second, there was a clear decline of 348 
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particulate COD during the experiments, which is explained by the loss of structural 349 

carbohydrates. Furthermore, no accumulation of their degradation products in the water-350 

soluble COD was observed. Thus, global COD in the control (without additives) 351 

decreased with ensiling time, which surely led to large methane potential losses. 352 

The use of co-substrates for the ensiling of cattle manure improved the conservation of 353 

COD. For this reason, the fluctuations of its composition along duration were minimal, 354 

which made it difficult to establish long-term trends in co-ensiling. Regarding formic 355 

acid assays, despite the important VS losses recorded for prolonged durations, COD of 356 

crude material was stable until 120 days of storage. This can be in part explained by the 357 

fact that formic acid has low COD content (0.35 gO2/g), so that its degradation did not 358 

cause significant COD decrease. Furthermore, there was an important solubilization of 359 

particulate COD in the last 3 months of ensiling. This should correspond to the 360 

hydrolysis of structural carbohydrates and subsequent conversion into VFA, as it was 361 

seen for the fermentation profiles (subsection 3.2.1). In addition to the solubilization 362 

effect and the potential kinetic gain in AD conditions, this may have caused an 363 

amplification of carbohydrates accessibility. 364 

(A) (B) 
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(C) (D) 

  

Figure 3 – Evolution of COD related to VSoriginal along ensiling period for: (A) Control; 365 
(B) Formic acid; (C) Glucose 4%; (D) Glucose 10%. Feedstocks were not analyzed. 366 

Error bars represent the standard deviation of triplicates. 367 

Ensiling of cattle manure with glucose addition had little impact on COD conservation 368 

(Figure 3). For Glucose 4%, both particulate and water-soluble fractions of COD were 369 

stable until the end of the 4 months. This was expected for the particulate phase, since 370 

fibers content did not suffer any significant degradation during storage. However, a 371 

degradation of soluble COD should have been recorded between 30 and 120 days of 372 

storage, since clostridial fermentation led to hydrogen gas formation. The reasons for 373 

this inconsistency remain unclear. Concerning Glucose 10% condition, there was a 374 
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persistent solubilization of particulate COD along the experiment. This can be attributed 375 

to the acid hydrolysis of hemicelluloses by the VFA produced during ensiling. 376 

3.2.3. Total Kjeldahl nitrogen balance 377 

Anaerobic storage of cattle manure with straw (Control) led to constant TKN loss 378 

during the experiments, Figure 4. This can be explained through the analysis of TKN 379 

fractions along the storage period. On the one hand, there was a decrease of organic 380 

nitrogen in both particulate and water-soluble phases after 4 months of about 12% and 381 

39%, respectively. This loss represented 19% of the total organic nitrogen. This 382 

suggests that nitrogen mineralization occurred through two successive mechanisms 383 

typically found in anaerobic conditions [5,29]: hydrolysis of proteins into amino acids 384 

and subsequent fermentation into ammonia nitrogen. Therefore, NH3-N concentration 385 

should increase under such conditions. However, for control assays ammonia content of 386 

cattle manure declined with storage time. This can be explained by the fact that pH 387 

interruptedly increased to values near the pKa (9.25) of NH4
+/NH3. Therefore, although 388 

ammonia was produced, its chemical equilibrium led to ammonia losses through gas 389 

emissions. After 4 months, around 23% of original TKN was lost for control 390 

experiment. If we hypothesize that the TKN was lost by ammonia emissions, around 391 

8.2LNH3/kgVSoriginal were expected to be released into the atmosphere during the 4 392 

months of control experiments. 393 

Regarding the formic acid tests, 11% of particulate TKN content was degraded in the 4 394 

months of storage. This may be linked with acid hydrolysis in the first 30 days; and due 395 

to the proteolytic clostridial activity (for higher pH values) in the last 3 months of 396 

ensiling. Nevertheless, since pH was always below 7.0, the mineralized nitrogen was 397 
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partially conserved as water-soluble ammonia. At the end of formic acid assays, less 398 

than 10% of original TKN was lost into the atmosphere. 399 

(A) (B) 

  

(C)  

 

(D) 

 

Figure 4 – Evolution of TKN related to VSoriginal along ensiling period for: (A) Control; 400 
(B) Formic acid; (C) Glucose 4%; (D) Glucose 10%. Feedstocks were not analyzed. 401 
Error bars represent the standard deviation of triplicates. 402 

For both conditions of cattle manure with glucose addition, no decrease of TKN was 403 

recorded until 4 months of ensiling. Yet, as for fermentation profiles, TKN composition 404 

of the two glucose experiments evolved differently during storage. In the case of 405 
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Glucose 10%, there was no degradation of particular TKN and NH3-N was constant. 406 

This shows that silage was extremely stable with glucose addition and that no secondary 407 

fermentation occurred. For Glucose 4%, the same trend was observed in the early days 408 

of ensiling. However, in the last 3 months there was a decrease of around 18% 409 

concerning the particulate TKN and an increase of around 39% for the soluble TKN. 410 

This indicates that proliferation of proteolytic clostridia occurred for prolonged storage 411 

duration. Hence, the amount of co-substrate used in Glucose 4% was not enough to 412 

fully stabilize long-term silage of cattle manure with straw. 413 

3.3. Effects of storage method on methane potential 414 

3.3.1. Initial conditions 415 

Before storage BMP was 229±8 LSTP/kgVSadded for fresh cattle manure, 250±8 416 

LSTP/kgVSadded for cattle manure + Formic acid, 239±26 LSTP/kgVSadded for cattle 417 

manure + Glucose 4% and 276±8 LSTP/kgVSadded for cattle manure + Glucose 10%. 418 

Formic acid and glucose had a clear impact on the BMP of the feedstock. The effect of 419 

Glucose 4% addition was not significant (within the BMP accuracy limits). Considering 420 

the theoretical BMP of glucose (373 LSTP/kgVSadded) and the amount of co-substrate 421 

used, a BMP of 287 LSTP/kgVSadded was expected for Glucose 10% before storage. 422 

Furthermore, glucose contribution to the total BMP should be around 52% in this case. 423 

This evidences that glucose added was fully degradable under anaerobic conditions and 424 

that it was responsible for the initial BMP value increase of Glucose 10% mixture. In 425 

opposite, the additional methane production of Formic acid feedstock cannot be 426 

attributed to the co-substrate, due to its low BMP value (122 LSTP/kgVSadded). In fact, 427 

the theoretical BMP of this feedstock mixture should be around 221 LSTP/kgVSadded with 428 

a 5% contribution of formic acid for these value. Therefore, it can be pointed out an 429 
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improvement of the biochemical accessibility of cattle manure after being treated with 430 

formic acid (before ensiling). This might be caused by an increase of accessible surface 431 

area of biomass, hemicellulose removal and alteration of lignin structure, which are 432 

typical features of dilute acid pretreatments for biomass [39]. However, it is worth 433 

mentioning that these treatments are performed at high temperatures, which was not the 434 

case in this study. 435 

3.3.2. Evolution of the BMP during storage 436 

Control trials showed BMP values of 128-229 LSTP/kgVSadded and 75-229 437 

LSTP/kgVSoriginal during storage, Figure 5. In the first 7 days of control assays, both 438 

methane potential based on VSadded and VSoriginal were stable. This evidences that neither 439 

the energy content nor the biochemical accessibility of cattle manure with straw 440 

changed during short-term ensiling, which should be linked with the small fermentation 441 

activity and pH decrease that occurred in this period. However, for longer storage 442 

durations, the BMP of control was significantly damaged. Indeed, after 30 and 120 days 443 

of ensiling, 24% and 67% of original BMP was lost, respectively. This obviously was a 444 

consequence of the extensive degradation of structural carbohydrates (without any VFA 445 

accumulation), due to the high pH levels. 446 

Co-ensiling with formic acid limited the harmful impact of storage on the methane 447 

potential of the raw material. In this case, BMP values were 192-250 LSTP/kgVSadded and 448 

189-250 LSTP/kgVSoriginal during the 4 months. The major variation of methane potential 449 

for formic acid silage occurred in the first 7 days of storage. In this period, around 21% 450 

of both BMP related on VSadded and VSoriginal was lost. It is important to mention that the 451 

energy conservation rates of co-ensiling conditions are related to the initial BMP of the 452 

mixture manure/additive and not only to fresh cattle manure. As previously discussed 453 
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for formic acid assays, organic matter losses were negligible and no noticeable 454 

modification of chemical characteristics was observed during the first week. Therefore, 455 

this indicates that formic acid addition had an impact on the biodegradability of the 456 

biomass in the first days of storage. After that, BMP based on VSoriginal remained 457 

constant and global energy losses were limited to 25% at the end of the 4 months. Yet, 458 

BMP related to VSadded increased by 14% in the last 3 months of storage. Two 459 

conclusions can be deduced from these results. First, there was an increment of 460 

biochemical accessibility, which can be attributed to the production of VFA from cell 461 

wall constituents. In fact, structural carbohydrates are not fully biodegradable in 462 

mesophilic AD conditions [40]. Therefore, their hydrolysis and fermentation during 463 

ensiling may explain the BMP increase in a VSadded basis. Second, this gain of 464 

accessibility countered the formic acid loss in the last 90 days, so that BMP related to 465 

VSoriginal persisted unaltered until the end of the storage. 466 

(A) (B) 

  

Figure 5 - BMP evolution of crude material over storage duration. (A): methane 467 
potential based on VSadded; (B): methane potential based on VSoriginal, therefore 468 
considering storage losses. BMP for 15 days of ensiling was not determined. Error bars 469 

represent the standard deviation of triplicates. 470 
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Higher stability of methane potential was achieved through the co-ensiling of cattle 471 

manure with glucose. Indeed, Glucose 4% silage presented BMP values of 228-241 472 

LSTP/kgVSadded and 208-238 LSTP/kgVSoriginal along the 4 months of storage. In parallel, 473 

for Glucose 10% condition, BMP values were 276-302 LSTP/kgVSadded and 276-288 474 

LSTP/kgVSoriginal. During the first month of storage, both experiments with glucose had 475 

constant methane potential. These results are in line with the data from the fermentation 476 

profiles and illustrate the efficiency of lactate production on the energy conservation 477 

during ensiling. Concerning Glucose 10% assay, this trend persisted and no loss of 478 

BMP was observed until the end of the 4 months. An eventual positive impact on the 479 

methane potential could be seen (probably due to the hemicellulose hydrolysis and 480 

fermentation), but it was not significant within the precision limits. In contrast, in the 481 

remaining 90 days of ensiling, BMP of Glucose 4% progressed differently. For this 482 

condition, 13% of the methane potential related to VSoriginal was lost after 4 months. 483 

This BMP damage can be explained by the secondary fermentation that led to lactic acid 484 

degradation and nitrogen mineralization. 485 

4. Conclusions 486 

Ensiling of cattle manure with straw at 19%TS led to extensive methane potential 487 

losses. The use of co-substrates enhanced biomass and energy conservation during 488 

ensiling. In particular, co-ensiling with glucose (100 g/kg of feedstock) encouraged an 489 

extensive lactate production. This allowed biomass stabilization, suppressed ammonia 490 

emissions and led to full preservation of methane potential after 4 months. Therefore, 491 

co-ensiling with a high easily fermentable sugar content substrate appears be the most 492 

resourceful method to optimize cattle manure preservation before biogas production. At 493 
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full scale application this may include a starch-rich residue, or any other sugar-rich agro 494 

product. 495 
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