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Fast Hyperspectral Unmixing in Presence

of Nonlinearity or Mismodeling Effects
Abderrahim Halimi, Member, IEEE, José M. Bioucas-Dias, Senior Member, IEEE,

Nicolas Dobigeon, Senior Member, IEEE, Gerald S. Buller, and Stephen McLaughlin, Fellow, IEEE

Abstract—This paper presents two novel hyperspectral mixture
models and associated unmixing algorithms. The two models
assume a linear mixing model corrupted by an additive term
whose expression can be adapted to account for multiple scattering
nonlinearities (NL), or mismodeling effects (ME). The NL model
generalizes bilinear models by taking into account higher order
interaction terms. The ME model accounts for different effects,
such as endmember variability or the presence of outliers. The
abundance and residual parameters of these models are estimated
by considering a convex formulation suitable for fast estimation
algorithms. This formulation accounts for constraints, such as the
sum-to-one and nonnegativity of the abundances, the nonnegativ-
ity of the nonlinearity coefficients, the spectral smoothness of the
ME terms and the spatial sparseness of the residuals. The resulting
convex problem is solved using the alternating direction method of
multipliers whose convergence is ensured theoretically. The pro-
posed mixture models and their unmixing algorithms are validated
on both synthetic and real images showing competitive results
regarding the quality of the inference and the computational
complexity when compared to the state-of-the-art algorithms.

Index Terms—Hyperspectral imagery, collaborative sparse re-
gression, ADMM, nonlinear unmixing, robust unmixing, convex
optimization.

I. INTRODUCTION

H
YPERSPECTRAL imaging is a remote sensing technol-

ogy that collects three dimensional data cubes composed

of 2D spatial images acquired in numerous contiguous spectral

bands. Assuming that each pixel spectrum is a mixture of several

pure materials (endmembers), spectral unmixing consists of re-

covering the spectral signatures (endmembers) of the materials

A. Halimi, G. S. Buller, and S. McLaughlin are with the School of Engineering
and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K.
(e-mail: a.halimi@hw.ac.uk; g.s.buller@hw.ac.uk; s.mclaughlin@hw.ac.uk).

J. M. Bioucas-Dias is with the Instituto de Telecomunicações and Instituto
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present in the scene, and quantifying their proportions within

each hyperspectral image pixel [1]. More precisely, unmixing

hyperspectral images consists of three stages: (i) determining the

number of endmembers and possibly projecting the data onto a

subspace of reduced dimension [2]–[4], (ii) identifying the end-

members using an endmember extraction algorithm (EEA) such

as vertex component analysis (VCA) [5], and N-FINDR [6] and

(iii) estimating their abundances [7]–[9]. Akin to [7], [9]–[11],

this paper considers a supervised unmixing scenario which aims

at estimating the abundances while assuming that the two first

unmixing steps have been successfully implemented.

As a result of its simplicity, the linear mixing model (LMM)

is used by many of the hyperspectral unmixing algorithms pre-

sented in the literature [7], [9]. This is generally justified when

considering flat scenes without component interactions, and a

fixed endmember spectra for all the pixels. However, an inherent

limitation of the LMM occurs in presence of volumetric scat-

tering, terrain relief, or intimate mixtures of materials which

require the definition of new sophisticated models, to take these

effects into account. Nonlinear mixture models are an alternative

to better account for those effects [12], [13] and we distinguish

between two main families: the first is signal processing based

and seeks to construct flexible models that can represent a wide

range of nonlinearities. The second is physical based models

that include the intimate mixture models [14] and those account-

ing for bilinear interactions [15]–[20]. This paper considers a

physical based nonlinearity which generalizes the bilinear for-

mulation in [10], [21] to account for multiple scattering effects.

A second inherent limitation of the LMM appears when the

endmember spectra vary spectrally and spatially causing what

is known as endmember variability (EV) [22]–[27]. In this case,

and under a supervised SU scenario, the endmember fluctuation

can not be captured by traditional EEA algorithms which affect

the LMM by the presence of an additional spectrally smooth

residual component [21]. A third LMM limitation is related to

the presence of sparse outliers, e.g. due to the presence of im-

pulse noise, horizontal or vertical line stripes, dead lines, and

others types of noise [28], [29]. The latter two LMM limitations

can be solved separately by considering specialized algorithms

that deal with EV [30]–[32] or outliers [28], [29]. In this paper,

we adopt the same strategy as in [21], [33] and propose a ro-

bust algorithm that encompasses the first two effects described

above.

The first contribution of this paper is the introduction of

two mixture models to deal with NL and ME. The models

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/



proposed are based on the residual component principle [34]

and are closely relate to the RCA-NL and RCA-ME models

introduced in [21]. More precisely, the proposed NL gener-

alizes RCA-NL by accounting for multiple scattering effects.

Indeed, the residual term is assumed to be a linear combination

of high order interaction spectra. Due to the high number of

interactions, the non-negative nonlinearity coefficients are as-

sumed sparse so that only a few interactions are active for each

pixel. The resulting formulation is then general, and covers many

NL models [15]–[20], [35]. In a similar fashion to RCA-ME, the

proposed ME model assumes a spectrally smooth residual term.

However, in contrast with RCA-ME that adopts a statistical ap-

proach to account for this smooth property, the proposed model

assumes the residual term to be a sparse linear combination

over a dictionary (such as the discrete cosine transform (DCT),

or the spline decomposition). For both models, the corrupted

pixels are assumed spatially sparse meaning that only a small

number of nonlinear or outlier pixels are present, as previously

suggested in [35], [36] for NL and in [28], [29] for outliers.

This effect has been introduced by considering the well known

collaborative sparse regression strategy [28], [36]–[39] since it

promotes group-sparsity over the residual terms while using the

information of the residuals in all the pixels. Note that the first

motivation for these new reformulations is that both models as-

sume a residual term that is written as a linear combination of

sparse coefficients, which is suitable for the development of a

joint formulation to achieve the unmixing strategy. The second

motivation is related to the unmixing problem that is signifi-

cantly simplified by considering separable variables (between

the abundances and the residual coefficients) as well as a linear

expression for both the LMM term and the residual term.

The second contribution of this paper is the introduction of

a convex formulation for unmixing the proposed observation

models. The convexity is obtained thanks to the linearity of

the observation models with respect to the unknown parame-

ters, as well as the considered regularization terms. Indeed, the

formulation accounts for the known physical constraints on the

estimated parameters such as the sum-to-one and non-negativity

of the abundances, the non-negativity of the nonlinearity coef-

ficients, the spectral smoothness of the ME terms and the spa-

tial sparseness of the residuals. The resulting convex problem

is solved using the alternating direction method of multipliers

(ADMM) whose convergence is theoretically ensured. More

precisely, we propose two algorithms denoted as NUSAL-K
for nonlinear unmixing by variable splitting and augmented La-

grangian with orderK, and RUSAL for robust unmixing by vari-

able splitting and augmented Lagrangian. Note that the ADMM

algorithms are well adapted for large scale problems, i.e., with a

large number of parameters to be estimated [40], [41]. Moreover,

this method offers good performance at a reduced computational

cost as already shown in many hyperspectral unmixing works

[9], [38], [39]. The proposed mixture models and estimation

algorithms are validated using synthetic and real hyperspectral

images. The results obtained are very promising and show the

potential of the proposed mixture models and associated infer-

ence algorithms with respect to the estimation quality and the

computational cost.

The paper is structured as follows. Section II presents the

proposed NL and ME mixture models considered in this study.

Section III introduces the convex unmixing formulations and

the ADMM-based optimization algorithms associated with the

two mixture models. Section IV analyzes the performance of

the proposed algorithms when applied to synthetic images with

known ground truth. Results on real hyperspectral images are

presented in Section V and conclusions and future work are

reported in Section VI.

II. MIXTURE MODELS

As a result of its simplicity, the LMM is widely used in hyper-

spectral images. However, the LMM has some limitations in the

presence of nonlinearity or outlier effects. This paper deals with

these issues by considering the observation model proposed in

[21], itself inspired from the residual component analysis model

described in [34]. This model introduces a general formulation

that is expressed as the sum of a linear model and a residual term

that accounts for the remaining effects. The general observation

model for the (L× 1) pixel spectrum yn , whereL is the number

of spectral bands, is given by

yn =

R
∑

r=1

ar,nmr + φn (M ,an ,xn ) + en

= Man + φn (M ,an ,xn ) + en , (1)

where an = (a1,n , · · · , aR,n )T is an (R× 1) vector of abun-

dances associated with the nth pixel, xn = (x1,n , · · · , xD,n )T

is a (D × 1) vector of residual coefficients associated with the

nth pixel,R (resp.D) is the number of endmembers (resp. resid-

ual coefficients), en ∼ N (0,Σ) is a centered Gaussian noise

and φn is a residual term that might depends on the endmem-

bers, the abundances or residual coefficients to account for the

additional mismodeling effect. In model (1), the endmembers

matrix M is fixed (extracted using an EEA) and endmember

variability can be accounted for by the pixel dependent residual

term φn . Moreover, the paper deals with the supervised case in

which we assume the endmembers to be known and we only

estimate the abundances and the residual terms. Due to physi-

cal constraints, the abundance vector an satisfies the following

abundance non-negativity (ANC) and abundance sum-to-one

(ASC) constraints

ar,n ≥ 0,∀r ∈ {1, . . . , R} and

R
∑

r=1

ar,n = 1. (2)

The main motivation of this paper is to deal with some lim-

itations of the RCA models and CDA algorithms introduced

in [21], i.e., (i) the non-convexity of the resulting NL and ME

problems, (ii) the consideration of only second order NL inter-

action terms and (iii) the convergence limitation of the CDA

algorithms (convergence to a local minimum). Eq. (1) shows

a general model that can be adapted to account for different

physical phenomena. The next sections present in details the

considered model variants that will account for NL and ME.



A. Effects of Nonlinearity (NL)

Nonlinear mixing models provide a powerful tool to deal with

the inherent limitations of the LMM. Many nonlinear models

have been introduced in the literature and we can divide them

into two categories: physical based models (including bilin-

ear and intimate mixture models) and signal processing models

(such as the PPNMM [15], [42]). This paper considers a phys-

ical based model to deal with the multiple scattering effects.

More precisely, the model considered accounts for higher order

interactions between the endmembers and reduces to [10], [21]

when only the bilinear second order interactions are considered.

Note that bilinear models assume that the effect of the inter-

action terms decreases as the order increases, as suggested in

[16], [18], [19]. However, in this paper, we include higher order

interaction terms in the proposed model/algorithm to highlight

their benefit as recently shown in [43]–[45]. The proposed NL

model considering the Kth order of interactions is given by

yn = Man + φNL-K
n (M ,γn ) + en (3)

where the residual component is

φNL-K
n (M ,γn ) = Q(K )(M)γn , (4)

with γn =
(

γ
(1)
n , · · · , γ(DK )

n

)T

,∀n is the (DK × 1) vector

of non-negative coefficients (i.e., γ
(d)
n ≥ 0,∀n, d), Q(K ) is the

(L×DK ) matrix gathering the interaction spectra of the form

mi ⊙mj ⊙ · · · ⊙ml , ⊙ denotes the Hadamard (term-wise)

product, and DK is the number of coefficients associated with

the interaction terms that have an order lower or equal to K.

More details regarding the construction of Q(K ) are provided

in Appendix A. For instance, considering only second order in-

teraction terms (i.e., K = 2) leads to D2 = R(R+1)
2 , γn (2) =

(

γ
(1,2)
n , · · · , γ(R−1,R)

n , γ
(1,1)
n , · · · , γ(R,R)

n

)T

,∀n, Q(2)(M) =
(√

2m12 , · · · ,
√

2mR−1,R ,m11 , · · · ,mRR

)

, and a residual

term similar to [10] as follows

φNL-2
n (M ,γn ) = Q(2)(M)γn =

R
∑

r=1

γ(r,r)
n mr,r

+
R−1
∑

r=1

R
∑

r ′=r+1

γ(r,r ′)
n

√
2mr,r ′ (5)

where mi,j = mi ⊙mj , and the interaction terms are weighted

by the coefficient
√

2 obtained by comparison with a homoge-

neous polynomial kernel of the 2nd degree (see Appendix A for

more details regarding these coefficients). In what follows, and

for brevity, we drop the order index (K) for general statements

(related to all interaction orders) and only include it when deal-

ing with specific orders. The model proposed in (3) reduces to

the LMM for γn = 0,∀n and has many links to state-of-the-art

models. Indeed, model (3) withK = 2 is similar to [10] and has

a close relation to the RCA model [35] (as shown in [10]). More-

over, it generalizes the GBM model [16], [17] by accounting for

self-interaction between the endmembers, and also generalizes

the PPNMM [15] by considering different weights for the bilin-

ear terms. Overall, model (3) is of a similar polynomial form as

the bilinear models (RCA [21], GBM [16], PPNMM [15], Nasci-

mento [18], Fan [19], and Meganem [20] models) with the main

difference due to the introduction of higher order interaction

terms, and the non-negativity and sum-to-one constraints asso-

ciated with each model. In contrast with the model described

in [43], which accounts for all the interactions by using only

one parameter, the model (3) includes a different coefficient for

each interaction term, which enables analysis of the interaction

between any specific physical components (i.e., availability of

interaction maps).

Note that the nonlinear behavior generally affects some pixels

of the image as already exploited in [35], [36], which suggest a

spatial sparsity of the nonlinear pixels. Moreover, it makes sense

to assume that the elements of the nonlinear vector γn will not

be active at the same time, meaning that the vector is sparse.

This can be explained since the lowest order of interactions

have often a higher effect [16], [18], [19] and all the interactions

between endmembers are not likely to be active at the same

time. These sparsity properties are of great importance and will

be exploited when designing the unmixing algorithm associated

with model (3) in Section III.

B. Mismodeling Effects (ME) or Outliers

In recent years, there has been considerable interest in ro-

bust hyperspectral unmixing to enable adaptation of the simple

LMM to realistic scenes which often present outliers or other

unknown effects [46]. This goal can be achieved using different

strategies such as adapting the optimization cost function [47] or

changing the observation model by introducing a residual term

that accounts for the mismodeling effects [21], [33], [36]. The

latter strategy is adopted in this paper by considering spectrally

smooth residuals as for the ME model introduced in [21]. More

precisely, the model is

yn = Man + φME
n (bn ) + en , (6)

where the residual component is

φME
n (bn ) = F⊤bn , (7)

with F is a D × L matrix gathering the first D rows of the

DCT, bn is a vector of DCT coefficients and φME
n is a smooth

spectral function. In this paper, the smooth property of φME
n is

obtained by imposing sparsity on the elements of each vector

bn ,∀n. Model (6) reduces to the LMM for bn = 0L ,∀n. More-

over, the residual terms
{

φME
1 , · · · ,φME

N

}

are assumed to be

spatially sparse to approximate sparse nonlinear effects, end-

member variability effects or other mismodeling effects such

as outliers. In the following, we highlight the link between

model (6) and each of these phenomena. Consider first the NL

model (3) with γn = γ
(d)
n = γ

(d ′)
n ,∀d 6= d′. In this special case,

the nonlinear term reduces to φNL
n (M) = γn

∑D
d=1 qd , where

qd represents the dth column of Q. Thus, as a result of the

smooth spectral property of the interaction spectra qd , the non-

linear term φNL
n can be approximated by the term φME

n . This

means that model (6) links to the NL model (3) for this special

case. Second, it has been shown in [21], [48] that the EV effect

can be approximated by assuming pixel dependent endmembers



Fig. 1. Graphical illustration of the performance of the regularization terms. Active members of the matrix X are represented in black, and non-active members
are shown in white. The active blocks when considering the ℓ1 + ℓ21 norms are shown in gray. (left) ℓ1 norm, (middle) ℓ21 norm, and (right) the considered
ℓ1 + ℓ21 norms.

sr,n = mr,n + kr,n , where kr,n is a spectral vector (assumed

smooth in [21]). This model reduces to the proposed model (6)

when the same variability affects the different endmembers (i.e.,

kr,n = kr ′,n ,∀r 6= r′). This provides an intuitive interpretation

of the ME model in term of EV. Third, spatially sparse outliers

can be present in hyperspectral images as shown in [28], [29],

[36], and can also be approximated using φME
n . The latter differs

from these works by accounting for the smooth spectral behav-

ior of the residuals as in [21]. This illustrates how the model

described by (6) can be used to analyze hyperspectral images

with a combination of different effects such as NL, EV and/or

outliers. Note finally that the ME model estimates smooth resid-

ual spectra without any additional information regarding their

origins which can be due to physical effects (such as NL, EV),

data corruptions or other outliers. The next section introduces

the proposed estimation algorithms associated with these NL

and ME models.

III. PROPOSED UNMIXING ALGORITHMS: NUSAL-K,

AND RUSAL

This section introduces the unmixing algorithms used to

estimate the abundances and the residual coefficients of the

proposed models. To this end, we adopt an optimization ap-

proach that minimizes a regularized data fidelity cost func-

tion. More precisely, considering an independent and identi-

cally distributed (i.i.d.) Gaussian noise (Σ proportional to the

identity matrix) in model (1) leads to the following negative

log-likelihood (referred to as data fidelity term in what follows,

and defined up to a multiplicative constant which is the noise

variance)

LP (Z) =
1

2
||Y − [M ,P ]Z||2F (8)

where Y = [y1 , · · · ,yN ], N is the total number of pixels,

Z =
[

A⊤,X⊤]⊤
is the (R+D)×N matrix gathering the

(R×N) abundance matrix A and the (D ×N) residual co-

efficients X and ||Y ||F =
√

trace
(

Y Y ⊤)

denotes the Frobe-

nius norm. Note that P = Q and x = γ (resp. P = F⊤ and

x = b) when considering the NL model (resp. the ME model).

Estimating the abundances and the residual coefficients is an

ill-posed inverse problem that requires the introduction of

prior knowledge (or regularization terms) about these param-

eters of interest. Therefore, we propose to solve the following

regularized optimization problem

C (Z) = LP (Z) + iR +
(A) + i{1( 1 , R )}

(

1(1,R)A
)

+ τ1 ||X||1 + τ2 ||X||2,1 + ψ (X) (9)

where iR +
(A) =

∑N
n=1 iR +

(an ) is the indicator function

that imposes the ANC (iR +
(an ) = 0 if an belongs to the non-

negative orthant and +∞ otherwise), i{1( 1 , R )}
(

1(1,R)A
)

=
∑N

n=1 i{1}
(

1(1,R)an
)

is the indicator function that imposes

the ASC to each abundance vector an , 1(i,j ) denotes the

i× j vector of 1s, ψ (X) = iR +
(X) when considering

the NL model and ψ (X) = 0 for the ME model. The first

line of (9) is a sum of the quadratic data fidelity term as-

sociated with the Gaussian noise statistics and two convex

terms imposing the abundance constraints. The second line of

(9) accounts for the sparsity behavior of the residual coeffi-

cients. The first convex term ||X||1 =
∑N

n=1 ||xn ||1 is an ℓ1
norm that promotes element-wise sparsity on the D ×N ma-

trix X . This behavior is illustrated in Fig. 1 (left) which shows

a point-wise repartition of the active elements of X . The sec-

ond convex term ||X||2,1 =
∑N

n=1 ||xn ||2 =
∑N

n=1

√

xT
n xn

is the ℓ21 mixed norm of X which promotes sparsity among

the columns of X , i.e., it promotes solutions of (9) with a

small number of nonlinear or outlier pixels. This regulariza-

tion term has received increasing interest in recent years [28],

[36]–[39] and is known as a collaborative regularization since it

uses information about the residuals in all the pixels to pro-

mote group-sparsity over the columns of X . The effect of

this mixed norm is illustrated in Fig. 1 (middle). Equation

(9) includes a combination of the ℓ1 norm and the ℓ21 mixed

norm which leads to a slightly different effect as highlighted

in Fig. 1 (right). Indeed, this combination allows for sparsity

among the elements of the columns of X . Finally the cost func-

tion (9) is a sum of convex functions that is solved using the

ADMM algorithm proposed in [40], [49] and described in the

next section.



A. The ADMM Algorithm

Algorithm 1: ADMM variant for (10).

1: Initialization

2: Initialize U
(0)
j ,D

(0)
j ,∀j, µ > 0. Set k ← 0, conv← 0

3: while conv= 0 do

4: for j=1:J do

5: ξ
(k)
j ← U

(k)
j + D

(k)
j ,

6: end for

7: Linear system of equations

8: Z(k+1) ← G−1 ∑J
j=1 (Hj )

⊤ ξ(k)
j ,

9: Moreau proximity operators

10: for j=1:J do

11: V
(k)
j ←HjZ

(k+1) −D
(k)
j ,

12: U
(k+1)
j ← argmin

U j

µ
2 ||U j − V

(k)
j ||2 + gj (U j ),

13: end for

14: Update Lagrange multipliers

15: for j=1:J do

16: D
(k+1)
j ← U

(k+1)
j − V

(k)
j ,

17: end for

18: k = k + 1
19: end while

Consider the optimization problem

argmin
Z

C (Z) = argmin
Z

J
∑

j=1

gj (HjZ) (10)

where Z ∈ R
(R+D )×N , gj : R

pj ×N → R are closed, proper,

convex functions, and Hj ∈ R
pj ×(R+D ) are arbitrary matrices.

After denoting U j = HjZ ∈ R
pj ×N and introducing the aux-

iliary variable Dj ∈ R
pj ×N , the authors in [40], [49] introduced

the ADMM variant summarized in Algo. 1 to solve (10) using

a variable splitting and an Augmented Lagrangian algorithm.

This algorithm is designed to solve any sum of an ℓ2 norm

with convex functions. Moreover, [50, Theorem 1] states that

Algo. 1 converges when the matrix G =
[

∑J
j=1 (Hj )

⊤
Hj

]

has full rank, and the functions gj are closed, proper, and con-

vex. Under these conditions, the same theorem states that, for

any µ > 0, if (10) has a non-empty set of solutions, then the

generated sequence Z(k) converges to a solution. If (10) does

not have a solution, then at least one of the sequences U (k)

or D(k) diverges. These conditions will be studied for each of

the proposed optimization problems in the next sections. Note

that the main steps of Algo. 1, in each iteration, are the solu-

tion of a linear system of equations (line 8), the computation

of the Moreau proximity operators (MPOs) [51] (line 12), and

the updating of the Lagrange multipliers (line 16). More details

regarding these computations are provided in Appendix B. An-

other important point to note is that the setting of µ has a strong

impact on the convergence speed of the algorithm. In this paper,

µ is updated using the adaptive procedure described in [38],

[41], whose objective is to keep the ratio between the ADMM

primal and dual residual norms within a given positive interval,

as they both converge to zero. Note finally that the algorithms

are stopped if the primal or dual residual norms are lower than

a given threshold [41]. We refer the reader to [38], [40], [41],

[49] for more details regarding the ADMM algorithm.

B. The NUSAL-K Algorithm

This section presents the optimization problem considered for

estimating the parameters of the NL model (3). We first recall

the two assumptions: (i) the nonlinearity appears in some pixels

of the image, (ii) in a nonlinear pixel, only a few interactions

are active. Under these considerations, we propose to solve the

following optimization problem

CNUSAL-K (Z) =
1

2
||Y − [M ,Q]Z||2F

+ τ1 ||Γ||1 + τ2 ||Γ||2,1
+ iR +

(Z) + i{1( 1 , R )}
(

1(1,R)A
)

(11)

where Γ = [γ1 , · · · ,γN ] is a (DK ×N) matrix of nonlinear

coefficients, and Z =
[

A⊤,Γ⊤
]⊤

. The mixed norm ℓ21 im-

poses sparsity on the nonlinear pixels, i.e., it imposes sparsity

on the columns of Γ (see Fig. 1). In addition, the ℓ1 norm fur-

ther enforces sparsity on the nonlinear interactions in the active

nonlinear pixels as highlighted in Fig. 1 (right). Using the same

notation as in (10), problem (11) can be expressed as the sum

of J = 5 convex terms given by

g1 (U 1) = LQ (U 1) , H1 = I(R+DK )

g2 (U 2) = τ1 ||U 2 ||1 , H2 =
[

0(DK ,R) , IDK

]

g3 (U 3) = τ2 ||U 3 ||2,1 , H3 =
[

0(DK ,R) , IDK

]

g4 (U 4) = iR +
(U 4) , H4 = I(R+DK )

g5 (U 5) = i{1⊤}
(

1
⊤U 5

)

, H5 =
[

IR ,0(R,DK )

]

(12)

where In denotes the n× n identity matrix and 0(i,j ) denotes

the i× j matrix of zeros. For this problem, the matrix G is given

by G = diag
{

[31(1,R) , 41(1,DK ) ]
}

which is clearly of full rank.

This matrix and the properties of gi , i ∈ {1, · · · , J} ensures the

algorithm convergence.

C. The RUSAL Algorithm

The optimization problem used to estimate the parameters of

the ME model (6) is based on following assumptions: (i) the out-

liers appear at some pixels of the image, (ii) the residual spectra

are smooth (i.e., the DCT coefficients are sparse). Under these

considerations, we propose to solve the following optimization

problem

CRUSAL (Z) =
1

2
||Y − [M ,F T ]Z||2F

+ τ1 ||B||1 + τ2 ||B||2,1
+ iR +

(A) + i{1( 1 , R )}
(

1(1,R)A
)

(13)

where B = [b1 , · · · , bN ], and Z =
[

A⊤,B⊤]⊤
. In a similar

fashion to NUSAL-K, the mixed norm ℓ21 ensures spatial



sparsity of the mismodeling coefficients B. In addition, the

ℓ1 norm further enforces sparsity on the DCT coefficients of

each active pixel to impose spectral smoothness of the resid-

uals. Using the same notation as in (10), problem (13) can be

expressed as the sum of J = 5 convex terms given by

g1 (U 1) = LF ⊤ (U 1) , H1 = I(R+D )

g2 (U 2) = τ1 ||U 2 ||1 , H2 =
[

0(D,R) , ID
]

g3 (U 3) = τ2 ||U 3 ||2,1 , H3 =
[

0(D,R) , ID
]

g4 (U 4) = iR +
(U 4) , H4 =

[

IR ,0(R,D )

]

g5 (U 5) = i{1⊤}
(

1
⊤U 5

)

, H5 =
[

IR ,0(R,D )

]

.

(14)

For this problem, the full rank matrix G is given by

G = 3I(R+D ) which, in addition to the properties of gi , i ∈
{1, · · · , J}, ensures the algorithm convergence.

D. Computational Complexity

The ADMM algorithm involves the iterative update of the

matrices Z ∈ R
(R+D )×N (line 8 in algo. 1) and U ∈ R

pj ×N

(line 12 in Algo. 1), where the details of the optimiza-

tions with respect to U j , j ∈ {1, · · · , 5} are provided in the

Appendix B. The computational complexity of Algo. 1 per iter-

ation isO
(

(R+D)2N
)

, which is related to the most expensive

step introduced by the calculus of U 1 . Finally, it is interesting

to note that the matrices to inverse involve low complexity since

the matrix G in line 8 is diagonal, and the matrix to inverse

to update U 1 is fixed and then can be computed beforehand

outside the iterative loop.

IV. SIMULATION RESULTS ON SYNTHETIC DATA

This section evaluates the performance of the proposed al-

gorithms with synthetic data. This enables the performance of

the algorithms to be compared on data with a known ground

truth. All simulations have been implemented using MAT-

LAB R2015a on a computer with Intel(R) Core(TM) i7-4790

CPU@3.60GHz and 32GB RAM. The section is divided into

three parts whose objectives are: 1) introducing the criteria used

for the evaluation of the unmixing quality, 2) description of the

synthetic images considered in the experiments, and 3) eval-

uating and comparing the proposed NUSAL-K and RUSAL

algorithms with other state-of-the-art algorithms.

A. Evaluation Criteria

The performance of the algorithm has been assessed in terms

of abundance estimation by comparing the estimated and actual

abundances using the average root mean square error (aRMSE)

defined by aRMSE (A) =
√

1
N R

∑N
n=1 ‖an − ân‖2

2 . As a

measure of fit, we consider the following reconstruction error

RE =
√

1
N L

∑N
n=1 ‖ŷn − yn‖2

2 and spectral angle mapper

SAM = 1
N

∑N
n=1 arccos

(

ŷT
n yn

‖yn ‖2 ‖ŷn ‖2

)

criteria, where arccos

Fig. 2. Label maps associated with (left) the NL synthetic image, (right) the
ME synthetic image.

(·) is the inverse cosine operator and yn , ŷn denote the #nth

measured and estimated pixel spectra.

B. Description of the Synthetic Images

The proposed unmixing algorithms are evaluated on two im-

ages with different parameters. The images of size 100× 100
pixels and L = 207 spectral bands have been generated usingR
endmembers corresponding to spectral signatures available in

the ENVI software library [52]. All images have been corrupted

by i.i.d. Gaussian noise of variance σ2 whose level is adjusted to

obtain SNR= 25 dB where SNR = 10 log
(

||MA+Φ ||2F
LN σ 2

)

. The

images have been generated using different mixture models as

follows

1) Linear+Nonlinear models: image I1 has been gener-

ated with 4 linear/nonlinear models. An image parti-

tion into 4 classes has been generated by considering

a Potts-Markov random field (with granularity param-

eter β = 0.8) as shown in Fig. 2 (left). The four spa-

tial classes are associated with the LMM, NL-3 model

(3) (with γn ∼ N(R+)D (0D,1 , 0.1ID )), GBM (with ran-

dom nonlinear coefficients in [0.8, 1]) and PPNMM (with

b = 0.5), respectively. Note that the generated nonlinear

coefficients γn are not sparse, which is a challenging sce-

nario for the NUSAL-K algorithm.

2) Mismodeling effects: image I2 has been partitioned into

3 classes by considering a Potts-Markov random field

as shown in Fig. 2 (right). Pixels of the first class have

been generated according to the LMM model, and the

pixels of class 2 have been generated while considering

EV. This has been achieved by varying the endmembers in

each pixel of the image. Indeed, a pixel dependent smooth

spectral function prn ∈ R
L×1 has been added to each

endmember to model EV. As in [21], the smooth functions

were generated as follows prn ∼ N (0L×1 , ǫ
2
Σp), where

Σp is an (L× L) squared-exponential covariance matrix

modeling the spectral correlations and ǫ2 = 0.001. The

pixels of class 3 have been generated according to the ME

model proposed in [21], since it leads to smooth spectral

residuals as in (6). More precisely, the residuals have been

generated as follows φME
n ∼ N (0L×1 , ǫ

2
Σp), with ǫ2 =

0.002.

For both images and in each class, the abundances have been

generated uniformly in the simplex defined by the ANC and

ASC, i.e., they are distributed according to a Dirichlet distribu-

tion with parameters equal to 1R,1 . Note finally that both images



TABLE I
RESULTS ON THE LMM-NL BASED SYNTHETIC IMAGE I1 FOR R ∈ {3, 6} ENDMEMBERS AND SNR= 25 DB

have been generated with the number of endmembers varying

in the interval {3, 6}.

C. Performance of the Proposed Algorithms

The proposed RUSAL and NUSAL-K algorithms are com-

pared to state-of-the-art algorithms by processing the generated

synthetic images. We consider the two variants NUSAL-2 and

NUSAL-3 to study the effect of high order interaction terms.

The comparison algorithms are associated with different mix-

ture models as follows

1) Linear unmixing: the abundances are estimated using the

FCLS algorithm [7] and the SUNSAL algorithm [9].

2) Nonlinear unmixing: the abundances are estimated using

the CDA-NL algorithm [21] and the SKhype algorithm

[11]

3) Endmember variability: the abundances are estimated us-

ing the CDA-EV algorithm [21] and the PLMM algorithm

[48]

4) Mismodeling effects (robust algorithms): the abundances

are estimated using the CDA-ME algorithm [21] and the

RNMF algorithm1 [36].

For comparison purposes, the endmembers of these algo-

rithms have been fixed to the actual spectra used to generate the

data (the endmember update step in RNMF and PLMM has been

removed). Moreover, the CDA algorithms have been used while

fixing the illumination coefficient to the value #1 to provide a

fair comparison with the remaining algorithms. Note also that

the PLMM, RNMF, NUSAL-K and RUSAL algorithms require

the regularization parameters to be set. In this study, we provide

the best performance (in terms of abundance RMSE) of these

algorithms when varying the regularization parameters as fol-

lows: γ of PLMM varies in {0.3, 0.5, 1}, λ of RNMF varies in

{0.01λ0 , 0.1λ0 , λ0} (where λ0 has been suggested in [36]), for

RUSAL: τ1 and τ2 vary in {0.001, 0.003, 0.006, 0.01, 0.05, 0.1}
and D = 20 in all experiments, and for NUSAL-K τ1 and

τ2 vary in {0.01, 0.05, 0.1}. Table I reports the results when

processing the first image with R ∈ {3, 6} endmembers. The

1The RNMF was introduced in [36] as a nonlinear algorithm. In this paper,
we consider it as an intermediate model between ME models (since it does
not account for multiple scattering) and NL model (since it includes the non-
negativity constraint).

RMSE of each spatial class (associated with different mix-

ture model) are also reported. The proposed NUSAL-2 and

NUSAL-3 algorithms provide the best RMSE performance for

the LMM, RCA-NL-3 and the GBM pixels. For PPNMM, the

best RMSE is obtained with SKhype that is well adapted to this

polynomial nonlinearity. The best overall RMSE is obtained by

the NUSAL-2 and NUSAL-3 algorithms with a slightly better

values for NUSAL-3 since it estimates more parameters than

NUSAL-2. Except for the LMM-based algorithms, the data are

well fitted by the algorithms as indicated by the values of RE and

SAM (especially with PLMM which probably overfits the data).

Moreover, it is important to mention the reduced computational

time of the proposed NUSAL-K algorithms. Indeed, Table I

clearly shows that the NUSAL-2 and NUSAL-3 algorithms are

faster than the NL state-of-the-art algorithms, i.e., CDA-NL and

SKhype. It is also shown that NUSAL-3 requires more compu-

tational time than NUSAL-2, while it performs slightly better.

This highlights the effect of the third order nonlinear interaction

terms that improve the unmixing at a price of a higher compu-

tational time. As expected, the mismodeling-based algorithms

CDA-ME, RNMF and RUSAL provide an intermediate perfor-

mance between the LMM algorithms and the NL algorithms.

Indeed, these algorithms are designed to deal with different ef-

fects including the NL effect. Moreover, RUSAL is less sensitive

to the variation of the endmember number R than NUSAL-K
and CDA-NL. Indeed, the latter algorithms account for inter-

action terms whose number increases with R, while RUSAL

use a flexible residual formulation that is not related to R (it

simply accounts for the spectral smoothness of the residuals).

Table II shows the obtained results when processing the second

image that includes pixels with LMM, EV and ME. The best

RMSE performance are generally obtained with the CDA-ME

algorithm. The proposed RUSAL algorithm provides compet-

itive abundance RMSE with RNMF with the advantage of a

reduced computational time. In contrast with SKhype which

demonstrates robust behavior, the NL based algorithms are not

well adapted to these data and provide a lower unmixing quality

than the ME algorithms. These results highlight the benefit of

the NUSAL-K and RUSAL algorithms that show competitive

results when compared to the other algorithms. Moreover, the

proposed algorithms exhibit a reduced computational cost that is

suitable for real world applications. While both NUSAL-K and



TABLE II
RESULTS ON THE LMM-ME BASED SYNTHETIC IMAGE I2 FOR R ∈ {3, 6} ENDMEMBERS AND SNR= 25 DB

CDA-NL algorithms are sensitive to an increase in the number

of endmembers, this effect is more important for CDA-NL while

it is reduced for the NUSAL-K algorithms that remain faster

than SKhype forR = 6 andK = 3 (i.e., 77 interaction terms as

reported in Table V). Note finally that additional experiments,

conducted with SNR= 15 dB, show a reduction of the unmixing

quality for all algorithms. However, the algorithms relative be-

havior is similar to the studied case, and the conclusions remain

valid. These results are not provided here for brevity.

V. RESULTS ON REAL DATA

This section illustrates the performance of the proposed al-

gorithms when applied to three real hyperspectral images. The

first hyperspectral image has received much attention in the re-

mote sensing community [16], [53]. This image was acquired

over Moffett Field, CA, in 1997 by AVIRIS. The dataset con-

tains 100× 100 pixels, L = 152 spectral bands (after removing

water absorption bands) acquired in the interval 0.4− 2.5 µm,

has a spatial resolution of 100m and is mainly composed of

three components: water, soil, and vegetation (see Fig. 3(a)).

This image is interesting since it is known to include bilinear

scattering effects [16], [21], [36] which makes it suitable for

the assessment of the NUSAL-K and RUSAL algorithms pre-

sented in this paper. The second image, denoted as Madonna,

was acquired in 2010 by the Hyspex hyperspectral scanner over

Villelongue, France (00 03’W and 4257’N). The dataset con-

tains L = 160 spectral bands recorded from the visible to near

infrared (400− 1000 nm) with a spatial resolution of 0.5m [54].

It has previously been studied in [21], [55], [56] showing NL

effects (between the trees and the soil), EV effects (mainly for

the vegetation) and shadow effect. The subimage considered

contains 160× 200 pixels and is composed of R = 4 compo-

nents: tree, grass, soil and shadow (see Fig. 3(b)). For these

two images, the VCA algorithm [5] was used to extract the

corresponding endmembers, i.e., R = 3 endmembers for the

Moffett image andR = 4 endmembers for the Madonna image.

The third image was acquired by the AVIRIS sensor, in 1998,

over Salinas Valley, California (see Fig. 3(c)). The dataset con-

tains 86× 83 pixels, 204 spectral bands with the same spectral

resolution and spectral range as the Moffett image (the wa-

ter absorption bands were removed) and a spatial resolution of

Fig. 3. Real hyperspectral images. (a) Moffett image, (b) Madonna image,
(c) Salinas image.

3.7 m. This image is interesting since it includes different species

of vegetables showing endmember variability, which makes it

suitable for the assessment of the RUSAL algorithm. Accord-

ing to the ground truth information [57], this image contains 6

classes that are: Broccoli, Corn senesced green weeds, lettuce

of different ages (4, 5, 6, and 7 weeks). As a result of the sim-

ilarity between the different spectra and the presence of highly

mixed pixels [58], we have manually extracted 4 endmembers

associated with these classes: Corn senesced green weeds +

lettuce-4-5, Broccoli, lettuce-6, and lettuce-7.2 Indeed, these

endmembers have a different shape (minimum pairwise angle

of 9 degrees) while the remaining fluctuations can be associated

with the effect of EV.

Table III shows the unmixing performance for the different

algorithms. Overall, the NL and robust algorithms provide a

2Each endmember is obtained by averaging bundle of spectra belonging to
its class.



TABLE III
RESULTS ON REAL IMAGES. RE (RESP. SAM) SHOULD BE MULTIPLIED BY 10−3

(RESP. ×10−2 ). THE TIME OF PROCESSING THE WHOLE IMAGE

IS GIVEN IN SECONDS.

Fig. 4. Estimated abundance maps with different algorithms for the Moffett
image. (Left) vegetation, (middle) water, (right) soil.

better fit than the LMM-based ones. Among the sophisticated

algorithms, the proposed NUSAL-2, NUSAL-3 and RUSAL

algorithms provide the best performance for the computational

cost. The algorithms all generated similar abundance maps

for the Moffett image and we only show those of NUSAL-2,

NUSAL-3 and RUSAL in Fig. 4, for brevity. Fig. 5 presents

the residual maps associated with the NL, EV and robust al-

gorithms. This figure highlights good agreement between the

NL algorithms (CDA-NL, NUSAL-2, NUSAL-3) that detect

nonlinearity in the coastal region (as in [16]). In addition to

this region, the robust algorithms (RNMF, ME, RUSAL) de-

tect other mismodeling effects probably due to EV as already

reported in [21] and shown by the result of CDA-EV. The NL

coefficients estimated by NUSAL-2 and NUSAL-3 are reported

in Fig. 6. This figure shows good agreement between the es-

timated bilinear coefficients when considering NUSAL-2 and

NUSAL-3. Moreover, it highlights the sparse behavior of the

nonlinear coefficients and clearly shows that they are mainly

due to the second order interactions. Indeed, Fig. 6 (middle)

shows that half of the averaged coefficient values of each pixel

are negligible and Fig. 6 (bottom-right) shows that the average

Fig. 5. Residual maps for the Moffett image obtained with ||ŷi ,j −Mâi ,j ||.

Fig. 6. Nonlinear coefficients obtained with NUSAL-2 and NUSAL-3 for
the Moffett image. (Top) matrix (Dk ×N ) of NL coefficients (the color
scale is [0,1]), (middle) sorted averaged coefficient values of each pixel

(1/D
∑

r,r ′ γ
(r,r ′)
n , ∀n), (bottom) averaged coefficient values of each non-

linear interaction term (1/N
∑N

n=1
γ

(r,r ′)
n , ∀r, r′).

of the nonlinear coefficients over all the pixels is higher for the

first six terms, i.e., the second order terms.

The abundances obtained for the Madonna scene are dis-

played in Fig. 7 for SKhype, RNMF, RUSAL, NUSAL-2,

and NUSAL-3 (the other algorithms provided similar maps to

NUSAL/RUSAL and were not displayed for brevity). This fig-

ure shows a slight difference between the RNMF soil map and

the other algorithms. Similar differences are observed when

considering the residual maps in Fig. 8 since RNMF detected a

higher residual effect in the soil area (bottom-left corner in the

RNMF image) than ME and RUSAL. Apart this, the robust al-

gorithms detected residuals in the shadow areas and in trees. The



Fig. 7. Estimated abundance maps with different algorithms for the Madonna
image. from left to right: soil, grass, tree, shadow.

Fig. 8. Residual maps for the Madonna image obtained with ||ŷi ,j −
Mâi ,j ||.

latter is mainly due to the presence of multiple scattering effects

as highlighted by the NL algorithms that show similar maps (see

left figures). In a similar manner to Moffett field, the NUSAL-

2 and NUSAL-3 estimated NL coefficients are pixel-wise

sparse and mainly due to bilinear interactions as highlighted

in Fig. 9. This justifies the good behavior of the bilinear models

[15]–[20], [35] that assume that the effect of the interaction

terms decreases when increasing the interaction orders.

The abundances obtained for the Salinas scene are displayed

in Fig. 10 for PLMM, SKhype, CDA-NL, RUSAL, NUSAL-2,

and NUSAL-3 (the other algorithms provided similar maps to

NUSAL/RUSAL and were not displayed for brevity). Because

of the high EV effect, all of PLMM, CDA-NL and SKhype fail to

Fig. 9. Nonlinear coefficients obtained with NUSAL-2 and NUSAL-3 for
the Madonna image. (Top) matrix (Dk ×N ) of NL coefficients (the color
scale is [0,0.2]), (middle) sorted averaged coefficient values of each pixel

(1/D
∑

r,r ′ γ
(r,r ′)
n , ∀n), (bottom) averaged coefficient values of each non-

linear interaction term (1/N
∑N

n=1
γ

(r,r ′)
n , ∀r, r′).

Fig. 10. Estimated abundance maps with different algorithms for the Salinas
image. From left to right: Corn_senesced_green_weeds + lettuce-4-5, Broccoli,
lettuce-6, and lettuce-7.

extract the abundances of Broccoli, and lettuce-6. The residual

maps shown in Fig. 11 confirm this since NL algorithms detect a

reduced effect while PLMM, CDA-EV, CDA-ME and RUSAL

detect more EV effect especially in the region of the lettuce.

These results highlight the ability of CDA-ME and RUSAL

to capture EV effects. Fig. 12 shows some randomly selected



Fig. 11. Residual maps for the Salinas image obtained with ||ŷi ,j −Mâi ,j ||.

Fig. 12. Example of outlier spectra for the Salinas image obtained with (from
left to right) CDA-EV, CDA-ME, RUSAL and PLMM.

outlier spectra obtained with CDA-EV, CDA-ME, RUSAL and

PLMM algorithms. These spectra show a similar global shape

while they highlight the properties of each algorithm. Indeed, it

can be seen that PLMM provides noisy spectra since it does not

account for their spectral correlations. In contrast, the CDA-EV,

CDA-ME and RUSAL algorithms consider this correlation ef-

fect and provide more realistic results. In addition, the RUSAL

algorithm allows the absence of outliers (null spectra) thanks

to the sparsity promoting property imposed on the outliers.

To summarize, the obtained results highlighted the benefit of

RUSAL/NUSAL-K that estimate abundance and residual maps

which are in good agreement with state-of-the-art algorithms,

but at a lower computational cost. NUSAL-K generalizes the

common bilinear models and provide NL coefficient maps as-

sociated with different interaction orders. This provides a useful

tool to better analyze the scattering effect between the physical

elements. RUSAL provides a flexible tool to capture different

TABLE IV
CHARACTERISTICS OF THE STUDIED MODELS/ALGORITHMS. “POS.” STANDS

FOR POSITIVITY, “SPAT.” FOR SPATIAL, “SPEC.” FOR SPECTRAL, “ILLUMIN.”
FOR ILLUMINATION, “SM” FOR SMOOTH, “SP” FOR SPARSE, (+++)

BEST RESULTS, AND (+) GOOD RESULTS.

Effects, Residuals Illumin. Robust Time

LMM+ Pos. Spat. Spec. coeff. c to R

SKhype NL X − − X X +

CDANL NL-2 X SM − X X +

CDAEV EV X SM SM X X +

PLMM EV X − − X X ++

CDAME NL + EV X SM SM X X ++

RNMF NL X SP − X X +

RUSAL NL + EV X SP SM X X +++

NUSAL −K NL −K X SP − X X +++

TABLE V
EXAMPLE OF Dk FOR DIFFERENT VALUES OF R AND K

K = 2 K = 3 K = 4 K = 5

R = 3 6 16 31 52

R = 6 21 77 203 455

R = 10 55 275 990 2992

mismodeling effects due to EV, NL or outliers. It is more robust

than NUSAL-K with respect to the variation of the endmember

number R, thus, it is recommended to use RUSAL in presence

of a large number of endmembers. However, RUSAL provides

less information than NUSAL regarding the interaction terms

and the origin of its residual term may be due to physical effects

(such as NL, EV), data corruptions or other outliers. Table IV

finally summarizes the main characteristics of the nonlinear and

robust algorithms considered in this paper.

VI. CONCLUSION

This paper has introduced two mixture models and their su-

pervised unmixing algorithms. The two models accounted for

the presence of nonlinearity or mismodeling effects by con-

sidering a residual term in addition to the linear mixture of

endmembers. The residual term was expressed as a sparse lin-

ear combination of some signals, thus, the proposed models

reduced to a linear combination with respect to the abundances

and the residual coefficients. The unknown parameters associ-

ated with these models were estimated using an optimization

approach that included convex regularization terms. More pre-

cisely, the non-negativity and sum-to-one constraints were im-

posed on the abundances and the residual terms were assumed

to be spatially sparse by considering a collaborative sparse

regression approach. The resulting convex problem was solved

using an alternating direction method of multipliers whose con-

vergence was theoretically ensured. The proposed algorithms

showed good performance when processing synthetic data gen-

erated with the linear model or other more sophisticated models.

Results on real data confirmed the good performance of the pro-

posed algorithms and showed their ability to extract different



features in the observed scenes, with a reduced computational

cost. These results confirmed that most vegetation nonlinear-

ity can be captured by bilinear interactions and that endmember

variability is mainly located in vegetation areas. Future work in-

cludes the introduction of spatial correlation on the abundances.

Considering endmember variability jointly with nonlinearity is

also an interesting issue which would deserve to be investigated.

APPENDIX

DERIVATIONS

A. Construction of Q(K )

Model (3) requires the definition of the (L×DK ) matrix

Q(K ) gathering the interaction spectra of all the orders lower

than K. This section describes this matrix by providing

its size and the coefficient of each interaction term. Before

providing the full description of this matrix, let consider an

example of R = 3 endmembers and the matrix Q(K=3) =
[

Q
(3)
2 ,Q

(3)
3

]

. The number of interaction spectra is given

by 16 (see Table V) while the corresponding spectra are

given by concatenating the two matrices Q
(3)
2 = (

√
2m12 ,√

2m13 ,
√

2m23 ,m11 ,m22 ,m33), and Q
(3)
3 = (

√
3m112 ,√

3m113 ,
√

3m122 ,
√

3m322 ,
√

3m133 ,
√

3m233 ,
√

6m123 ,
m111 ,m222 ,m333), with mijk = mi ⊙mj ⊙mk . For

a formal mathematical description, denote Q(K ) =
[

Q
(K )
2 ,Q

(K )
3 , · · · ,Q(K )

K

]

, where Q
(K )
i gathers the

interaction spectra of the ith order. The size of Q(K ) is

then obtained by summing the size of the interaction spectra

DK (i) associated with the ith order, as follows

DK =

K
∑

i=2

DK (i) =

K
∑

i=2

(R+ i− 1)!

i! (R− 1)!
(15)

where x! = 1 · · · (x− 2)(x− 1)x, denotes the factorial of x.

Table V shows some examples of DK for different values of R
and K. It is clear that increasing the interaction term K leads

to a fast increase of the number of interaction terms included

in Q(K ) . However, it is interesting to note that the sparsity

promoting norms (ℓ1 and ℓ21 ) are well adapted to deal with

large DK .

Similarly to [10], [11], [21], each interaction term in Q
(K )
i is

weighted by a coefficient that is obtained by comparison with a

homogeneous polynomial kernel of the ith degree. Straightfor-

ward computations show that the ith order spectra gathered in

Q
(K )
i are given by

√

i!
∏R

r=1 kr !

∏

1≤r≤R
mkr

r , subject to

R
∑

r=1

kr = i. (16)

B. ADMM Algorithm

The list shown below provides details regarding the consid-

ered ADMM algorithm for both NUSAL and RUSAL. More

precisely, we provide the solutions for the linear system of

equations shown in line 8 of Algo. 1 and the MPO optimization

problems shown in line 12. The details of the MPOs can be

found, for example, in [51].

1) Linear system of equations:

Z(k+1) ← G−1
J

∑

j=1

(Hj )
⊤ ξ(k)

j ,

with G = diag
{

[31(1,R) , 41(1,DK ) ]
}

for the NL model

and G = 3I(R+D ) for the ME model

2) MPO for g1 (U 1) = LP (U 1):

U
(k+1)
1 ←

{

[M ,P ]⊤[M ,P ] + µID+R

}−1

×
{

[M ,P ]⊤Y + µV
(k)
1

}

3) MPO for g2 (U 2) = τ1 ||U 2 ||1 :

U
(k+1)
2 ← soft

(

V
(k)
2 ,

τ1
µ

)

4) MPO for g3 (U 3) = τ2 ||U 3 ||2,1 :

u
(k+1)
3,n ← vect-soft

(

v
(k)
3,n ,

τ2
µ

)

,∀n

5) MPO for g4 (U 4) = iR +
(U 4):

U
(k+1)
4 ← max

{

V
(k)
4 , 0

}

6) MPO for g5 (U 5) = i{1⊤}
(

1
⊤U 5

)

:

U
(k+1)
5 ←

(

IR −
1

R
1(R,R)

)

V
(k)
5 +

1

R
1(R,N )

where soft(.) denotes the soft threshold operator given by

soft
(

V , τµ

)

= sign(V )⊙max
{

|V | − τ
µ , 0

}

, sign(.) denotes

the element-wise application of the sign function, |V | denotes

the matrix of absolute values of the elements of V , max(.)
is the element-wise maximum operator, and vect-soft(.)
is the well known vect-soft-threshold operator given by

vect-soft
(

v, τµ

)

= v

(

max{||v||2− τ
µ ,0}

max{||v||2− τ
µ ,0}+ τ

µ

)

. Note finally that

P = Q for NUSAL and P = F⊤ for RUSAL.
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tuto Superior Técnico (IST), Technical University of
Lisbon (TULisbon, now University of Lisbon), Por-
tugal, in 1985, 1991, 1995, and 2007, respectively, all
in electrical and computer engineering.

Since 1995, he has been in the Department of
Electrical and Computer Engineering, IST, where he
was an Assistant Professor from 1995 to 2007 and
an Associate Professor since 2007. Since 1993, he
is also a Senior Researcher in the Pattern and Image

Analysis group, Instituto de Telecomunicações, which is a private nonprofit
research institution. His research interests include inverse problems, signal and
image processing, pattern recognition, optimization, and remote sensing. His
research work has been highly cited and he is included in Thomson Reuters’
Highly Cited Researchers 2015 list.

Dr. Bioucas-Dias was an Associate Editor for the IEEE TRANSACTIONS

ON CIRCUITS AND SYSTEMS (1997–2000) and IEEE TRANSACTIONS ON IM-
AGE PROCESSING (2010–2014) and he is a Senior Area Editor for the IEEE
TRANSACTIONS ON IMAGE PROCESSING and an Associate Editor for the IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. He was the General
Co-Chair of the Third IEEE GRSS Workshop on Hyperspectral Image and Sig-
nal Processing, Evolution in Remote sensing (WHISPERS’2011) and has been a
member of program/technical committees of several international conferences.

Nicolas Dobigeon (S’05–M’08–SM’13) was born in
Angoulême, France, in 1981. He received the En-
gineering degree in electrical engineering from EN-
SEEIHT, Toulouse, France, and the M.Sc. degree in
signal processing from INP Toulouse, both in 2004,
the Ph.D. degree and the Habilitation à Diriger des
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