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Abstract—Nowadays, reducing the energy consumption of
large scale and distributed infrastructures has truly become a
challenge for both industry and academia. Dynamic job allocation
and resources provisioning is important to fit users requirements.
The aim is to minimize the number of hosts utilized in order to
reduce the energy consumption while maintaining a correct level
of quality of service for the users. Green leverages like migration
and on/off actions have cost overheads. Switching on and off a
host has a cost: it takes time and it consumes power. These actions
have to be optimized and should anticipate load variations. In this
paper we investigate host management linked with the allocation
and reallocation algorithm in order to optimize the number of
powered on hosts and to reduce the overheads. We propose
an original host management algorithm based on a genetic
algorithm. Our approach has been implemented in DCWoRMS
simulator and compared with other heuristics.

Keywords-Scheduling, energy consumption, host management,
green leverages

I. INTRODUCTION

IT systems and infrastructures have one of the fastest
growing energy consumption. Since 2007, the Green500 [1]
ranks the supercomputers based on the flops per watt metric.
The supercomputer at the top of the list in June 2016 has
a performance-to-power ratio of 6.6738 GFLOPS per Watt.
In 2011 Koomey [2] reports that total electricity use by
datacenters in 2010 of about 1.3% of all electricity use for the
world, and 2% of all electricity use for the US. Heddeghem
[3] estimates that worldwide datacenters have consumed up to
270 terawatt-hours (TWh) in 2012, which accounts for almost
2% of global energy consumption. Greenpeace [4] reports
energy consumption in datacenters and analyzes cloud energy
consumption. If compared with the electricity demand of
countries in 2011, the cloud would rank 6th in the world, with
demand expected to increase 63% by 2020. Energy efficiency
is a challenge to reduce the consumption in datacenters. The
energy efficiency is studied in the literature at various levels [5]
[6]: at the node level or at the infrastructure level. Approaches
can be static or dynamic (power scaling processors, power
scaling memory, load balancing ...). In this paper we present
a dynamic and pro-active approach. We consider a HPC
workload taking benefits from the virtualization and virtual
machine migration provided by cloud technologies. Different
articles [7], [8] have studied the cloud-based environments to
HPC architectures: HPC2 [9]. HPC is historically known to
suffer from performance degradation in cloud deployments.
However, improvements in virtualization technologies have
significantly reduced the performance gap between physical
and virtual deployments. It is therefore not surprising that

HPC users are shifting some workloads to cloud in order to
benefit from flexibility, cost efficiencies and improved resource
sharing that cloud provides. For example, the Xlcloud [10]
project aims to provide tools that facilitates HPC in cloud de-
ployments. We propose to improve an existing greedy heuristic
for virtual machines allocation with a new host management
policy. The aim is to limit energy and time overheads of
machines switches on and off. In [11] we have presented a
consolidation heuristic handling the reallocation, the migration
and host management issues. Work in [11] has been extented
in two ways: first the heuristic has been evaluated in large scale
with simulations ; second, a new host management policy has
been proposed based on a genetic algorithm.

The rest of this paper is organized as follows. Section II
formally states the problem we address. Section III presents
the host management heuristic we propose, followed by the
simulation results in section IV. Section V presents the related
work and Section VI concludes the paper with some future
directions.

II. PROBLEM STATEMENT

We consider a datacenter with H physical hosts and .J
running VMs (which we will also call tasks) comprising
HPC jobs with known required execution time. Each VM
has resource requirements, which we choose in our case to
be CPU and RAM. Let’s note vm®FU the number of CPU
required by a VM, and vm™ FM the number of MB of RAM
required by the VM. Let’s note AV the CPU capability and
hMEM the MEM capability of a host h. VMs are allocated
and periodically reallocated with a greedy heuristic. In [11] we
proposed SOPVP approach which is an initial allocation with
a bestfit algorithm and a periodic reallocation algorithm based
on a vector packing algorithm to reallocate VMs from one or
several hosts in order to consolidate the load while minimizing
the network contention at fixed time intervals. The algorithm
uses a host management algorithm called Pivot [11] to handle
the hosts states (i.e. to decide when switching on and off the
hosts) to enforce energy savings computed by the reallocation
heuristic. The Pivot heuristic first computes the theoretical
number of hosts that are needed to run all the VMs, and tries
to keep this number of hosts powered on plus a small amount
of over-provisioning. The theoretical host number is computed
as the sum of maximum requested resources per VM divided
by the average resources available per host with the following
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In this article, we try to improve the estimation of number
of hosts to power on. Our aim is to find a formula based
on the past to predict how many hosts must be powered on as
depicted in figure 1. This formula will be used by the mapping
algorithm to optimize the virtual machines placement. To do
that, we use a fixed time window. The first half of the window
is used to find the formula based on past collected data: some
monitoring information about the machines states and about
the virtual machines. Then a genetic algorithm is used to find
the best formula. The formula is then applied during the time
steps of the second half of the window with the new state of
the datacenter and virtual machines. The formula is built on a
set of variables describing the system and a set of operators.
The aim of the genetic algorithm is to find the best formula
that can be applied. The formula will be recomputed at each
time window ending.

ITI. GENETIC ALGORITHM FOR HOST MANAGEMENT

A genetic algorithm (GA) mimics the process of natural
selection [12]. This metaheuristic is used to generate solutions
to optimization and search problems. It belongs to the larger
class of evolutionary algorithms, which generate solutions
to optimization problems using techniques inspired by nat-
ural evolution, such as inheritance, mutation, selection, and
Crossover.

In this section we will describe the genetic representation,
the operations, the fitness function and the algorithm.

A. Genetic representation

The individuals in our approach represent the formula
to compute how many hosts to switch on in a datacenter
infrastructure. We will note each individual f(). Each
individual is a formula composed of two chromosomes.

a) Chromosome 1: Characteristics of the system: The
first chromosome X is a complete set of variables describing
the system as the number of machines, the number of VMs
(or tasks) or the CPU load of a host h at time t. This set
of variables is described in table I. Each variable will have a
ponderation coefficient called o € [0, H| and each variable
will have a value for each time step of the time window
considered. t represents the current state when applying the
formula X = o;X4,...,a,X,. Each variable can have a
timestamp between t and t — w where w is the time window
length.

There are two types of variables that we want to exclude.
First, genes whose values are zero in the historical data will
not be included in an individual. Second, genes relatives to

TABLE I: Variables for chromosome X.

H Number of hosts
HPY Number of hosts powered on at time ¢
Ji Number of tasks at time ¢
load_cloud?P U CPU load of the cloud at time ¢
load_cloudMFM Memory load of the cloud at time ¢
loady, TV CPU load of host h at time ¢
loady M Memory load of host A at time ¢
T1'Lj 4 Percentage of completion of VM j at time ¢
Um;’””eq CPU request of VM 7
vmy T Memory request of VM j

virtual machines whose time to completion is close will not
be included in an individual (in our implementation we have
chosen not to include VMs which have a TTL greater than
85%). This will avoid a formula which could be relevant
at time t but which will overestimate or underestimate the
number of hosts to power on at time t 4+ 1. For example,
we could have the following chromosome X described in
table II where H represents the number of hosts in the cloud,
loadhcfll,D tU—l is the CPU load of host il at the last timestamp,
J; is the number of tasks and load%?% is the memory load
of host h2 at time t — 2.

b) Chromosome 2: operators: The second chromosome
Y has n — 1 genes, each representing an operator for the
formula f(). Each operator o can be +, — or X.

TABLE II: Example of chromosomes X and Y.

X | 0.5H
Y +

5J
X

2loadnyi M,

12loady {4

¢) The individual genes: An individual f(X,Y") is built
on the two chromosomes X and Y:

f(X, Y) = a1X101a2X2...0n_1aan

Based on the examples given, we would have the following
individual:

fewampte(X,Y) = 0.5H + 12loadg, | — 5.J, x 2load}iEY,

B. Genetic algorithm operations

During individuals’ reproduction, the chromosomes of
both parents merge. This fusion results in the creation of a
genotype child constituted by the genotype of both parents.
Evolutionary principles allow for three operations to take
place amongst individuals, and allow for their diversity.
These operations are imitated by the genetic algorithms to
maintain the diversity of the populations and thus be able to
find better solutions and make converge the solutions on an
optimal solution. So in a genetic algorithm, a population of
candidate solutions is evolved toward better solutions. Each
candidate solution can be mutated and altered through genetic
operators: mutations, crossover and selection.

1) Mutation: In each generation a gene has a probability to
be modified by the mutation operator. In our genetic represen-
tation, each chromosome could be altered. For chromosome
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Fig. 1: Host management principle

X, the couple o;X; could be affected and for chromosome
Y, an operator could be modified.

mutationy = o X; — ;X

mutationy = o, — 0p

2) Crossover: During the crossover operation, the chro-
mosomes of both parents exchange a part of their genes to
generate two children. A point is thus chosen randomly to
be able to separate chromosomes into two chains. In our
genetic representation, the crossover point is randomly chosen
on the entire individual constructed with the concatenation of
chromosome X and Y.

3) Selection: The selection process aims at keeping only
individuals inclined to provide better results. For the genetic
algorithms, it will be a question of sorting out the solutions
in order to keep only the best solutions. The selection will
be made by tournament, which is a common algorithm used
in the literature [13]. Every individual is assigned a fitness
value which is the capacity of an individual to be close to
the ideal solution. The fitness function is computed on a
given history window. The fitness represents the distance of
the values expressed by an individual to the theoretical ideal
values. These theoretical values are given by the execution of a
placement algorithm in an ideal infrastructure with an infinite
number of hosts at time ¢ 4+ 1 and without any cost overheads
for machines switches on/off. We call Z the heuristic chosen to
estimate the theoretical number of hosts (based on a valuable
history of the real system) and w the size of the time window.
The fitness function computes the accumulated absolute error,
the goal is to minimize its value. It is computed with the
following equation:

t—1
fitness = Z |f(Xe—i,Yioi) — Zi—ip]

i=t—(%)

population = initialize_population();
for i € GENERATION_NUMBER do
new_population = [];
new_population[0] =
get_fittest_individual(population);
mating_pool = selection_tournament(population,
T_SIZE);
for j € POPULATION_SIZE do
parentl, parent2 = mating_pool[random_int];
if CROSSOVER_PROBABILITY then
childl, child2 = crossover(parentl, parent2);
new_population[j] = choose one child at

random;
end
new_population[j] = parentl;
end
for individual € new_population do

if GA_MUTATE_X_PROBABILITY then
] individual.mutateX();

end

if GA_MUTATE_Y_PROBABILITY then
’ individual.mutate Y ();

end

individual fitness(x, history);

end
population = new_population;

end
Algorithm 1: Host management algorithm

C. Algorithm

The initial population is randomly generated. Then, the
algorithm is an iterative process. The population in each
iteration is called a generation. In each generation, the fitness
of every individual in the population is evaluated on the first
half of the window. The individuals are evaluated and ranked.
Then crossover and mutation are randomly performed to alter
existing individuals and generate offspring genes. The new



generation of candidate solutions is then used in the next
iteration of the algorithm. The algorithm terminates when
a maximum number of generations has been produced. The
fittest individual will be the formula that we will apply on the
cloud data to obtain a prediction of the number of hosts for the
following timesteps. The algorithm is described in algorithm
1 and uses the variables described in table III.

IV. EVALUATION

To evaluate the approach we have used the DCWoRMS
simulator [14]. Each job is defined by a request in CPU, MEM
and an arrival time. As a QoS metric we choose the waiting
time which is the time between a task arrival in the system, and
the beginning of its execution. The second metric we choose
is the power consumption of a node defined as:

Py, = (P — P x load), + P

where P*** is the maximum power consumption of the host
h, and P/™" is its idle consumption. We use a randomly
generated workload over time. We simulate a datacenter of
100 nodes, each with 8 processors and 16 GB of RAM.
Pmin and P/™® have been chosen to be respectively 70W
and 140W, values hand picked on the SPEC Power web page
[15]. The workload is comprised of tasks lasting from 500
seconds to 3500 seconds. They require between 0.25 and
3.75 processors, as well as between 1024 and 7168 MB
of RAM. All those values are randomly chosen following
a uniform distribution. The inter arrival of tasks follows a
Poisson process, chosen to load at the peak of the experiment
to a certain percentage. The experiment starts with the first
task arrival and ends with the departure of the last one. At
the beginning all hosts are powered on. We have implemented
in DCWoRMS the BestFit approach, with no reallocation, and
the SOPVP approach [11] with the Pivot host management
algorithm and the SOPVPGA. We call SOPVPGA the resulting
algorithm coupling the SOPVP heuristic for the reallocation
of VMs and the genetic algorithm for the host management
policy. The BestFit allocation is described in algorithm 2.

A. Host management strategy evaluation

The genetic algorithm for the host management policy uses
a time window. We have studied the impact of this parameter.
For an infrastructure load of 50% at each scheduler iteration
we compared the theoretical number of hosts that is needed
to run all the VMs with the number of hosts given by the GA
host management heuristic for four time window lengths: 4, 8,
16, 24. The population has 150 individuals, for the tournament
selection there are 75 individuals, the crossover probability is
50%, the mutation probability for each chromosome is 10%
and there are 60 generations. In figure 2 we see that the wider
the GA window is, the less precise the predictions are and
less they follow the desired results. A good compromise is
obtained with a time window equal to 8 since we observe
good precisions without too many calls to the GA heuristic.
For all the following results we have chosen this window size.

There is a strong coupling between the host management
strategy and the scheduling algorithm when the goal is to
improve energy efficiency. On one hand powering off and on

begin Allocate Pending VMs
Data: pendingVMs
Data: H
Sort VMs, highest MEM first;
foreach vin € pendingVMs do
h* = {;
foreach h ¢ H do
if vmCanFitOnHost(vm, h) then
if 7’ = () then
| b =h;
else
if max(load;) > max(loady,) then
| b =h;
end
end

end
end
if i’ # () then
] allocate(vm, h’);
end

end
end
Algorithm 2: BestFit Algorithm for VMs allocation

hosts will make them unavailable for a time, thus potentially
preventing tasks to run. On the other hand, if the reallocation
algorithm consolidates tasks on a reduced subset of hosts, and
the hosts are not powered off by the host management strategy,
the reallocation would just be a waste of resources.

B. Scheduling Simulations

We have evaluated the energy consumption and the waiting
time for each load between 10% and 80%, with a step of
10%. Each experimentation has been reproduced 10 times for
each load and each algorithm. Live migration is a complex
process, that highly depends on numerous factors like the type
of VM, its size, memory dirtying rate, as well as the network
link size on both source and destination host. That’s why it is
usually poorly modelled inside simulators. With DCWoRMS,
even though we are able to migrate tasks between nodes, we
are only able to model the cost of the said migration through
task delay. This means that instead of having a live migration
of tasks, we will only have cold migration. Transitions between
machines power states are modelled with constant time and
power overheads.

Figure 3(a) plots the energy consumption for all the algo-
rithms on different loads. We can see that BestFit is almost
as good as SOPVP for low loads, but when the load increases
SOPVP is around 6-7% better. The main reason is that there
is not much reallocation to be made at low load to increase
energy performance, thus meaning that the initial allocation
has the most importance. However, when the load increases
reallocation improves energy efficiency. Figure 3(b) represents
the average waiting time aspect of the same experiments.
There is a small difference between BestFit and SOPVP. This
difference is mainly due to the fact that reallocating some
tasks frees up some space to allocate more rapidly the arriving



TABLE III: Variables for the algorithm.

POPULATION_SIZE

Number of individual in the population

GENERATION_NUMBER

Number of generations

T_SIZE

Selection size of individuals with the tourmament

CROSSOVER_PROBABILITY

Probability of a crossover

GA_MUTATE_X_PROBABILITY

Probability of a mutation of chromosome X

GA_MUTATE_Y_PROBABILITY

Probability of a mutation of chromosome Y
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Fig. 2: Time window comparison

tasks. One should note that the differences between SOPVP
and BestFit are only due to the reallocation, and that with the
reallocation, we can gain in both energy savings, and QoS. We
can see that the algorithm SOPVPGA is very close to SOPVP
in term of energy saving but it is more effective than the other
algorithms for the waiting time metric and thus it proposes the
best quality of service for the user.

C. Host management strategies comparison

In this section, we compare the two host management
policies that we propose. In the literature, in dynamic pro-
visioning studies, future load is estimated and approximated

through various ways [16]. One simple algorithm predicts
all future values to be the exact same load rate as was last
seen. Another one maintains the load rates seen over the
last n seconds and averages the values in the window for
the prediction. We compare the genetic algorithm to manage
the hosts with these load prediction heuristics which we call
LastLoad and LastTwoLoads. LastLoad is SOPVP algorithm
with a number of hosts computed with the last mean request
of tasks and the last mean capacity of hosts at the previous
time step. LastTwoLoads works similarly but uses the mean
of the two previous numbers from the last two time steps. We
have chosen these two load prediction heuristics because they
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reflect the dynamicity of the load variation in the infrastructure
and are known as simple prediction heuristics. For loads
between from 10% to 80% making 10 iterations for each
load we compare the results of SOPVPGA with LastLoad
and LastTwoLoads. We can see in figure 4 that the heuristics
have close values for energy consumption. SOPVP consumes
3% less than SOPVPGA for a load of 10%, the difference
is reduced to 1% for a load of 80%. Differences between
LastLoad, LastTwoLoads and SOPVP are less than 1% for a
load of 10% and around 0.2% for a load of 80%. SOPVPGA
has a better waiting time than all the others. Prediction and
dynamic provisioning are very complex ; simple heuristics like
LastLoad, LastTwoLoads or Pivot can help saving energy but
do not perform well for QoS metric like the waiting time. The
GA heuristic proposed in this article performs better.

V. RELATED WORK

In the literature, energy efficiency is addressed at different
levels [5][6][17][18][19][20]. At the node, infrastructure or
middleware level. Some studies propose datacenters powered
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Fig. 4: Energy and waiting time for different loads and host
management heuristics

at least partly with renewable energy [21] ; these solutions
are often based on the over provisioning of the electrical
infrastructure. Cooling cost is also addressed by improving the
methods of heat extraction [22] or with mapping algorithms to
avoid hot spots [23]. To reduce energy cost, at the middleware
level, placement algorithms are proposed. Dynamic consolida-
tion aims at reducing the number of hosts used and is usually
based on virtual machine migrations. Migration overhead has
to be taken into account as the overheads due to powering
on and off a node. Entropy [24] is a resource manager which
performs dynamic consolidation taking into account migration
overhead. Entropy periodically optimizes the VM placement
as in our approach. The difference is that we also take into
account on/off overheads. In [25], the authors detect underload
and overload conditions and dynamically solve them. It pro-
vides a framework for dynamic consolidation of VMs based
on the OpenStack platform. In [26], they propose an energy-
aware algorithm based on a pareto multi-objective approach
dealing with both energy consumption and Service Level



Agreement (SLA). Other heuristics use genetic algorithms [12]
to find a near optimal task placement. In [27], they present
a multi-objective genetic algorithm that optimizes the energy
consumption, CO2 emissions and the generated profit of a
geographically distributed cloud computing infrastructure. Our
contribution takes the advantages of fast mapping heuristics
while retaining the quality of a genetic algorithm for host
management strategy.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have studied energy efficiency at the
middleware level through mapping algorithm and green lever-
ages: server states (on/off) and migration. We have proposed
a host management policy to minimize the overheads. The
host management policy aims at correctly provisioning the
number of machines to power on. The policy proposed is
based on a genetic algorithm and is periodically used with a
consolidation algorithm. We have evaluated for different loads
the performance of the genetic algorithm compared to other
provisionning policies and to other mapping heuristics. The
performance is better and helps to reduce energy consumption
while keeping a good QoS. The originality of this work is
the proposal of a regression formula computed with a genetic
algorithm. In future work we plan to propose new mapping
algorithm, long term prediction and add other green leverages.
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