Andreas Herzig

Laurent Perrussel

Zhanhao Xiao
email: zhanhaoxiao@gmail.com

On Hierarchical Task Networks

In planning based on hierarchical task networks (HTN), plans are generated by refining high-level actions ('compound tasks') into lower-level actions, until primitive actions are obtained that can be sent to execution. While a primitive action is defined by its precondition and effects, a high-level action is defined by zero, one or several methods: sets of (high-level or primitive) actions decomposing it together with a constraint. We give a semantics of HTNs in terms of dynamic logic with program inclusion. We propose postulates guaranteeing soundness and completeness of action refinement. We also show that hybrid planning can be analysed in the same dynamic logic framework.

Introduction

The two main approaches to deterministic AI planning are classical state-based planning [START_REF] Nau | Automated Planning: Theory & Practice[END_REF] and Hierarchical Task Network (HTN) planning [START_REF] Erol | HTN planning: complexity and expressivity[END_REF]. The former is based on action preconditions and effects. The latter is based on domain-specific heuristics about the decomposition of high-level actions ('compound tasks') into lower-level actions, until primitive actions ('primitive tasks') are obtained. It has no generally agreed semantics [START_REF] Goldman | A semantics for HTN methods[END_REF]. We here propose a semantics in terms of an extension of Propositional Dynamic Logic PDL [START_REF] Harel | Dynamic Logic[END_REF] by a program inclusion operator. This framework sheds light on a problem that had not been investigated before: the soundness of HTN domain descriptions.

Let us illustrate HTNs and the soundness issue by an abstract example. Suppose the only method for high-level action α is α, {(β, t)}(t, p) . The couple {(β, t)}(t, p) is a task network : (β, t) instantiates the action β by the temporal label t, and the constraint (t, p) stipulates that p should be true immediately after t. So the only way to perform α is by performing β, with postcondition p. Suppose moreover that β is also a high-level action and that its only method is β, {(b, t ′)}(t ′ , ¬p) . So the only way to perform β is to apply b, with postcondition ¬p. No task involving α can ever be solved, and we call such an HTN domain description unsound. It is reasonable to expect HTN domain descriptions not to contain unsound methods. This is a simple example, and more complex unsound methods can be designed. In this paper we show that PDL provides a framework where we can characterise sound domain descriptions. The PDL semantics also allows us to study whether the set of methods for a high-level action α is complete, in the sense that when the precondition of α is true then there is a method for α that is executable.

Beyond traditional HTN planning, we can show that PDL with program inclusion also provides a semantics for so-called hybrid planning. There, domain descriptions have preconditions and effects not only for primitive actions, but also for high-level actions. Following [START_REF] Kambhampati | Integrating general purpose planners and specialized reasoners: case study of a hybrid planning architecture[END_REF][START_REF] Kambhampati | Hybrid planning for partially hierarchical domains[END_REF], we consider that the effect of a high-level action is its main, primary effect. Indeed, it is not obvious to describe the effects of a high-level action α exhaustively. One of the reasons is that these effects depend on the way α is refined. For example, consider the high-level action of building a house. While its primary effect is that I have a house, its side effects depend on whether I build the house myself or hire a builder: I either have a bad back, or an empty bank account. We therefore consider that non-primitive actions are not described by their effects but only by their postconditions.

Our paper is organised as follows. In Sect. 2 we define PDL. In Sect. 3 we define HTN planning domains in PDL. In Sect. 4 we propose postulates of soundness, completeness and modularity. Section 5 concludes. 1

PDL with Inclusion of Programs

We define syntax and semantics of a version of Propositional Dynamic Logic PDL having intersection and inclusion of programs and, for simplicity, with only boolean tests. Let Prp be a finite set of propositional variables, with typical elements p, q,. . . The set of boolean formulas built from Prp is noted Fml bool . Let Act be a finite set of actions, with typical elements α, β,. . . In examples we use capital letters for propositional variables (such as HasHouse) and small letters for actions (such as buildHouse).

The set of programs Pgm PDL is defined by the following grammar:

π ::= α | π; π | π ⊔ π | π ⊓ π | π * | ϕ 0 ?
where α ∈ Act and ϕ 0 ∈ Fml bool . The program operators ";", "⊔", and "⊓" are sequential, nondeterministic and parallel composition, " * " is bounded iteration, and "?" is test. The set of formulas Fml PDL is defined by:

ϕ ::= p | ⊥ | ϕ → ϕ | π ϕ | π⊑π π ϕ reads "
there is a possible execution of π after which ϕ is true" and π ′ ⊑π reads "every execution of π ′ is also an execution of π". Subsets of Fml PDL are called theories. As usual, [π]ϕ abbreviates ¬ π ¬ϕ.

A model is a triple M = W, R, V where W is a non-empty set of possible worlds, R : Pgm PDL -→ 2 W ×W associates accessibility relations R π to programs, and V : Prp -→ 2 W is a valuation. The function R must satisfy some constraints:

R π 1 ;π 2 = R π 1 • R π 2 R π * = (R π) * R π 1 ⊔π 2 = R π 1 ∪ R π 2 R ϕ 0 ? = { w, w : M, w ϕ 0 } R π 1 ⊓π 2 = R π 1 ∩ R π 2
Letting R π (w) = {v : w, v ∈ R π }, the truth conditions for formulas are:

M, w p iff w ∈ V (p) M, w ϕ → ϕ ′ iff M, w ϕ or M, w ϕ ′ M, w ⊥ M, w π ϕ iff M, v ϕ for some v ∈ R π (w) M, w π⊑π ′ iff R π (w) ⊆ R π ′ (w)
For Γ ⊆ Fml PDL , we define Γ |= ϕ as: for every model M , if M ψ for every ψ ∈ Γ then M ϕ, where M ϕ stands for: M, w ϕ for all w ∈ W .

HTN Planning in the PDL Framework

HTN planning presupposes that the set of actions Act is partitioned into two sets: the set of primitive actions Act 0 and the set of high-level actions Act\Act 0 . We use a, b, . . . for typical elements of Act 0 (and, as before, α, β, . . . for arbitrary elements of Act). A primitive plan is a sequence of primitive actions. A primitive program is a program where only elements of Act 0 occur.

We suppose that all actions have pre-and postconditions. The postconditions of primitive actions describe STRIPS-like effects in terms of add-and delete-lists. Non-primitive actions can have arbitrary boolean formulas as an postconditions. For example, the high-level action of leaving France may have postcondition ¬InFrance ∧ (InGermany ∨ InChina ∨ . . .). In traditional HTNs, high-level actions have no postcondition, which can be captured by setting them to ⊤. The last three actions are primitive. Note that Post(goAB) does not mention the possible effect ¬Money, which is only produced when goAB is refined to taxiAB.

HTN Planning Domains

An HTN planning domain is captured in PDL by the following theory:

Fml(Pre) = { α ⊤ ↔ Pre(α) : α ∈ Act} Fml(Post) = {[α]Post(α) : α ∈ Act} ∪ { p → [a]p : a ∈ Act 0 and p / ∈ eff -(a)} ∪ {¬p → [a]¬p : a ∈ Act 0 and p / ∈ eff + (a)} Fml(Ref) = { α ⊤ → π⊑α : α ∈ Act, π ∈ Ref(α)}
So primitive actions behave like STRIPS actions, while high-level actions are less constrained, leaving room for conditional effects and other side effects. The theory of an HTN planning domain is Fml(D htn) = Fml(Pre) ∪ Fml(Post) ∪ Fml(Ref).

HTN Planning Problems and Their Solutions

A HTN planning problem is a triple P htn = D htn , I, π where D htn is an HTN planning domain, I ∈ Fml bool is a boolean formula, and π ∈ Pgm PDL is a program ('initial task network'). For our travelling domain we may e.g. have D AB htn , I, goAB with I = AtA ∧ ¬AtB ∧ Money. (Usually I is a complete description of a state, but this is not necessary here.)

Traditionally, solutions of P htn are obtained by a fixed-point definition, in three steps. First, the reduction of a program π is:

red(D htn , π) = {π α Pre(α)?;π ′ : α occurs in π and π ′ ∈ Ref(α)}
where π α Pre(α)?;π ′ is obtained from π by replacing some occurrence of α in π by Pre(α)?; π ′ . For the introductory example: red(D htn , (β; p?)) = {(b; ¬p?; p?)}. Second, for a primitive π 0 we define its completion as follows:

compl(D htn , I, π 0) = {a 1 ;• • •;a n : Fml(Post) |= I → (a 1 ;• • •;a n) ⊓ π 0 ⊤}
For example, compl(D htn , I, (b; ¬p?; p?)) = ∅. Third, the solutions of an HTN planning problem are primitive plans that are defined recursively as follows:

sol 1 (D htn , I, π) = compl(D htn , I, π) if π is primitive ∅ otherwise sol k+1 (D htn , I, π) = sol k (D htn , I, π) ∪ π ′ ∈red(D htn ,π) sol k (D htn , I, π ′)
Letting sol(D htn , I, π) = k sol k (D htn , I, π) we are able to connect the traditional solutions of HTN planning problems and logical consequence in PDL:

Theorem 1. If a 1 ;• • •;a n ∈ sol(D htn , I, π) then Fml(D htn) |=I→ (a 1 ;• • •;a n)⊓π ⊤.

Rationality Postulates for HTN Planning

We now introduce postulates of refinement soundness and completeness. Further postulates of modularity are discussed in the long report. When α is executable then all refinements of α should guarantee the postconditions of α. This has to be conditioned: if Pre(α) is false then there is no point in refining. Clearly, a reasonable HTN domain should be such that every action is soundly refinable at every pointed model (M, w). This can be characterised in PDL. One may also define complete refinability: when the precondition of a highlevel action is true then there should be a way of refining it. Definition 2. High-level action α ∈ Act\Act 0 is completely refinable at (M, w) if and only if either M, w Pre(α) or there is a π ∈ Ref(α) such that R π (w) = ∅.

In other words, as long as the precondition of α is true, one of the programs refining α should be executable. As discussed in [START_REF] Kambhampati | Hybrid planning for partially hierarchical domains[END_REF], even when some refinement is physically possible, there may be reasons for not including it in the Ref function. There are two possible such reasons: either the refinement is legally impossible, or it is not preferred. This former case of incompleteness can be illustrated with the help of Example 1: the primitive plan rideAB of taking the taxi without paying also achieves the postconditions of goAB. However, the domain designer did not want to allow such a refinement and deliberately omitted it from Ref(goAB).

Complete refinability can be weakened by requiring refinability unless there is no primitive plan achieving the postconditions of α. This is similar to what is called planner completeness in [START_REF] Kambhampati | Hybrid planning for partially hierarchical domains[END_REF], which, as we understand it, requires that every solution that can be obtained by a classical planner is also obtainable by the HTN planner.

Conclusion

We have proposed a representation of HTN in PDL with program inclusion, identifying HTN methods with PDL programs. We have formulated soundness and completeness postulates and have characterised them in PDL. It is clear that methods with linear constraints can be expressed in this way by sequential composition and tests. We leave the exact correspondence with more general constraints to future work and just note that the PDL program operators are expressive enough to capture the standard examples in the literature. Given results on grammar logics [START_REF] Del Cerro | Grammar logics[END_REF][START_REF] Demri | The complexity of regularity in grammar logics and related modal logics[END_REF], our extension of PDL is undecidable, and it can be conjectured that fragments corresponding to regular grammars are decidable. Previous work embedding HTN in the Situation Calculus [START_REF] Baral | Extending ConGolog to allow partial ordering[END_REF][START_REF] Gabaldon | Programming hierarchical task networks in the situation calculus[END_REF][START_REF] Goldman | A semantics for HTN methods[END_REF] is discussed in more detail in the long report. Relations between HTN planning with the semantics of BDI logics are investigated in [START_REF] De Silva | First principles planning in BDI systems[END_REF][START_REF] Herzig | BDI logics for BDI architectures: old problems, new perspectives[END_REF][START_REF] Herzig | Refinement of intentions[END_REF][START_REF] Sardina | Hierarchical planning in BDI agent programming languages: a formal approach[END_REF].

AnExample 1 .

 1 HTN planning domain is a couple D htn = Pre, Post, Ref where Pre, Post : Act -→ Fml bool and Ref : Act -→ 2 Pgm PDL such that for every a ∈ Act 0 , Ref(a) = ∅ and Post(a) is of the form p∈eff + (a) p ∧ p∈eff -(a) ¬p , for some eff + (a) and eff -(α) such that eff + (a)∩eff -(a) = ∅. The refinement function Ref associates to each α its methods: the set of programs refining α. For the introductory example we have Ref(α) = {(β; p?)}, Ref(β) = {(b; ¬p?)}, Ref(b) = ∅, and, say, that all pre-and postconditions equal ⊤, except that Post(b) = ¬p. An domain that can be found in almost all papers on HTN is that of an agent travelling from A to B: Pre(goAB) = AtA Post(goAB) = AtB Ref(goAB) = {taxiAB, walkAB} Pre(taxiAB) = AtA Post(taxiAB) = AtB Ref(taxiAB) = {(rideAB; pay)} Pre(walkAB) = AtA Post(walkAB) = AtB∧¬AtA Ref(walkAB) = ∅ Pre(rideAB) = AtA Post(rideAB) = AtB∧¬AtA Ref(rideAB) = ∅ Pre(pay) = Money Post(pay) = ¬Money Ref(pay) = ∅

Definition 1 .

 1 Action α is soundly refinable at (M, w) if and only if either M, w Pre(α) or for every π ∈ Ref(α) and v ∈ R π (w), M, v Post(α).

Theorem 2 .

 2 Let D htn be an HTN domain. An action α ∈ Act is soundly refinable at every pointed model (M, w) iff Fml(D htn) |= Pre(α) → Ref(α) Post(α).

Theorem 3 .

 3 An action α ∈ Act \ Act 0 is completely refinable at every pointed model (M, w) iff Fml(D htn) |= Pre(α) → Ref(α) ⊤.

 It can be characterized by the PDL formula Fml(D htn) |= Pre(α) ∧ Act 0 * Post(α) → Ref(α) ⊤.

Our work is supported by CSC and CIMI. Thanks are due to the JELIA

reviewers for their thorough comments. A long version of the paper with formal results and proofs is at www.irit.fr/ ∼ Andreas.Herzig/P/Jelia16htn.html.