
HAL Id: hal-01692705
https://hal.science/hal-01692705

Submitted on 25 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On hierarchical task networks
Andreas Herzig, Laurent Perrussel, Zhanhao Xiao

To cite this version:
Andreas Herzig, Laurent Perrussel, Zhanhao Xiao. On hierarchical task networks. 15th European
Conference On Logics In Artificial Intelligence (JELIA 2016), Nov 2016, Larnaca, Cyprus. pp. 551-
557. �hal-01692705�

https://hal.science/hal-01692705
https://hal.archives-ouvertes.fr

Open Archive TOULOUSE Archive Ouverte (OATAO)
OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in : http://oatao.univ-toulouse.fr/
Eprints ID : 18803

The contribution was presented at JELIA 2016 :
http://www.cyprusconferences.org/jelia2016/

To cite this version : Herzig, Andreas and Perrussel, Laurent
and Xiao, Zhanhao On hierarchical task networks. (2016) In:
15th European Conference On Logics In Artificial Intelligence
(JELIA 2016), 9 November 2016 - 11 November 2016
(Larnaca, Cyprus).

Any correspondence concerning this service should be sent to the repository

administrator: staff-oatao@listes-diff.inp-toulouse.fr

On Hierarchical Task Networks

Andreas Herzig1, Laurent Perrussel1, and Zhanhao Xiao1,2(B)

1 University of Toulouse, IRIT, Toulouse, France
zhanhaoxiao@gmail.com

2 AIRG, Western Sydney University, Penrith, Australia

Abstract. In planning based on hierarchical task networks (HTN),
plans are generated by refining high-level actions (‘compound tasks’)
into lower-level actions, until primitive actions are obtained that can be
sent to execution. While a primitive action is defined by its precondition
and effects, a high-level action is defined by zero, one or several methods:
sets of (high-level or primitive) actions decomposing it together with a
constraint. We give a semantics of HTNs in terms of dynamic logic with
program inclusion. We propose postulates guaranteeing soundness and
completeness of action refinement. We also show that hybrid planning
can be analysed in the same dynamic logic framework.

1 Introduction

The two main approaches to deterministic AI planning are classical state-based
planning [13] and Hierarchical Task Network (HTN) planning [5]. The former is
based on action preconditions and effects. The latter is based on domain-specific
heuristics about the decomposition of high-level actions (‘compound tasks’) into
lower-level actions, until primitive actions (‘primitive tasks’) are obtained. It has
no generally agreed semantics [7]. We here propose a semantics in terms of an
extension of Propositional Dynamic Logic PDL [8] by a program inclusion oper-
ator. This framework sheds light on a problem that had not been investigated
before: the soundness of HTN domain descriptions.

Let us illustrate HTNs and the soundness issue by an abstract example. Sup-
pose the only method for high-level action α is 〈α, 〈{(β, t)}(t, p)〉〉. The couple
〈{(β, t)}(t, p)〉 is a task network : (β, t) instantiates the action β by the temporal
label t, and the constraint (t, p) stipulates that p should be true immediately
after t. So the only way to perform α is by performing β, with postcondition p.
Suppose moreover that β is also a high-level action and that its only method
is 〈β, 〈{(b, t′)}(t′,¬p)〉〉. So the only way to perform β is to apply b, with post-
condition ¬p. No task involving α can ever be solved, and we call such an HTN
domain description unsound. It is reasonable to expect HTN domain descriptions
not to contain unsound methods. This is a simple example, and more complex
unsound methods can be designed. In this paper we show that PDL provides
a framework where we can characterise sound domain descriptions. The PDL

semantics also allows us to study whether the set of methods for a high-level

c© Springer International Publishing AG 2016
L. Michael and A. Kakas (Eds.): JELIA 2016, LNAI 10021, pp. 551–557, 2016.
DOI: 10.1007/978-3-319-48758-8 38

552 A. Herzig et al.

action α is complete, in the sense that when the precondition of α is true then
there is a method for α that is executable.

Beyond traditional HTN planning, we can show that PDL with program
inclusion also provides a semantics for so-called hybrid planning. There, domain
descriptions have preconditions and effects not only for primitive actions, but
also for high-level actions. Following [11,12], we consider that the effect of a
high-level action is its main, primary effect. Indeed, it is not obvious to describe
the effects of a high-level action α exhaustively. One of the reasons is that these
effects depend on the way α is refined. For example, consider the high-level action
of building a house. While its primary effect is that I have a house, its side effects
depend on whether I build the house myself or hire a builder: I either have a
bad back, or an empty bank account. We therefore consider that non-primitive
actions are not described by their effects but only by their postconditions.

Our paper is organised as follows. In Sect. 2 we define PDL. In Sect. 3 we define
HTN planning domains in PDL. In Sect. 4 we propose postulates of soundness,
completeness and modularity. Section 5 concludes.1

2 PDL with Inclusion of Programs

We define syntax and semantics of a version of Propositional Dynamic Logic
PDL having intersection and inclusion of programs and, for simplicity, with only
boolean tests. Let Prp be a finite set of propositional variables, with typical
elements p, q,. . . The set of boolean formulas built from Prp is noted Fmlbool.
Let Act be a finite set of actions, with typical elements α, β,. . . In examples
we use capital letters for propositional variables (such as HasHouse) and small
letters for actions (such as buildHouse).

The set of programs PgmPDL is defined by the following grammar:

π ::=α | π;π | π ⊔ π | π ⊓ π | π∗ | ϕ0?

where α ∈ Act and ϕ0 ∈ Fmlbool. The program operators “;”, “⊔”, and “⊓” are
sequential, nondeterministic and parallel composition, “∗” is bounded iteration,
and “?” is test. The set of formulas FmlPDL is defined by:

ϕ ::= p | ⊥ | ϕ → ϕ | 〈π〉ϕ | π⊑π

〈π〉ϕ reads “there is a possible execution of π after which ϕ is true” and π′⊑π

reads “every execution of π′ is also an execution of π”. Subsets of FmlPDL are
called theories. As usual, [π]ϕ abbreviates ¬〈π〉¬ϕ.

A model is a triple M = 〈W,R, V 〉 where W is a non-empty set of possible
worlds, R : PgmPDL −→ 2W×W associates accessibility relations Rπ to programs,
and V : Prp −→ 2W is a valuation. The function R must satisfy some constraints:

1 Our work is supported by CSC and CIMI. Thanks are due to the JELIA 2016
reviewers for their thorough comments. A long version of the paper with formal
results and proofs is at www.irit.fr/∼Andreas.Herzig/P/Jelia16htn.html.

On Hierarchical Task Networks 553

Rπ1;π2
= Rπ1

◦ Rπ2
Rπ∗ = (Rπ)∗

Rπ1⊔π2
= Rπ1

∪ Rπ2
Rϕ0? = {〈w,w〉 : M,w � ϕ0}

Rπ1⊓π2
= Rπ1

∩ Rπ2

Letting Rπ(w) = {v : 〈w, v〉 ∈ Rπ}, the truth conditions for formulas are:

M,w � p iff w ∈ V (p) M,w � ϕ → ϕ′ iff M,w
� ϕ or M,w � ϕ′

M,w
� ⊥ M,w � 〈π〉ϕ iff M,v � ϕ for some v ∈ Rπ(w)
M,w � π⊑π′ iff Rπ(w) ⊆ Rπ′(w)

For Γ ⊆ FmlPDL, we define Γ |= ϕ as: for every model M , if M � ψ for every
ψ ∈ Γ then M � ϕ, where M � ϕ stands for: M,w � ϕ for all w ∈ W .

3 HTN Planning in the PDL Framework

HTN planning presupposes that the set of actions Act is partitioned into two
sets: the set of primitive actions Act0 and the set of high-level actions Act\Act0.
We use a, b, . . . for typical elements of Act0 (and, as before, α, β, . . . for arbitrary
elements of Act). A primitive plan is a sequence of primitive actions. A primitive

program is a program where only elements of Act0 occur.
We suppose that all actions have pre- and postconditions. The postconditions

of primitive actions describe STRIPS-like effects in terms of add- and delete-lists.
Non-primitive actions can have arbitrary boolean formulas as an postconditions.
For example, the high-level action of leaving France may have postcondition
¬InFrance ∧ (InGermany ∨ InChina ∨ . . .). In traditional HTNs, high-level actions
have no postcondition, which can be captured by setting them to ⊤.

3.1 HTN Planning Domains

An HTN planning domain is a couple Dhtn = 〈Pre,Post,Ref〉 where Pre,Post :
Act −→ Fmlbool and Ref : Act −→ 2PgmPDL such that for every a ∈ Act0, Ref(a) =
∅ and Post(a) is of the form

(
∧

p∈eff+(a) p
)

∧
(
∧

p∈eff−(a) ¬p
)

, for some eff+(a) and

eff−(α) such that eff+(a)∩eff−(a) = ∅. The refinement function Ref associates to
each α its methods: the set of programs refining α. For the introductory example
we have Ref(α) = {(β; p?)}, Ref(β) = {(b;¬p?)}, Ref(b) = ∅, and, say, that all
pre- and postconditions equal ⊤, except that Post(b) = ¬p.

Example 1. An domain that can be found in almost all papers on HTN is that
of an agent travelling from A to B:

Pre(goAB) = AtA Post(goAB) = AtB Ref(goAB) = {taxiAB, walkAB}

Pre(taxiAB) = AtA Post(taxiAB) = AtB Ref(taxiAB) = {(rideAB; pay)}

Pre(walkAB) = AtA Post(walkAB) = AtB∧¬AtA Ref(walkAB) = ∅

Pre(rideAB) = AtA Post(rideAB) = AtB∧¬AtA Ref(rideAB) = ∅

Pre(pay) = Money Post(pay) = ¬Money Ref(pay) = ∅

554 A. Herzig et al.

The last three actions are primitive. Note that Post(goAB) does not mention the
possible effect ¬Money, which is only produced when goAB is refined to taxiAB.

An HTN planning domain is captured in PDL by the following theory:

Fml(Pre) = {〈α〉⊤ ↔ Pre(α) : α ∈ Act}

Fml(Post) = {[α]Post(α) : α ∈ Act} ∪ { p → [a]p : a ∈ Act0 and p /∈ eff
−(a)}

∪ {¬p → [a]¬p : a ∈ Act0 and p /∈ eff
+(a)}

Fml(Ref) = {〈α〉⊤ → π⊑α : α ∈ Act, π ∈ Ref(α)}

So primitive actions behave like STRIPS actions, while high-level actions are less
constrained, leaving room for conditional effects and other side effects. The the-
ory of an HTN planning domain is Fml(Dhtn) = Fml(Pre)∪Fml(Post)∪Fml(Ref).

3.2 HTN Planning Problems and Their Solutions

A HTN planning problem is a triple Phtn = 〈Dhtn, I, π〉 where Dhtn is an HTN
planning domain, I ∈ Fmlbool is a boolean formula, and π ∈ PgmPDL is a
program (‘initial task network’). For our travelling domain we may e.g. have
〈DAB

htn, I, goAB〉 with I = AtA ∧ ¬AtB ∧ Money. (Usually I is a complete descrip-
tion of a state, but this is not necessary here.)

Traditionally, solutions of Phtn are obtained by a fixed-point definition, in
three steps. First, the reduction of a program π is:

red(Dhtn, π) = {πα
Pre(α)?;π′ : α occurs in π and π′ ∈ Ref(α)}

where πα
Pre(α)?;π′ is obtained from π by replacing some occurrence of α in π

by Pre(α)?;π′. For the introductory example: red(Dhtn, (β; p?)) = {(b;¬p?; p?)}.
Second, for a primitive π0 we define its completion as follows:

compl(Dhtn, I, π0) = {a1;· · ·;an : Fml(Post) |= I → 〈(a1;· · ·;an) ⊓ π0〉⊤}

For example, compl(Dhtn, I, (b;¬p?; p?)) = ∅. Third, the solutions of an HTN
planning problem are primitive plans that are defined recursively as follows:

sol1(Dhtn, I, π) =

{

compl(Dhtn, I, π) if π is primitive

∅ otherwise

solk+1(Dhtn, I, π) = solk(Dhtn, I, π) ∪
⋃

π′∈red(Dhtn,π)

solk(Dhtn, I, π
′)

Letting sol(Dhtn, I, π) =
⋃

k solk(Dhtn, I, π) we are able to connect the traditional
solutions of HTN planning problems and logical consequence in PDL:

Theorem 1. If a1;· · ·;an ∈sol(Dhtn, I, π) then Fml(Dhtn) |=I→〈(a1;· · ·;an)⊓π〉⊤.

On Hierarchical Task Networks 555

4 Rationality Postulates for HTN Planning

We now introduce postulates of refinement soundness and completeness. Further
postulates of modularity are discussed in the long report.

When α is executable then all refinements of α should guarantee the post-
conditions of α. This has to be conditioned: if Pre(α) is false then there is no
point in refining.

Definition 1. Action α is soundly refinable at (M,w) if and only if either

M,w
� Pre(α) or for every π ∈ Ref(α) and v ∈ Rπ(w), M,v � Post(α).

Clearly, a reasonable HTN domain should be such that every action is soundly
refinable at every pointed model (M,w). This can be characterised in PDL.

Theorem 2. Let Dhtn be an HTN domain. An action α ∈ Act is soundly refin-

able at every pointed model (M,w) iff Fml(Dhtn) |= Pre(α) →
[
⊔

Ref(α)
]

Post(α).

One may also define complete refinability: when the precondition of a high-
level action is true then there should be a way of refining it.

Definition 2. High-level action α ∈ Act\Act0 is completely refinable at (M,w)
if and only if either M,w
� Pre(α) or there is a π ∈ Ref(α) such that Rπ(w)
= ∅.

In other words, as long as the precondition of α is true, one of the programs
refining α should be executable.

Theorem 3. An action α ∈ Act \ Act0 is completely refinable at every pointed

model (M,w) iff Fml(Dhtn) |= Pre(α) →
〈
⊔

Ref(α)
〉

⊤.

As discussed in [12], even when some refinement is physically possible, there may
be reasons for not including it in the Ref function. There are two possible such
reasons: either the refinement is legally impossible, or it is not preferred. This
former case of incompleteness can be illustrated with the help of Example 1:
the primitive plan rideAB of taking the taxi without paying also achieves the
postconditions of goAB. However, the domain designer did not want to allow
such a refinement and deliberately omitted it from Ref(goAB).

Complete refinability can be weakened by requiring refinability unless there

is no primitive plan achieving the postconditions of α. This is similar to what
is called planner completeness in [12], which, as we understand it, requires that
every solution that can be obtained by a classical planner is also obtainable by
the HTN planner. It can be characterized by the PDL formula

Fml(Dhtn) |=
(

Pre(α) ∧
〈(

⊔

Act0

)∗〉
Post(α)

)

→
〈
⊔

Ref(α)
〉

⊤.

5 Conclusion

We have proposed a representation of HTN in PDL with program inclusion,
identifying HTN methods with PDL programs. We have formulated soundness
and completeness postulates and have characterised them in PDL. It is clear

556 A. Herzig et al.

that methods with linear constraints can be expressed in this way by sequential
composition and tests. We leave the exact correspondence with more general
constraints to future work and just note that the PDL program operators are
expressive enough to capture the standard examples in the literature. Given
results on grammar logics [2,4], our extension of PDL is undecidable, and it can
be conjectured that fragments corresponding to regular grammars are decidable.

Previous work embedding HTN in the Situation Calculus [1,6,7] is discussed
in more detail in the long report. Relations between HTN planning with the
semantics of BDI logics are investigated in [3,9,10,14].

References

1. Baral, C., Son, T.C.: Extending ConGolog to allow partial ordering. In: Jennings,
N.R., Lespérance, Y. (eds.) ATAL 1999. LNCS (LNAI), vol. 1757, pp. 188–204.
Springer, Heidelberg (2000). doi:10.1007/10719619 14

2. del Cerro, L.F., Penttonen, M.: Grammar logics. Logique Et Analyse 31(121–122),
123–134 (1988)

3. De Silva, L., Sardina, S., Padgham, L.: First principles planning in BDI systems.
In: Proceedings of the 8th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), vol. 2, pp. 1105–1112. International Foundation
for Autonomous Agents and Multiagent Systems (2009)

4. Demri, S.: The complexity of regularity in grammar logics and related modal log-
ics. J. Log. Comput. 11(6), 933–960 (2001). http://dx.doi.org/10.1093/logcom/
11.6.933

5. Erol, K., Hendler, J., Nau, D.S.: HTN planning: complexity and expressivity. In:
Proceedings of the 12th National Conference on Artificial Intelligence (AAAI), vol.
94, pp. 1123–1128 (1994)

6. Gabaldon, A.: Programming hierarchical task networks in the situation calculus. In:
Proceedings of the 5th International Conference on Artificial Intelligence Planning
and Scheduling Systems Workshop on On-line Planning and Scheduling (2002)

7. Goldman, R.P.: A semantics for HTN methods. In: Gerevini, A., Howe, A.E., Cesta,
A., Refanidis, I. (eds.) Proceedings of the 19th International Conference on Auto-
mated Planning and Scheduling, (ICAPS). AAAI (2009)

8. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
9. Herzig, A., Lorini, E., Perrussel, L., Xiao, Z.: BDI logics for BDI architectures: old

problems, new perspectives. Künstliche Intelligenz (to appear)
10. Herzig, A., Perrussel, L., Xiao, Z., Zhang, D.: Refinement of intentions. In: Michael,

L., Kakas, A.C. (eds.) JELIA 2016. LNCS (LNAI), vol. 10021, pp. xx–yy. Springer,
Heidelberg (2016)

11. Kambhampati, S., Cutkosky, M.R., Tenenbaum, J.M., Lee, S.H.: Integrating gen-
eral purpose planners and specialized reasoners: case study of a hybrid planning
architecture. IEEE Trans. Syst. Man Cybern. 23(6), 1503–1518 (1993)

12. Kambhampati, S., Mali, A., Srivastava, B.: Hybrid planning for partially hierar-
chical domains. In: Proceedings of the 17th National Conference on Artificial Intel-
ligence and 12th Conference on Innovative Applications of Artificial Intelligence
(AAAI/IAAI), pp. 882–888 (1998)

On Hierarchical Task Networks 557

13. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory & Practice.
Morgan Kaufmann Publishers Inc., San Francisco (2004)

14. Sardina, S., de Silva, L., Padgham, L.: Hierarchical planning in BDI agent pro-
gramming languages: a formal approach. In: Proceedings of the 5th International
Conference on Autonomous Agents and Multiagent Systems, pp. 1001–1008. ACM
(2006)

