Quentin Perret

Pascal Maurère

Éric Noulard

Claire Pagetti

Pascal Sainrat

Benoît Triquet

Mapping hard real-time applications on many-core processors

Many-core processors are interesting candidates for the design of modern avionics computers. Indeed, the computational power offered by such platforms opens new horizons to design more demanding systems and to integrate more applications on a single target. However, they also bring challenging research topics because of their lack of predictability and their programming complexity. In this paper, we focus on the problem of mapping large applications on a complex platform such as the Kalray mppa R -256 while maintaining a strong temporal isolation from co-running applications. We propose a constraint programming formulation of the mapping problem that enables an efficient parallelization and we demonstrate the ability of our approach to deal with large problems using a real world case study.

INTRODUCTION

Many-core processors are a potential technology for aerospace industry as long as there is a way to certify them according to aeronautics standards, in particular with:

• DO 178 B/C [START_REF]C: Software considerations in airborne systems and equipment certification[END_REF] which imposes that the WCET of any application can be computed;

• DO 297 [START_REF]297: Software, electronic, integrated modular avionics (ima) development guidance and certification considerations[END_REF] which states that mixed-critical applications can execute on the same resource as long as they are strongly segregated, in the sense that an application cannot interfere with others even in the presence of failures;

• CAST-32 [START_REF]Position Paper on Multi-core Processors -CAST-32[END_REF] and FAA white paper [START_REF] Jean | White Paper on Issues Associated with Interference Applied to Multicore Processors[END_REF] which detail how temporal interferences affect the safety and why mitigation means against those interferences are mandatory, when executing on multi-core COTS processors.

Because of the architecture of many-core chips, computing WCET requires to be able to bound safely the interference delays on shared resources [START_REF] Wilhelm | Embedded systems: Many cores -many problems[END_REF] meanwhile ensuring segregation imposes that execution times must not vary whatever the co-running applications do.

Temporal isolation-based framework

The overall framework workflow is shown in Figure 1. When implementing several applications on the same target (single or multi/many-core chips), two stakeholders interact: on the one hand, the application designers are in charge of developing their application and on the other hand, the platform integrator is in charge of integrating the different applications on the shared platform. In [START_REF] Perret | Temporal isolation of hard real-time applications on many-core processors[END_REF], we proposed an approach to implement real-time safety-critical applications on a many-core target in such a way that strict temporal guarantees are ensured whatever the behaviour of other applications sharing the resources is. The approach is based on a four-rules execution model to be followed by the developers (application designers and platform integrator) to avoid any unpredictable or non-segregated behaviours. Some of the rules are enforced by an off-line mapping and computation, while others are ensured by a bare-metal hypervisor that we developed. That initial work concerned mostly the activities of the platform integrator. More precisely, given an abstract view of applications in the form of a set of application budgets, the integrator maps offline during the Allocate phase the budgets on the target, while respecting the execution model. The output is both the computed mapping and the associated code (memory allocation, boot code of the cores and schedule of budgets). Given the application internal execution in the budget, the applications can then run on the target.

Contribution

In this paper, we focus on the application designers activity which is modified due to the use of a many-core platform. The purpose is to help them provide their budget. More specifically, each application (App) is defined as a set of multi-periodic communicating tasks and is wrapped in a single partition. A partition also contains an application budget (Bud) which is an abstraction of the application that represents the needs in terms of resources (memory, CPU, communication and IOs). The budget is the interface format between the application designer and the platform integrator. Indeed, the latter does not need a complete knowledge of each application to share the platform.

Before explaining how to obtain a budget, we first recall the platform model, the execution model and the application definition in section 2. We then detail some basic formulas to derive a minimal budget (see section 3). However, it is up to the application designer to define its budget. Then, we propose a constraint programming approach to validate a given budget (see section 4). A budget is considered as valid when it enables a correct implementation of the application for both functional and non-functional requirements. During the validate phase, we compute a complete schedule of the application in its budget. This schedule can be distributed over several cores and includes not only the mapping of tasks on cores but also the tight management of the communication over the Network on Chip (NoC). Once a correct schedule has been found, the user can then decide to keep it or to optimize it by changing some parameters (ex: the number of cores, the length of the time-slices, . . .). A second output is the internal budget code. In section 5, we illustrate the applicability and the scalability of the constraint programming approach. We then present the related work and conclude.

SYSTEM MODEL

Hardware platform

Overview

The Kalray mppa R -256 (Bostan version) integrates 288 cores distributed over 16 Compute Clusters and 4 I/O clusters interconnected by a dual Network on Chip (or NoC), as shown in Figure 2. The 16 compute clusters are dedicated to run user applications while the I/O clusters serve as interfaces with the out-chip components such as the DDR-SDRAM. All cores are identical 32-bits VLIW processors integrating complex components such as a private MMU (Memory Management Unit) enabling both virtual addressing and memory protection.

Compute and I/O Clusters

Each compute cluster is composed of 16 cores (named PEs), 1 specific core used for resource management (RM), 2MiB of Static Random Access Memory (or SRAM) exclusively accessible by the elements of the cluster and 1 DMA engine to transfer data between clusters over the NoC. The local SRAM is organised in 16 memory banks that can be accessed in parallel without inter-core interferences.

Each I/O cluster integrates 4 RMs, 4 DMAs (capable of sending data through 4 different NoC access points) and several additional peripherals such as a DDR-SDRAM controller or an Ethernet controller.

South IO Cluster

North IO Cluster

West IO Cluster

East IO Cluster

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R n 0 R n 1 R n 2 R n 3 R s 0 R s 1 R s 2 R s 3 R w 0 R w 1 R w 2 R w 3 R e 0 R e 1 R e 2 R e 3
Figure 2: mppa R -256 architecture overview

Network on Chip

Two 2-D torus NoCs interconnect the compute and I/O clusters. The D-NoC can be used for large data transfers while the C-NoC enables inter-cluster barriers thanks to short control messages. In both cases, the route of each packet must be defined explicitly by software.

Execution model

In [START_REF] Perret | Temporal isolation of hard real-time applications on many-core processors[END_REF], we have defined a four-rules execution model in order to ensure a strict temporal isolation between applications. The application designers must follow those rules to avoid any unpredictable or non-segregated behaviours. We give a brief reminder of the four rules of the execution model:

Rule 1: Spatial partitioning inside compute clusters

Any PE (resp. any local SRAM bank) inside any compute cluster can be reserved by at most 1 partition. This rule ensures that a partition will never suffer from local interferences caused by other partitions.

Rule 2: Isolated accesses on the NoC Any communication on a route on the NoC does not encounter any conflict. Given two communications, either they take two non-overlapping routes or they access at different times their overlapping routes. More precisely, communications are scheduled in a TDM (Time-Division Multiplexing) manner and strictly periodic slots are defined off-line for each communication.

Rule 3: Off-line pre-defined static buffers The memory areas to be sent over the NoC must be defined off-line. This allows to both reduce the combinatorial explosion of WCET estimation through static analysis and ease the measurement-based validations.

Rule 4: Isolated accesses to DDR-SDRAM bank Any bank of the external DDR-SDRAM memory can be shared by two or more partitions as long as they never access it simultaneously. This allows to greatly mitigate the inter-partitions interferences at the external bank level.

Some of the rules are enforced by an off-line mapping and computation; while others are ensured by a bare-metal hypervisor that we developed. Further low-level details on the implementation of this hypervisor are provided in [START_REF] Perret | Temporal isolation of hard real-time applications on many-core processors[END_REF].

Application model

An application is a tuple τ, δ where:

1. τ = {τ1, . . . , τn} is a finite set of periodic tasks. A task τi is defined as τi = Si, Pi, Ti :

• Si = {τ 1 i , . . . , τ n i i }
is the set of sub-tasks in τi with ni the number of sub-tasks composing τi. All the sub-tasks in Si are assumed to be activated simultaneously at the activation of τi and to have the same implicit deadline equal to Ti. Additionally, the sub-tasks are defined as τ j i = C j i , M j i , I j i , O j i with: C j i the WCET of the subtask; M j i the memory footprint of the sub-task (size of code, static and read-only data); I j i and O j i respectively the input and output buffers1 read and written by τ j i • Pi ⊂ Si×Si is the finite set of precedence relations constraining the sub-tasks of τi. More precisely, (τ x i , τ y i) ∈ Pi means that τ x i must be completed before τ y i can start. This kind of precedence relations are assumed to exist only between sub-jobs exchanging some data. Moreover, the precedence constraints imposed by Pi have no cycles and can be seen as a Directed Acyclic Graph (or DAG).

• Ti the period of the task.

2. δ = {δ1, . . . , δm} the set of data with δ k = m k , prod, cons with m k the size of the data; prod : δ → S which provides the sub-job producing the data (with S = i Si); and cons : δ → S n which provides the set of sub-tasks consuming the data.

The model does not allow precedence constraints between sub-tasks having different parent tasks. However, no such constraints are imposed for the data exchanges. The only constraint for data is to be consumed over the freshest-value semantics in a deterministic manner2 .

Example 1. We consider an application composed of 2 tasks τ1 and τ2 respectively having 4 and 7 sub-tasks. The 11 subtasks exchange 15 data {δa, . . . , δo} and read from 1 input buffer i1 and write into 1 output buffer o1. Tasks τ1 and τ2 respectively have periods T1 = 24 and T2 = 48. The precedence constraints are depicted in Fig. 3a as two DAG (one for each task) and the production and consumption of data by tasks and the I/O buffers are depicted in the form of a multi-digraph in Fig. 3b. The parameters of the sub-tasks are provided in

Definition of application's budget

In [START_REF] Perret | Temporal isolation of hard real-time applications on many-core processors[END_REF], we have defined the notion of application budget, that is the interface between application designers and the integrator. The application designer must detail to the integrator the amount of resources needed by its software. We remind those definitions below for the paper to be selfcontained. • src ∈ P ∪ I (resp. dst ∈ P ∪ I) is the source (destination) of the communication. We assume that there exists at most one PC linking src and dst (no two different ways to communicate).

• T, C, O is the strictly periodic slot with period T , duration C and offset O.

BUDGETING

The budget of an application is a set of PNs storing and executing all the tasks, a number of DDR banks, a set of I/ONs, a set of PCs interconnecting the PNs and I/ONs.

Assumptions

No code fetch

On the Kalray mppa R -256, the PEs cannot directly access the external DDR-SDRAM, they must always use the DMA engines instead. In particular, the process of loading code from the external DDR-SDRAM (in case an application does not fit into the local SRAM) must be achieved explicitly by software. However, we will assume in the rest of the paper that no code fetch from the external DDR-SDRAM ever occurs. Several works already considered code fetching such as [START_REF] Becker | Contention-Free Execution of Automotive Applications on a Clustered Many-Core Platform[END_REF][START_REF] Graillat | Code Generation of Time Critical Synchronous Programs on the Kalray MPPA Many-Core architecture[END_REF], we prefer to focus on the multi-cluster parallelization and the efficient use of the NoC instead.

Execution model and hypervisor

One local SRAM bank is reserved by the hypervisor in each cluster (see [START_REF] Perret | Temporal isolation of hard real-time applications on many-core processors[END_REF] for further details). Any of the 15 remaining local memory banks can be used by applications.

A global tick (denoted as the Systick) of period Tsys activates periodically the hypervisors of all clusters simultaneously. Thus, the duration and the period of any PC must be multiple of the Systick.

Valid budget

A budget is valid if the application can execute safely with the resources offered by the budget. More precisely, Definition 2 (Valid budget). For an application A = τ, δ , a budget P, B, I, C is valid if there exist:

• a mapping of all sub-tasks τ j i ∈ S to P. More precisely, each sub-task is associated to a PN= Nc, N b , executes on one of the Nc core and its memory footprint is stored in the N b banks;

• a local schedule on each core so that the sub-tasks respect their deadlines and their precedence constraints;

• a mapping of each sub-task's I/O to the B DDR banks;

• a mapping for each data on a PC from the producer's PN to the consumers PNs.

Example 2 (Valid budget and associated schedule). We consider the task set defined in Example 1. As shown on Fig. 4, a valid budget for this task set is composed of three PNs p0, p1 and p2; five PCs c10, c21, c01, c12 and c20 linking the PNs where cij is the PC going from pi to pj, and one I/ON accessible from two PCs cio2 and c1io. All PNs have a similar configuration with Nc = 1 and N b = 15. All the PCs linking the PNs also have an identical configuration with the same duration Lc and the same period Tc. The PCs giving access to the I/ON have a two time longer period.

Minimal budget

In our approach, the definition of the application's budget is left to the application designer and can be chosen for any arbitrary reason. To help the user in its budget estimation, we list below several necessary conditions that any budget should meet to have a chance of being valid.

Memory limitations

Since we do not accept any code fetching, the application code and data must be statically allocated in the PNs local memory. Thus, we can deduce a lower bound on the number of PNs (that is |P|) required to completely store an application. Assuming that the maximum available memory space in each compute cluster is Ma, the number of PNs is bounded by:

|P| ≥       ∀τ j i ∈S M j i Ma      

Processing power limitations

An other bound on P can be deduced from the utilization ratio of the application defined as:

U = ∀τ j i ∈S C j i Ti
Since the number of cores on which the application is scheduled must be greater than U , we can deduce: pn∈P Nc(pn) ≥ ⌈U ⌉ On the Kalray mppa R -256, 1 ≤ Nc ≤ 16 for all PNs because there are 16 PEs in each cluster. Thus, the absolute minimal number of PNs required is ⌈U/16⌉. Example 3. The memory footprints of the tasks defined in Example 1 are provided in Table 1. We assume the memory space reserved for storing the data to be exchanged to weight M d = 15 KiB. So, the maximum amount of memory available for storing the tasks in each cluster is Ma = 15 * 128 -M d = 1905KiB (16 banks, 1 reserved for the hypervisor, 128KiB in each bank). So, we can deduce from the memory limtation that |P| ≥3. The utilization ratio of the task set of Example 1 is 1.85. From the processing power limitation we can deduce:

pn∈P Nc(pn) ≥ 2 .

BUDGET VALIDATION

Given a budget, we propose to evaluate its validity by finding a valid schedule of the considered application in the budget with a constraint programming-approach. Such a solution is quite standard to compute off-line mapping and schedule. It also allows to take into account other constraints coming from the specificities of a many-core platform (i.e. the local SRAM limitations or the non-negligible NoC-related delays) and the limitations imposed by the execution model (i.e. only strictly periodic communications p0 between clusters). To the best of our knowledge, there is no scheduling technique able of managing all those constraints simultaneously in the literature.

τ 1 2,1 τ 3 2,1 τ 4 1,1 τ 5 2,1 τ 7 2,1 τ 4 1,2 p1 τ 2 2,1 τ 4 2,1 τ 6 2,1 p2 τ 1 1,1 τ 3 1,1 τ 2 1,1 τ 1 1,2 τ 3 1,2 τ 2 1,2 cio2 i1,1 i1,2

Modelling framework

Many approaches in the literature have been proposed to map dependent task sets on multi/many-core architectures using an ILP formulation of the problem [START_REF] Becker | Contention-Free Execution of Automotive Applications on a Clustered Many-Core Platform[END_REF][START_REF] Gorcitz | On the Scalability of Constraint Solving for Static/Off-Line Real-Time Scheduling[END_REF][START_REF] Puffitsch | Off-line mapping of multi-rate dependent task sets to many-core platforms[END_REF]. However, those approaches often face major scalability issues when applied to large applications making them unusable in an industrial context without considering sub-optimal heuristics. In this paper, we use a different modelling framework that has proven to be practically useful in order to overcome the same scalability issues that we faced when we developed the preliminary ILP-based formulation of our industrial case study. In the following sections, we will formulate the scheduling problem using the notion of Conditional Time-Intervals that has been introduced into IBM ILOG CP Optimizer since version 2.0. In order to ease the reading, we provide a short introduction to some of the concepts associated with this scheduling framework. Further motivation behind this approach and the formal semantics of the operations on Interval variables can be found in [START_REF] Laborie | Reasoning with Conditional Time-intervals[END_REF] and [START_REF] Laborie | Reasoning with Conditional Time-Intervals. Part II: An Algebraical Model for Resources[END_REF].

An interval variable i represents an activity of finite duration l(i) whose start date s(i) must be computed by the solver. Each interval i is defined in a pre-definite time window [a(i), e(i)] where a(i) and e(i) respectively are the activation and the deadline of i. This means that a correct schedule must always ensure that s(i) ≥ a(i) and s(i)+l(i) ≤ e(i). i is said to be optional if its presence in the final solution is not mandatory. Among all the interval-related constraints implemented within IBM ILOG CP Optimizer, we use:

• start constraints: the start date s(i) of the interval i can be constrained;

• presence constraints: for an optional interval i, p(i) ∈ [0, 1] denotes whether 1) i is present (i.e. p(i) = 1), in which case i is part of the final solution and all constraints on it must be met, or 2) absent (i.e. p(i) = 0) meaning that i is ignored and not considered in any constraint in which it was originally involved;

• precedence constraints: an interval i1 can occur before a second interval i2:

i1 → i2 ⇔ s(i1) + l(i1) ≤ s(i2)
• alternative constraints: for a set of optional intervals I = {i1, . . . , in}, it is possible to express that only one interval is present and all the others are absent:

⊕(I) ⇔ i∈I p(i) = 1
• cumulative function constraints: A cumulative function represents the usage of a resource by different activities over time as the sum of the individual contribution of these activities. Cumulative functions can be used to constrain the usage of a resource to fit into a specific envelope representing the resource capabilities. Especially, the pulse function ⊓(i, h) increments the usage of resource by h at the beginning of an interval i and decrements it at the end of i if i is present.

Example 4 (Avoid overlapping with cumulative functions). Assuming a set of intervals to be scheduled I = {i1, . . . , in} that all use a single resource that is accessible by only one activity at a time, we can enforce a non-overlapping constraints between these intervals by using cumulative functions with i∈I

⊓ (i, 1) ≤ 1.
Overall, this formulation with conditional intervals allows a natural modelling of problems in which the activities to be scheduled can be processed by different resources. In such problems, each activity can be associated with several optional intervals (one for each resource) and constrained so that only one of the intervals is present for each activity in the final solution.

Problem Formulation

Problem inputs

We consider an application A = τ, δ , a budget P, B, I, C and a specific platform. Since Conditional Time-Intervals apply on jobs and since tasks can have different periods, we flatten the tasks as jobs on the hyperperiod and the schedule will follow a repeating pattern:

TH = lcm τ i ∈τ (Ti)
We define the job τ i,k of task τi as the k-th activation of τi in one hyperperiod and τ j i,k as the k-th activation of the subtask τ j i . By doing so, we transform the initial multi-periodic problem into a job scheduling problem. S will represent the set of sub-jobs.

The precedence constraints are assumed to exist only between sub-tasks of the same parent task. Therefore, we duplicate each constraint on sub-tasks to many constraints on sub-jobs.

Since each data can have at most one producing sub-task, it is assumed to be over-written by each sub-job of this subtask. When the data must be read by a sub-task allocated to a different cluster, it is sent from the producing cluster to the consuming cluster during a communication slice following its production. The k-th data δx produced by τ j i,k is denoted as δ x,k .

Decision variables

There are two decision variables: j: Each sub-job τ j i,k ∈ S is associated with |P| optional interval variables. ∀pn ∈ P, τ j i,k ∈ S, j(τ j i,k , pn) is present if τ j i,k is allocated on the PN pn. All the sub-jobs intervals have a fixed length equal to the WCET of the sub-job and are defined in a fixed time window

[(k -1) × Ti; k × Ti]. d: Each data δ x,k is associated with |C| optional interval variables. ∀pc ∈ C, δ x,k ∈ δ, d(δ x,k , pc
) is present if the data δ x,k is sent over the PC pc. The duration of each data interval is fixed and equal to the duration of its corresponding PC. The time window in which a data interval is defined is equal to the one of its producing sub-job.

Remark 1 (Duration of data intervals). Note that the duration of data intervals does not represent the actual time required to send the data over the NoC. The link between the communication time and the number of data allocated to the same PC is made in section 4.2.7. Note moreover that during a hyperperiod, there may be several slots for a specific PC (exactly ⌈TH /T ⌉). Thus the start time of an interval d indicates in which slot the data is sent.

PN utilization constraints

Each sub-job is executed only once in only one PN.

∀τ j i,k ∈ S, ⊕({j(τ j i,k , pn) | ∀pn ∈ P}) (1)
If different sub-jobs of the same sub-task could execute on different clusters, it would imply 1) to duplicate the subtask's code and data on all of these clusters; 2) to enforce coherency between the static data of all duplicates thanks to NoC communications. So, in order to reduce the pressure on the NoC, the local SRAM and for simplicity reasons, we impose that all sub-jobs of a sub-task execute on the same PN:

∀τ j i,k ∈ S, ∀pn ∈ P, p(j(τ j i,k , pn)) = p(j(τ j i,k+1 , pn)) (2)
The sub-jobs assigned to a common PN may not overlap. This can be modelled with the utilization using cumulative functions to be less than the number of core Nc:

∀pn ∈ P, ∀τ j i,k ∈S ⊓ (j(τ j i,k , pn), 1) ≤ Nc(pn) (3)
The constraint 3 is a necessary and sufficient condition for being able to execute all sub-tasks allocated to a PN nonpreemptively on Nc(pn) cores since the Interval Graph associated to each PN is chordal and can thus be colored using Nc(pn) colors [START_REF] Gavril | Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum Independent Set of a Chordal Graph[END_REF].

Local memory constraints

Each sub-task τ j i has a memory footprint M j i that represents the amount of local SRAM used by τ j i in the cluster to which it is attached. Then, we ensure that the local memory available in each PN Ma is sufficient to store the sub-tasks mapped on this PN:

∀pn ∈ P, τ j i ∈S p(j(τ j i,0 , pn)) × M j i ≤ Ma (4)

Precedence constraints

The precedence constraints imposed by the application model can be separated in two categories. A precedence constraint (τ j i , τ l i) is said to have:

• forward data ⇔ ∃δx ∈ δ, (τ j i = prod(δx)) ∧ (τ l i ∈ cons(δx)), • backward data ⇔ ∃δx ∈ δ, (τ j i ∈ cons(δx)) ∧ (τ l i = prod(δx)).
With forward data, the freshest value semantics imposes that τ l i cannot start before it receives the data produced by τ j i . If both sub-tasks are executed on the same cluster, the data produced by τ j i will be visible to τ l i immediately after its production since the address space is shared. In this case, the precedence constraint can be met simply by starting τ l i after the completion of τ j i : ∀(τ j i,k , τ l i,k) ∈ P i,k , ∀pn ∈ P, j(τ j i,k , pn) → j(τ l i,k , pn) (5) However, if the two sub-tasks are not executed on the same cluster, the data will need to be sent through the NoC after its production to become visible by τ l i . Thus, first, the data must be assigned to a PC slot after the end of the producing sub-job:

∀pc ∈ C, ∀δ x,k ∈ δ, j(prod(δ x,k), src(pc)) → d(δ x,k , pc) (6)
And then the consumer τ l i cannot start before the completion of the communication slot during which the data is sent:

∀(τ j i,k , τ l i,k) ∈ P i,k , ∀pc ∈ C, ∀δ x,k ∈ δ, (τ j i,k = prod(δ x,k)) ∧ (τ l i,k ∈ cons(δ x,k)) =⇒ d(δ x,k , pc) → j(τ l i,k , dst(pc)) (7)
With backward data, the precedence constraint imposes that the data consumed by τ j i,k is always the one that was produced by τ l i,k-1 . To enforce the respect of this constraint, if the two sub-tasks are on the same cluster we reuse the constraint 6, otherwise we impose that τ j i,k completes before the beginning of the communication slice during which the data produced by τ l i,k is sent, so that τ j i,k could never consume a too fresh data:

∀(τ j i,k , τ l i,k) ∈ P i,k , ∀pc ∈ C, ∀δ x,k ∈ δ, (τ j i,k ∈ cons(δ x,k)) ∧ (τ l i,k = prod(δ x,k)) =⇒ j(τ j i,k , dst(pc)) → d(δ x,k , pc) (8)

Data mapping constraints

Any data produced by a sub-job and consumed by any other sub-job hosted on a different cluster is sent during a communication slice after the completion of the producing sub-job. To do so, we constrain the data produced by the first sub-job of a sub-task to be present on a PC if at least one consuming sub-task is present on the destination PN:

∀pc ∈ C, ∀δx ∈ δ, p(j(prod(δx,0), src(pc))) ∧ τ j i,0 ∈cons(δ x,0) p(j(τ j i,0 , dst(pc))) ≥ 1 = p(δx,0, pc) (9)
Additionally, we impose to all sub-data to be placed on the same PC:

∀pc ∈ C, ∀δ x,k ∈ δ, p(d(δ x,k , pc)) = p(d(δ x,k+1 , pc)) (10)
And finally, we enforce all the data sent to be aligned in time with the activation of their PC assuming that T (pc) and O(pc) respectively are the period and the offset of the PC.

∀pc ∈ C, ∀δ x,k ∈ δ, s(d(δ x,k , pc)) mod T (pc) = O(pc) (11)

PC utilization constraints

The amount of data sent during each communication slice must be restricted in order to be compatible with the hardware capabilities and to be implementable on the real target.

Since our execution model and hypervisor provide a property of interference avoidance on the NoC [START_REF] Perret | Temporal isolation of hard real-time applications on many-core processors[END_REF], we can derive the maximum number of flit that can be sent during one communication slice simply by assuming that the latency of a NoC link is ∆L, that the latency of one router is ∆R and that the maximum number of routers on a NoC route is n max R . Indeed, based on the models we introduced in [START_REF] Perret | Predictable composition of memory accesses on many-core processors[END_REF], we can deduce that the maximum time required for N f lit to completely cross a NoC route is (n max R + 1)∆L + n max R ∆R + N f lit . So, we can formulate the maximum number of flits that can be transferred during one communication slice of length Lc as:

N Lc f lit = Lc -(n max R + 1) × ∆L -n max R × ∆R
Secondly, in order to compute the number of flits required to send a data δx, we define n δx bytes and n f lit bytes respectively as the number of bytes in δx and the number of bytes in one NoC flit. So, the number of payload flits required to transfer the data is n δx f lit = n δx bytes /n f lit bytes . Assuming n pkt f lit to be the maximum number of payload flits in one NoC packet, we can derive the number of packets required to send δx as n δx pkt = n δx f lit /n pkt f lit . Then, with n head f lit the number of flits in one NoC packet header and n bbl cycles the number of empty flits lost in the bubble separating two consecutive packets, we can derive the total number of flits N δx f lit required to send δx as:

N δx f lit = n δx f lit + n δx pkt × n head f lit + (n δx pkt -1) × n bbl f lit
Finally, in order to simplify the upper-bounding of the amount of data that can be sent during one communication slice, we take the conservative assumption that all data are placed into non-contiguous memory areas. So, assuming that N gap f lit is the number of empty flits lost in the gap incurred when the DMA jumps to a non contiguous memory address, we can constrain the amount of data sent into a single communication slice with constraint 12.

∀pc ∈ C, δx∈δ ⊓(d(δx, pc), N δx f lit + N gap f lit) ≤ N Lc f lit (12)
Remark 2 (NoC-aware optimization of the memory mapping). It would be preferable, in order to achieve the best performance, to include the positioning of data with respect to each other into the scheduling problem. Indeed, an optimized memory mapping could enable to group several data into bigger memory chunks that could be sent over the NoC more efficiently. However, such an approach would greatly increase the complexity of the scheduling problem. We will investigate the possibilities of optimal, or at least heuristic, NoC-aware optimization of the memory mapping in future work.

In order to fulfill implementability constraints, we must also take into account the fact that our DMA micro-code is able of autonomously sending only a finite number of noncontiguous memory areas denoted

N DM A buf s . ∀pc ∈ C, δx∈δ ⊓(d(δx, pc), 1) ≤ N DM A buf s (13)

Determinism constraints

Two sub-jobs are allowed to exchange data without being constrained by a precedence relation. In this case, if a data is produced or received during the execution of a consuming sub-job, the order of consumption of this data could be nondeterministic and even change over time depending on the real execution times of sub-jobs. In this paper, we consider this non-determinism in the data production-consumption ordering as not acceptable since the semantics of such an execution is not clear and would break the repeatability of executions (even with the same set of input values) that is required for test purposes. We avoid this non-determinism by forbidding the overlapping between the data interval and its consuming sub-jobs.

∀δ x,k ∈ δ, ∀τ j i,l ∈ cons(δ x,k), ∀pc ∈ C (prod(δ x,k), τ j i,l) / ∈ P k ∧ (τ j i,l , prod(δ x,k)) / ∈ P k ⇒ ⊓(d(δ x,k , pc), 1) + ⊓(j(τ j i,l , dst(pc)), 1) ≤ 1 (14)
Similarly, if the producing and the consuming sub-jobs are present on the same PN, they must not overlap: ∀δ x,k ∈ δ, ∀τ j i,l ∈ cons(δ x,k), ∀pn ∈ P (prod(δ x,k), τ j i,l) / ∈ P k ∧ (τ j i,l , prod(δ x,k)) / ∈ P k ⇒ ⊓(j(prod(δ x,k), pn), 1) + ⊓(j(τ j i,l , pn), 1) ≤ 1 (15)

Managing IOs

In our approach, the communication with out-of-chip components are handled as read and write requests into the external DDR-SDRAM. Indeed, this can simulate the reception and emission of AFDX frames for example.

Since, all transactions with the external memory are handled by the compute clusters' DMAs on the Kalray mppa R -256, they can be taken into account exactly like the application's data. Thus, we assume all the IO buffers to be represented as conditional intervals together with the data. The only difference resides on the PCs on which IO intervals can be placed which are the PCs linking the PNs and the I/ONs. By doing so, all the constraints for data intervals on PCs can be applied directly for managing the IO intervals. In future work, we will integrate the fine grained modelling of the DDR access time that we developed in [START_REF] Perret | Predictable composition of memory accesses on many-core processors[END_REF] to the formulation of constraint 12 when applied on PCs targeting I/ONs.

EXPERIMENTAL RESULTS

As a case study, we used a large industrial application from Airbus. This application has several tasks with harmonic periods. The total number of sub-jobs and associated data is close to 100,000 leading to a large optimization problem with several million decision variables and constraints.

Implementation choices

One PE per PN

In our experiments, we limited the number of cores in each PN to 1 for the following reasons: 1) we limit the potential interferences suffered by the computing core to the local memory accesses generated by the DMA in order to simplify and improve the computation of tight WCETs of sub-tasks; 2) we focus on the mostly unexplored3 problem of inter-cluster parallelization requiring a tight management of the NoC to exhibit the application's speed-up opportunities through parallelization despite the non-negligible NoCrelated delays.

Prompt and symmetric PCs

In the budgets considered during the experiments, we always assume symmetric and prompt PCs connecting all the PNs of the budget. By symmetric, we mean that each PN has one outgoing PC to send data to any other PN and all PCs have the same duration Lc and the same period Tc. By prompt, we mean that the value of Lc typically is in the order of magnitude of the Systick and that Tc equal to its minimal value of (n -1) × Lc with n the number of PNs.

The symmetry between the PCs is chosen to simplify the expression of the budget and we argue that the promptness of the PCs is well suited for the targeted case study. Indeed, our industrial application basically has many data of small size. By choosing fast PCs we hope to shorten the delays involved by precedences with forward data. The evaluation of fundamentally different budgets with asymmetric and/or slow PCs will be done in future work.

Goal

Overall, the goal of these experiments is twofold. Firstly, we aim at finding a valid budget with a minimal footprint in order to both maximize the space left to other potential co-running applications and increase the utilization ratio of the reserved resources. And secondly, we want to explore the possibilities of speeding-up the application when parallelized over several clusters despite the non negligible latencies involved by the NoC.

Narrowing the budget

To minimize the footprint of the budget, we compute a minimal number of PNs denoted as n min pn using the rules of Section 3.2. Based on this, we define and evaluate 3 potential configurations with |P| equal to n min pn + i for i ∈ [0; 2]. Secondly, we investigate the impact of the NoC configuration with 3 PC setups where the length of each PC is equal to L min c + j × Systick with j ∈ [0; 2] being the PC configuration number.

Increasing speed-up

To evaluate the speed-up possibilities, we artificially reduce the temporal horizon (i.e. the hyperperiod) on which tasks are scheduled. In this case, the maximum speedup and minimal makespan is obtained when no valid budget can be found for any further reduced temporal horizon. We define a division parameter k div to compute schedules with reduced periods defined as Ti = 256-k div 256 × Ti and we evaluate 256 instances of the application for 0 ≤ k div ≤ 255. All other parameters, including the WCETs of sub-tasks are left unchanged.

Results

Figure 5 shows the time (in seconds) required by the solver to compute a schedule meeting all the constraints as a function of the k div parameter in 9 different budget configurations. We can see in figure 5a that the maximum k div (representing the maximum processing load) is counter-intuitively achieved with the budget configuration offering the smallest number of PNs. However, we can also observe on all three figures that the maximum k div are invariably obtained with the shortest PCs. This seems to demonstrate that the bottlenecking parameter to achieve the best performance with this case study is the latency of data exchanged through the NoC and not the processing power. The figure 6 depicts an example of PC utilization from the experiment with the maximum k div over a complete hyperperiod. The figure 6a shows the number on non contiguous memory areas that are sent during each PC activation and the figure 6b shows the number of flits that are sent in each PC slot. Both figures are annotated with the maximum values imposed by the constraints 13 and 12. We observe that the limitation from constraint 13 (fig. 6a) seems to be a lot more bottlenecking than the limitation from constraint 12. This means that the limiting parameter in this case study is not the actual NoC bandwidth but rather the capabilities of DMAs to send many small non-contiguous data. As mentioned in Remark 2, a better optimized memory mapping could probably help send bigger chunks of data and thus balance the curves of figure 6 to achieve the best performances.

RELATED WORK

In this paper, we presented a mapping procedure enabling the efficient parallelization of one application into its budget. However, since our execution model allows the concurrent execution of several partitions, our mapping technique can be re-used on several applications needing to be mapped into their corresponding budgets. To the best of our knowledge, Generic DAG scheduling. The theoretical problem of scheduling real-time DAG parallel tasks has already been addressed in the literature for both mono-core [START_REF] Chetto | Dynamic scheduling of real-time tasks under precedence constraints[END_REF] and more recently multi-core [START_REF] Li | Analysis of Global EDF for Parallel Tasks[END_REF][START_REF] Qamhieh | Global EDF Scheduling of Directed Acyclic Graphs on Multiprocessor Systems[END_REF][START_REF] Qamhieh | A Stretching Algorithm for Parallel Real-time DAG Tasks on Multiprocessor Systems[END_REF] processors with (G)EDF. However, the classical DAG model used in these papers does not include information on the tasks' communication latencies or on memory limitations and are thus not directly applicable on the Kalray mppa R -256. Similarly, the static scheduling of DAG tasks on multiprocessor systems with a makepan-optimization objective has been widely studied, mostly using heuristics based on list algorithms [START_REF] Kwok | Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors[END_REF]. Nevertheless, to the best of our knowledge, there are no published algorithm able of managing simultaneously the precedence constraints together with communication latencies, memory limitations and other constraints coming from an execution model. Mapping on the Kalray MPPA. The problem of mapping real-time applications on the Kalray mppa R -256 has already been addressed several times in the literature [START_REF] Becker | Contention-Free Execution of Automotive Applications on a Clustered Many-Core Platform[END_REF][START_REF] De Dinechin | Guaranteed Services of the NoC of a Manycore Processor[END_REF][START_REF] Giannopoulou | Mixed-criticality scheduling on cluster-based manycores with shared communication and storage resources[END_REF][START_REF] Graillat | Code Generation of Time Critical Synchronous Programs on the Kalray MPPA Many-Core architecture[END_REF]. In [START_REF] Becker | Contention-Free Execution of Automotive Applications on a Clustered Many-Core Platform[END_REF], the authors propose a framework for mapping automotive applications inside a single compute cluster accessing the external DDR-SDRAM but never address the problem of multi-clustered applications. On the other hand, the NoC is taken into account in [START_REF] De Dinechin | Guaranteed Services of the NoC of a Manycore Processor[END_REF] and [START_REF] Giannopoulou | Mixed-criticality scheduling on cluster-based manycores with shared communication and storage resources[END_REF]. However, in both cases, the guarantees on the NoC are provided with a competition-aware approach based on Network Calculus. Our approach relies on the competition-free property of the NoC TDM schedule provided by our execution model. We argue that such an approach enables shorter guaranteed NoC latencies that are better suited to benefit from a multicluster parallelization [START_REF] Puffitsch | Time-division Multiplexing vs Network Calculus: A Comparison[END_REF]. Mapping on other many-core processors or distributed systems. Puffitsch et al. [START_REF] Puffitsch | Off-line mapping of multi-rate dependent task sets to many-core platforms[END_REF] proposed an execution model and a framework to map dependent task sets on several multi/many-core architectures. However, the message passing latencies are derived from a measured WCTT which occurs in a situation of maximum contention while our approach relies on the contention-avoidance property provided by our execution model. In [START_REF] Carle | Static mapping of real-time applications onto massively parallel processor arrays[END_REF], the authors proposed an efficient heuristic to map Synchronous Dataflow models onto a time-triggered architecture but the assumptions on the system model differ from our approach. Indeed, no support is offered to either account for multi-rate applications or handle constraints coming from an execution model. In [START_REF] Craciunas | Combined task-and network-level scheduling for distributed time-triggered systems[END_REF], Craciunas et al. proposed both a SMT and a MIP formulation of a co-scheduling problem handling simultaneously the generation of cores and network schedules. Since the authors assume a TTEthernet network and since other constraints such as the memory limitations are taken into account, the goal of the mapping algorithm is very close to ours. The main differences reside in the system model as they assume preemptive scheduling at the tt-tasks level while we assume non preemptive scheduling at the sub-task level. Moreover, all the tt-tasks are assumed to be pre-assigned to an endsystem while our approach includes the placement of subtasks to cores together with the core and NoC scheduling.

CONCLUSION

In this paper, we have proposed an approach enabling the automatic parallelization of large applications onto the MPPA architecture. This approach meets the requirements imposed by the execution model providing the property of strong temporal isolation between co-running applications thanks to spatial and temporal partitioning. We provided a formulation of the mapping problem as a CSP using the notion of time-intervals and we demonstrated the ability of the approach to deal with large problems with an industrial case study. Overall, the mapping procedure that we described in this paper together with the real world imple-

Figure 1 :

 1 Figure 1: Workflow

Figure 3 :

 3 Figure 3: Example of sub-tasks dependencies.

Definition 1 .

 1 An application budget is defined as a tuple P, B, I, C where 1. P = {P N1, . . . , P Nm} is a finite set of PNs. A Partition Node (or PN) is a pair Nc, N b which represents the need of processing resource (Nc is a number of cores) and memory (N b is a number of local memory banks) allocated to an application inside one cluster; 2. B represents a number of external DDRx-SDRAM banks; 3. I = {I/ON1, . . . , I/ONj} is a finite set of I/ONs. An I/O Node (or I/ON) represents an access point to the external memory. It is materialized as a processor located on an I/O cluster. 4. C = {P C1, . . . , P Cp} is a finite set of PCs. A Partition Communication (or PC) represents a need of communication between two PNs located on two different clusters (or a PN and an I/ON) in the form of a directed strictly periodic NoC access slot. Moreover, a PC is defined as a tuple src, dst, T, C, O where:

Figure 4 :

 4 Figure 4: Schedule of the application given in example 1 on the budget of example 2. The communication slots used: B 2 20 = {δ b,1 }; B 4 20 = {δ d,1 , δe,1}; B 7 20 = {δ b,2 }; B 8 20 = {δ d,2 , δe,2}; B 4 21 = {δ d,1 }; B 8 21 = {δ d,2 }; B 3 01 = {δg,1, δ h,1 }; B 7 01 = {δm,1, δn,1}; B 5 10 = {δi,1}; B 6 10 = {δj,1}; B 7 12 = {δ l,1 }.

 |P| = n min pn + 2

Figure 5 :

 5 Figure 5: Comparison of computation times in function of the load increase with different budgets.

Figure 6 :

 6 Figure 6: Example of PC utilization under maximum processing loadno other approaches enabling the execution of multiple parallelized applications on the Kalray mppa R -256 have been proposed in the literature yet. Generic DAG scheduling. The theoretical problem of scheduling real-time DAG parallel tasks has already been addressed in the literature for both mono-core[START_REF] Chetto | Dynamic scheduling of real-time tasks under precedence constraints[END_REF] and more recently multi-core[START_REF] Li | Analysis of Global EDF for Parallel Tasks[END_REF][START_REF] Qamhieh | Global EDF Scheduling of Directed Acyclic Graphs on Multiprocessor Systems[END_REF][START_REF] Qamhieh | A Stretching Algorithm for Parallel Real-time DAG Tasks on Multiprocessor Systems[END_REF] processors with (G)EDF. However, the classical DAG model used in these papers does not include information on the tasks' communication latencies or on memory limitations and are thus not directly applicable on the Kalray mppa R -256.Similarly, the static scheduling of DAG tasks on multiprocessor systems with a makepan-optimization objective has been widely studied, mostly using heuristics based on list algorithms[START_REF] Kwok | Static Scheduling Algorithms for Allocating Directed Task Graphs to Multiprocessors[END_REF]. Nevertheless, to the best of our knowledge, there are no published algorithm able of managing simultaneously the precedence constraints together with communication latencies, memory limitations and other constraints coming from an execution model. Mapping on the Kalray MPPA. The problem of mapping real-time applications on the Kalray mppa R -256 has already been addressed several times in the literature[START_REF] Becker | Contention-Free Execution of Automotive Applications on a Clustered Many-Core Platform[END_REF][START_REF] De Dinechin | Guaranteed Services of the NoC of a Manycore Processor[END_REF][START_REF] Giannopoulou | Mixed-criticality scheduling on cluster-based manycores with shared communication and storage resources[END_REF][START_REF] Graillat | Code Generation of Time Critical Synchronous Programs on the Kalray MPPA Many-Core architecture[END_REF]. In[START_REF] Becker | Contention-Free Execution of Automotive Applications on a Clustered Many-Core Platform[END_REF], the authors propose a framework for mapping automotive applications inside a single compute cluster accessing the external DDR-SDRAM but never address the problem of multi-clustered applications. On the other hand, the NoC is taken into account in[START_REF] De Dinechin | Guaranteed Services of the NoC of a Manycore Processor[END_REF] and[START_REF] Giannopoulou | Mixed-criticality scheduling on cluster-based manycores with shared communication and storage resources[END_REF]. However, in both cases, the guarantees on the NoC are provided with a competition-aware approach based on Network Calculus. Our approach relies on the competition-free property of the NoC TDM schedule provided by our execution model. We argue that such an approach enables shorter guaranteed NoC latencies that are better suited to benefit from a multicluster parallelization[START_REF] Puffitsch | Time-division Multiplexing vs Network Calculus: A Comparison[END_REF]. Mapping on other many-core processors or distributed systems. Puffitsch et al.[START_REF] Puffitsch | Off-line mapping of multi-rate dependent task sets to many-core platforms[END_REF] proposed an execution model

Table 1 (

 1 where ck stands for clock cycle).

	Sub-task τ 1 1 τ 2 1 τ 3 1 τ 4 1 τ 1 2 τ 2 2 τ 3 2 τ 4 2 τ 5 2 τ 6 2 τ 7 2	C j i (in ck) 500 500 700 400 1,000 400 500 800 900 500 600	M j i (in KiB) 519 397 642 262 287 799 542 764 490 399 12	I j i i1 ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅	O j i ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ o1 ∅

Table 1 :

 1 Example of sub-tasks parameters

The I/O buffers only represent the interactions with outof-chip components such as the reception or emission of Ethernet

frames.[START_REF]Parallel Computing for Time and Safety Critical Applications (CAPACITES)[END_REF] Here deterministic refers to the data production and consumption ordering. We consider that two executions of the same schedule must always ensure the same order of production and consumption of all data.

The problem of intra-cluster parallelization has already been addressed in the literature in[START_REF] Becker | Contention-Free Execution of Automotive Applications on a Clustered Many-Core Platform[END_REF] and the Capacites project[START_REF]Parallel Computing for Time and Safety Critical Applications (CAPACITES)[END_REF] and will be further explored in the Assume project[START_REF]Affordable Safe And Secure Mobility Evolution (ASSUME)[END_REF].

mentation of our execution model that we presented in [19] form a complete work-flow enabling an end-to-end integration of real-time applications on the Kalray mppa R -256.

In the future, we will propose additional guidelines to help the application designers in the process of defining their budgets and we will investigate the optimization possibilities of the memory mappings in order to improve the NoC utilization and the overall performances.