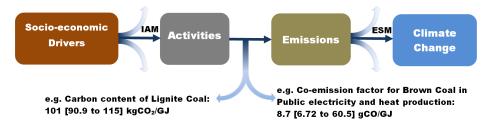
From uncertainties on emissions from fossil fuel combustion to climate change

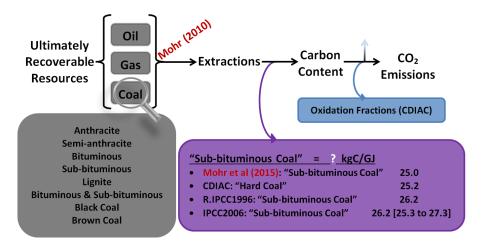
Yann Quilcaille,

Gasser T., Ciais P., Lecocq F., Janssens-Maenhout G., Mohr S., Andres R.J. and Bopp L.

LSCE/IPSL & CIRED


18-04-2016

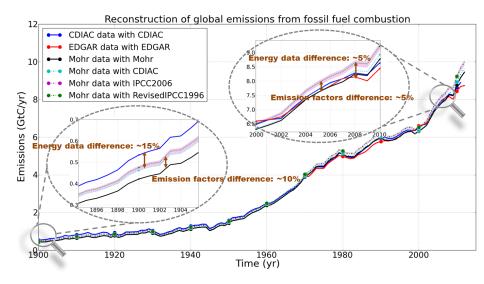
Yann Quilcaille (LSCE/IPSL & CIRED)


Uncertainty from CO₂ emissions

18-04-2016 1 / 13

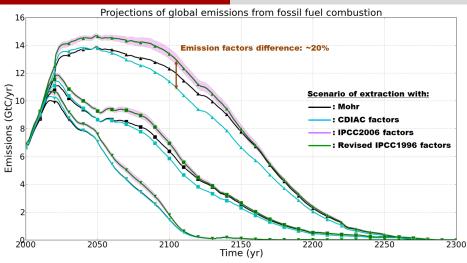
Objective : how do the uncertainties on emissions associated to fossil fuel combustion influence the climate change?

- Sevaluation of CO₂ emissions from fossil fuel combustion
- Impact on climate change
- Evaluation of co-emissions from fossil fuels
- Impact on climate change



- historical + 3 projections of extraction
- 4 sets of carbon contents : "Methods"
- \rightarrow compared to the CO₂ inventories of CDIAC and EDGAR

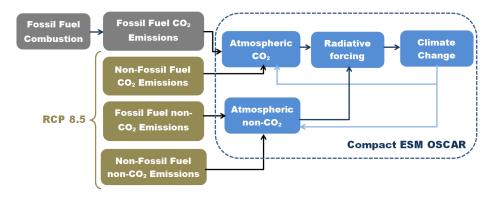
Yann Quilcaille (LSCE/IPSL & CIRED)


Uncertainty from CO₂ emissions

A B b 4 B b

18-04-2016 4/13

Projections of CO2 emissions from fossil fuel combustion

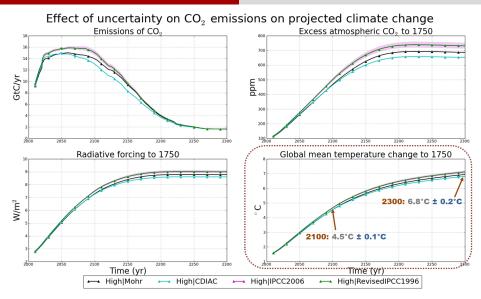


→ The resources composing a broad category are not depleted at the same rate, but the carbon content of the category is constant

→ Uncertainties due to parameters of non-conventional oils

Yann Quilcaille (LSCE/IPSL & CIRED)

Uncertainty from CO₂ emissions


```
OSCAR:
Gasser (2010):tel.archives-ouvertes.fr/tel-01135456
Li, Gasser et al (2016):doi:10.1038/nature17165
```

Yann Quilcaille (LSCE/IPSL & CIRED)

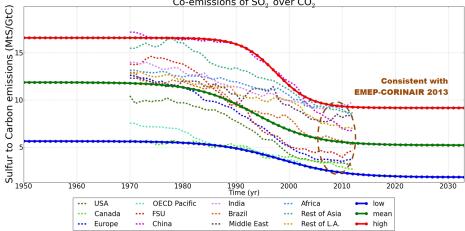
Uncertainty from CO₂ emissions

18-04-2016 6/13

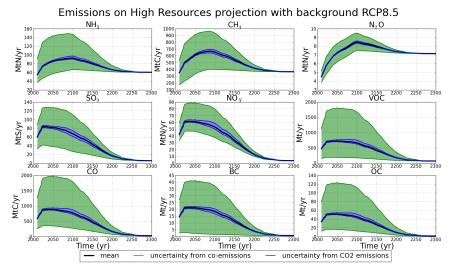
イロト 不得 トイヨト イヨト

\rightarrow small but significant uncertainty from CO₂ emission factors

Yann Quilcaille (LSCE/IPSL & CIRED)


Uncertainty from CO₂ emissions

18-04-2016 7 / 13

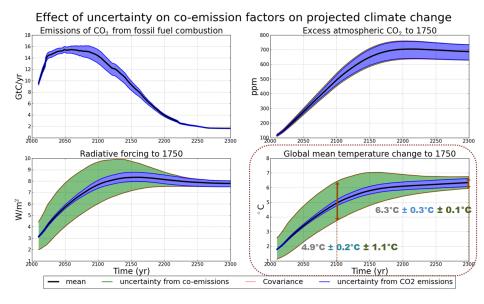


Principle : co-emission ratios using EDGAR v4.3

- \rightarrow uncertainty from the technology, fuel, operating conditions
- Hypothesis : Range in 1970-2012 representative of 1700-2300 \Rightarrow

Co-emissions of SO₂ over CO₂

Productions of scenarios from 1700 : uncertainty in 2010


- \rightarrow Historic emissions close to the mean of trajectories
- Most of the uncertainty from the co-emissions \rightarrow

Yann Quilcaille (LSCE/IPSL & CIRED)

Uncertainty from CO2 emissions

э 18-04-2016 10/13

→ < ∃ →</p>

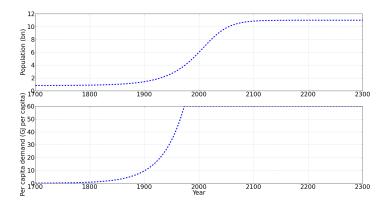
Yann Quilcaille (LSCE/IPSL & CIRED)

Uncertainty from CO₂ emissions

18-04-2016 11/13

Extraction	2100	CO_2	non CO ₂	2300	CO_2	non CO ₂
High	4.9° <i>C</i>	±0.2	±1.1	6.3° <i>C</i>	±0.3	±0.1
Best Guess	4.1° <i>C</i>	±0.2	±0.7	5.0° <i>C</i>	±0.2	±0.1
Low	3.4° <i>C</i>	±0.1	±0.4	4.1° <i>C</i>	±0.1	±0.0

- Decreasing uncertainty from non-CO₂ from fossil fuels
- \hookrightarrow Shorter lifetimes for non-CO₂
 - Increasing uncertainty from CO₂ with time and with amount of fossil fuels burnt
- → Accumulation of uncertainties
- \Rightarrow Uncertainty on co-emission factors dominates the one on CO_2 emissions
- \longrightarrow Compared to the uncertainty on climate sensitivity, it represents :
 - 2081-2100 \rightarrow 45-120%
 - $\bullet~2281\mathchar`-2-8\%$


- Limited access to information on detailed data (fuel types, carbon contents,...)
- 2 Impact of the categorization : up to $\pm 0.3^{\circ}C$
- Impact of the uncertainty on co-emissions : up to $\pm 1.1^{\circ}C$
- 4 How to reduce this uncertainty?
- ⇒ More frequently updated estimates of factors to account for ongoing technical progress and fuel mix
- Importance for a consistent treatment of co-emitted species from different sectors in IAM

yann.quilcaille@lsce.ipsl.fr

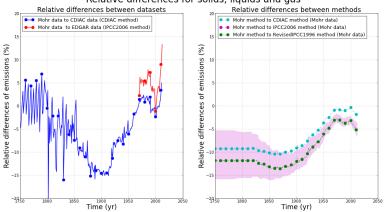
Yann Quilcaille (LSCE/IPSL & CIRED)

Uncertainty from CO₂ emissions

▶ < ≣ ▶ ≣ ৩৭৫ 18-04-2016 13/13

- Population : stabilization at 11 billions (~ SRES B2)
- Per capita demand : constant from 1973
- Resources available : Low (48 409EJ), Best Guess (75676 EJ), High (141488 EJ)

Mohr (2010) : "Projection of world fossil fuel production with supply and demand interactions"

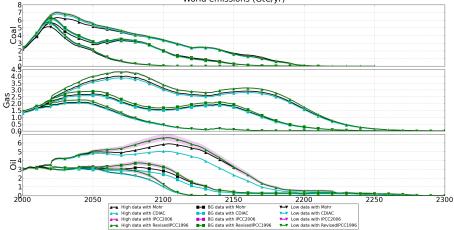

(http://www.theoildrum.com/node/6782)

Mohr et al, 2015: "Projection of world fossil fuels by country" (http://dx.doi.org/10.1016/j.fuel.2014 10.030) 🧠 🔍

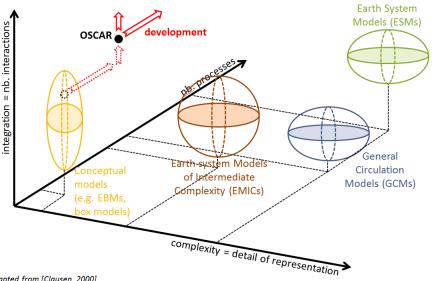
Yann Quilcaille (LSCE/IPSL & CIRED)

Uncertainty from CO₂ emissions

18-04-2016 14 / 13



Relative differences for solids, liquids and gas


- "Data" : CDIAC < Mohr around 1900, up to 15% (from Coal)
- "Data" : EDGAR < Mohr (around 5%)
- "Methods" : IPCC < CDIAC < Mohr, up to 10% (from Gas then Oil)
- "Methods" : CDIAC out of the range for Gas and Coal during 1900-2000

Yann Quilcaille (LSCE/IPSL & CIRED)

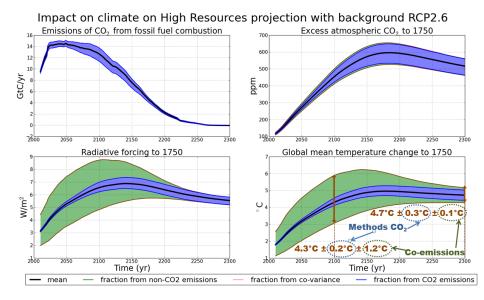
★ ■ ▶ ■ のQC 18-04-2016 14/13

adapted from [Clausen, 2000]

OSCAR is another carbon-cycle box-model, close to MAGICC :

- with regionalized biosphere
- coupled to a regionalized climate impulse response function
- focusing on the integration of the Earth system
- reproducing the behaviours of models of greater degree of spatial representation
- able to combine the sensibilities between modules

OSCAR v2.1, Gasser (2014) : "Attribution rgionalise des causes anthropiques du changement climatique"

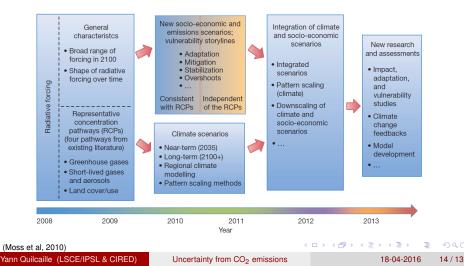

https://tel.archives-ouvertes.fr/tel-01135456 Li, Gasser et al (2016) : "The contribution of China's emissions to global climate forcing" (doi :10.1038/nature17165) OSCAR v2.2, Gasser et al (working paper) : "The compact Earth sytem model OSCAR v2.2 : description and first results"

イロト 不得 トイヨト イヨト

- Different estimations of CO₂ : 6
- Values for each one of 9 gases co-emitted : Low, Mean, High
- $\hookrightarrow [CH_4]; [BC]; [SO_2]; [N_2O]; [CO, VOC, OC, NO_X, NH_3]: 243$ trajectories
- Using log-normal distribution from factors to weight each one of the 6 x 243 trajectories
- Evaluating variances from each contribution to scale the 95% range

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Appendices Other RCP



Yann Quilcaille (LSCE/IPSL & CIRED)

Uncertainty from CO₂ emissions

18-04-2016 14/13

- Shortening the time of development of scenarios
- CM & ESM : uncertainty induced by the climate system
- IAM : identification of the range of different technological, socioeconomic and policy futures that lead a specific RCP.

