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The Influence of Individual Social Traits on Robot Learning in a
Human-Robot Interaction

Hakim Guedjou1, Sofiane Boucenna2, Jean Xavier1,3, David Cohen1,3, Mohamed Chetouani1

Abstract— Interactive Machine Learning considers that a
robot is learning with and/or from a human. In this paper,
we investigate the impact of human social traits on the robot
learning. We explore social traits such as age (children vs.
adult) and pathology (typical developing children vs. children
with autistic spectrum disorders). In particular, we consider
learning to recognize both postures and identity of a human
partner. A human-robot posture imitation learning, based on
a neural network architecture, is used to develop a multi-task
learning framework. This architecture exploits three learning
levels : 1) visual feature representation, 2) posture classification
and 3) human partner identification. During the experiment the
robot interacts with children with autism spectrum disorders
(ASD), typical developing children (TD) and healthy adults.
Previous works assessed the impact on learning of these social
traits at the group level. In this paper, we focus on the
analysis of individuals separately. The results show that the
robot is impacted by the social traits of these different groups’
individuals. First, the architecture needs to learn more visual
features when interacting with a child with ASD (compared to a
TD child) or with a TD child (compared to an adult). However,
this surplus in the number of neurons helped the robot to
improve the TD children’s posture recognition but not that of
children with ASD. Second, preliminary results show that this
need of a neurons surplus while interacting with children with
ASD is also generalizable to the identity recognition task.

I. INTRODUCTION

During social interactions, complex behavioral and
physiological processes occur. Among them, inter-brain
synchronization of alpha-mu bands between the right
centro-parietal regions (areas involved in social interaction
[1]) has been shown to emerge during hand movements
coordination [2]. These coupling processes are necessarily
impacted by the intrinsic characteristics of individuals. For
example, synchrony, either at behavioral or neural level, has
been shown to be the physical support of implicit individual
traits such as social anxiety [3]. Following an external
assessment of human-robot interactions (HRI), Walters et
al. showed that distance between individuals and robot,
personal social zones, are modified according to individuals’
traits such as proactivness[4].

All these works clearly show that the structure of in-
teraction is modified by individuals’ social traits. Recently,
we introduced a robot-learning-centered approach in which
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we quantify these modifications and evaluated them on the
performance of robot to learn with different groups: healthy
adults, TD children and children with ASD [5][6]. Using
metrics assessing the learning, such as complexity of models,
convergence and recognition scores, we show the nature of
the group has an impact on robot learning.

We consider a robot multi-task learning for posture imita-
tion and identity recognition. Within this context, imitation is
an interesting and focused task that has been investigated in
several domains such as robotics and developmental psychol-
ogy [7]. It is considered as a precursor of social referencing
[8]. For example, Meltzoff and Decety suggest that imitation
provides an innate foundation for social cognition in infants
and underlie the development of theory of mind and empathy
for others [9]. Meltzoff also suggests a strong coupling
between early imitation in children and the emergence of
an identity retrieval function [10].

Fig. 1. The robot and the human partner producing the five postures

To effectively learn to imitate posture (see Figure 1)
and recognize the identity of individuals, we employed
a neural network architecture based on a sensory-motor
association paradigm [11]. The architecture performs visual
features learning, posture classification and a partner iden-
tity recognition. The experiment requires two phases. 1)
During the imitation phase, the human imitates the robot
while the robot performs body postures. At the same time,
learning posture classification requires to map the visual
perception stimulus and the proprioception stimulus (pos-
ture represented by robot’s motor position) [12]. Partner
identification exploits a novelty detection to identify new
partners and learn their corresponding visual features. 2)
During the testing phase, the robot is able to correctly
imitate the human performing postures. In our previous
works, we demonstrated the efficiency of the robot-learning-
centered approach to learn postures imitation, and identity
recognition. We also showed that the system was able to



differentiate between three distinct groups: children with
autism spectrum disorder (ASD), typical developing children
(TD) and healthy adults demonstrating the validity of the
model in terms of partners social assessment [5][6]. By
using a neuro-dynamical system, Murata et al. employed a
similar approach to observe differences on the structure of
interactions according to different partners [13]. However,
all these research works did not focus on how individual
social traits influence learning processes. In this paper we
consider both inter- and intra-group analysis and learning
processes. In particular, we assess the interplay between
posture recognition, partner identification and individuals’
social traits. We also assess the impact of learning parameters
such as the number of interactions required to learn termed
learning-time and thresholds parameters conditioning the
sensitivity of the novelty detection.

This paper is organized as follows. In section II, we
describe specific characteristics of the participants, the ex-
perimental protocol for the imitation game and the learning
architecture that has been employed for posture and identity
recognition. We also present the metrics used to evaluate the
impact of individual social traits. In section III we report
results of the analyses using such metrics to characterize
social traits. Finally, in section IV we discuss the impact of
participants’ characteristics on the robot’s learning and we
expose the study limitation’s.

II. MATERIALS AND METHODS

A. Participants

The experiment included individuals from three distinct
groups (see TABLE I): 15 children with ASD, 15 TD
children, and 11 adults. Children with ASD were enrolled in
the day-care setting for ASD of the Pitié-Salpêtrière hospital.
The psychiatric assessment and the parental interview were
conducted by two child psychiatrist/psychologists specialized
in autism (D. Cohen & J. Xavier). Assessments included
the Autism Diagnostic Interview-revised (ADI-R), the Wech-
sler Intelligence Scale for Children (fourth version revised,
WISC-4R) or equivalent, and the Global Assessment Func-
tioning (GAF) score. The TD children were recruited from
several schools in the Paris area. They were chosen according
to their developmental ages and genders to match those of the
children with ASD. The developmental ages were calculated
using the WISC-4R. Adults were students from engineering
or medical schools. All the participants from the three groups
performed the experiment only one time. The protocol was
approved by the Pitié-Salpêtrière hospital ethics committee
(Comité de Protection des Personnes). All the participants
or parents received information on the experiment and gave
written consent before their participation or the participation
of their child.

B. Experimental Protocol

Figure 2 describes the imitation experimental protocol,
which is an imitation task with two phases: (a) learning:
a human imitating the robot’s posture while the robot is

Fig. 2. Overview of the experimental protocol: The robot is the leader in
the learning phase (a) then during the test phase (b) the human becomes
the leader

learning the mapping between visual representation of hu-
man posture and robot’s posture, (b) testing: the human is
performing postures and the robot is recognizing them and
performing them. During the first phase, the robot randomly
performs one of the predefined postures (see Figure 1) and
the human imitates it. One of the major advantages of this
approach is that the robot is able to learn, in real-time,
a visual representation of the posture and label it. The
outcome of this phase is a computational model able to
map a human posture to a posture label. The robot is then
able to reproduce it during the validation phase. As most of
interactive machine learning approaches, the performance of
the model highly depends on the human skills. In this paper,
we will specifically address this issue by analyzing several
learning and testing schemes while involving partners from
different populations.

C. Architecture

In this study, we use the same neural network architecture
described in our previous work [6], which is based on
a sensory motor architecture allowing to learn perception-
action mapping [11]. During the learning phase the robot
performs a random posture according to the robot internal
state (RIS) (see Fig. 3). Each internal state of the robot
corresponds to a posture (see Fig. 1). In the same time the
robot computes a visual representation of the visual input
and associates it to the performed posture [12]. In [6], we
extended this architecture to not only learn to recognize
human postures but also identity of the partner. Figure 3
describes this multi-task learning architecture that exploits
(i) visual representation (VF) of human posture and robot
posture to further build posture recognition model (PR),
(ii) dynamics of the visual representation (VF) to build an
identity recognition model (IR).



ASD (N=15) TD (N=15) Adults (N=11)
Age, mean (±SD), year 9.25 (±1.82) 8.06 (±2.49) 25 (±3.49)
Male - Female 13-5 9-6 7-5
ADI-R, current, mean (±SD)*
Social impairment score 10.77 (±5.3) Not relevant Not relevant
Verbal communication score 7.72 (±4.22) Not relevant Not relevant
Non verbal communication score 4.3 (±3.5) Not relevant Not relevant
Repetitive interest score 2.5 (±1.88) Not relevant Not relevant
Developmental score 3.3 (±1.5) Not relevant Not relevant
Total score 31.1 (±5.46)
ADI-R, 4-5 years, mean (±SD)*
Social impairment score 17.33 (±8.47) Not relevant Not relevant
Communication verb score 13.75 (±5.72) Not relevant Not relevant
Communication non-verb score 8.08 (±4.4) Not relevant Not relevant
Repetitive interest score 5.25 (±3.52) Not relevant Not relevant
Developmental score 3.83 (±1.47) Not relevant Not relevant
Total score 48.25 (±7.34)
IQ* 73 (±14) All controls >80 All controls >80
GAF score 40.27 (±9.44) All controls >90 All controls >90

TABLE I
PARTICIPANTS’ CLINICAL ASSESSMENTS RESULTS :

*The Autism Diagnostic Interview-Revised is a parental interview to score autism core symptoms as they are presenting currently and also as the
presented retrospectively when the child was aged 4-5 years. The difference between current and 4-5 year scores indicates that the children recruited for

this experiment improved with age most symptomatic dimensions

Fig. 3. Sensory motor architecture allowing the imitation and partner
recognition tasks

1) Visual processing system: Unlike many HRI systems,
this model does not use a framing step to constraint on how
and where the visual features are extracted. The visual fea-
tures detection is based on an attentional vision mechanism,
working on a sequential exploration of saliency points in
the image. We begin by performing a gradient extraction
on a gray scale image, a convolution between the norm
of the gradient and a difference of Gaussians (DOG) is
then performed. A competition in the result provides the
most active points as focus points. For each focus point a
descriptor/feature is extracted. This descriptor consists on a
log-polar transformation of a local area around the focus
point. This transformation makes the descriptor robust to
rotation and distance.

2) Visual features learning: The extracted descriptors are
learned and recognized by the VF group fo neurons (Visual
features). VF is a k-means variant allowing the modification

of the number of neurons [14] called SAW (selective adaptive
winner). The output of VF is computed as:

V Fj = netj ·Hγ with netj = 1
1

N

N∑
i=1

|Wij − Ii|

V Fj is the activity of neuron j in the V F group. N is the
size of the vector that represents one visual feature pattern
I . Hγ is the Heaviside function:

Hγ =

{
1 if γ < x
0 otherwise

γ is a vigilance parameter employed as a threshold for
descriptor recognition. When the descriptor recognition is be-
low γ, then a new neuron is recruited (incremental learning).
This model enables the recruitment of neurons to adapt to the
dynamics of the visual input. The learning rule allows both
one-shot learning and long-term averaging. The modification
of the weights Wij is computed as follows :

∆Wij = aj(t)Ii + µ(1− δkj )(Ii −Wij)(1− V Fj) (3)

k = ArgMax(aj) and aj =

{
1 if new neuron
0 otherwise

δkj is the Kronecker symbol :

δkj =

{
1 if j = k
0 otherwise

The µ value allows a long-term averaging through descrip-
tors. During the recruitment of a neuron the weights are
modified to correspond to the descriptor (aj(t) = 1). If a
neuron fires to a given descriptor the weights of the neuron
are averaged to get closer to this local-view (µ(Ii−Wij)(1−
V Fj)). The closer the descriptor’s pattern is from the weights



of the neuron the less the weights are modified and vice
versa. The µ plays a main role in the recognition task : if µ
is too high the memory used is higher and the generalization
of the system decreases but if µ is too low the averaging will
be too high therefore the recognition scores will reduce.

3) Posture learning and prediction: For the posture learn-
ing, we use a clustering approach. We classify postures
according to the activation of VF’s neurons. Each RIS neuron
(Robot Internal State) corresponds to a posture. During the
learning phase, the ISP’s group of neuron (Internal State
Prediction) links the simultaneously activated VF’s neurons
and RIS’s neuron. Considering a reflex pathway this model
builds a conditioning mechanism that associates each pos-
ture’s corresponding VF’s neurons to a corresponding ISP’s
neuron. The ISP model is based on a Widrow and Hoff rule
[15]. It requires enough relevant descriptors on each image to
learn it correctly. The learning follows the least mean square
(LMS) rule :

∆wij = µ · V Fi · (RISj − ISPj) (4)

4) Final filtering: To avoid real-time problems during
the in-line HRI on testing phase, a filtering mechanism is
used. This mechanism consists on an averaging of the ISP’s
neurons activation over time (N iterations). It is computed
as follows:

STMi(t+ 1) =
1

N
ISPi(t+ 1) +

N − 1

N
STMi(t) (5)

Finally the MP group uses a winner takes all method on the
STM result to recognize the posture which will be performed
by the robot. To avoid partner reaction time problems during
this experiment, after a change of of posture, we do not
exploit the first frames for learning. This approach allows to
reduce the impact of transitions between postures.

5) Novelty detector: The novelty detector aims at identi-
fying significant changes in the dynamics of the VF neural
network. We compare the dynamics of VF to its average
prediction. The novelty detection is computed by an analysis
of the prediction error of the number of neurons in VF.
The error e(t) is computed as the difference between the
predicted number of neurons on VF ŝ(t) and the actual real
number s(t):

e(t) = ŝ(t)− s(t) (6)

Then we calculate the mean error E(t)

E(t) =
1

N

N∑
ti=1

e(t− ti) (7)

Finally we perform a mean gradient of the resulted signal:

V (t) =
1

M

M∑
ti=1

−δE(t− ti)
δ(t− ti)

(8)

A threshold is used to compute a rising edge detection on
V (t). The rising edge signal H(t) is correlated to novelty.
When novelty occurs, a new neuron is recruited in the IR
group of neurons (Identity Recognition) and associates the

neurons in VF to this new identity. This threshold is directly
connected to the sensitivity of the novelty detection. Here, we
use the same learning model as in the ISP group of neurons.

D. Metrics

The aim of this study is to investigate the influence of
partners’ specificities on a robot learning. Each learning
level of this architecture provides different metrics and they
potentially provide insights on this impact. First, the VF
group recruits neurons to learn descriptors corresponding to
postures. This VF number of neurons can be considered as
a measure of learning complexity and variability of posture
imitation of the partner. Second, to evaluate the learning by
imitation task as a whole, we use the posture recognition
score. The third metric is the number of recruited neurons
in the IR neural network while variating the sensitivity of
the novelty detector by variating the threshold. And finally,
we use the participant recognition score as a metric of the
identity recognition task.

E. Evaluation protocols

The robot interacted with each participant (see Sec II-
A) following the protocol described in section II-B. During
this interaction a database is built for an off-line processing
and analysis. The robot records all images and annotates
theme according to its posture. The learning phase images
are well labeled since the human imitate robot’s postures.
The validation phase images are labeled according to the
robot posture recognition task (see Fig 1)

To evaluate the multi-task learning neural architecture, we
proposed several specific evaluation protocols. In the three
first evaluation protocols we evaluate the posture recognition
task, therefore it is necessary to have a data base with a
perfect posture labelisation. Consequently we use only the
images recorded from the learning phase which are divided
in two (learning images, validation images). In the last
evaluation protocol, we evaluate how the identity recognition
task is impacted by the posture labelisation of the database.
Therefore we are using all the database which is divided
in two separate sets: learning images, validation images.
In this last evaluation protocol we need to have the same
number of participants in the three groups to have the same
identity recognition probabilities. Therefore 4 children have
been discarded from the TD and ASD groups randomly

1) Protocol 1: Group specific interaction analysis: In this
first analysis, we reproduce off-line the interaction of the
robot with 41 people from the different groups: 15 ASD
children, 15 TD children and 11 Adults). Each interaction is
independent from the others. Each partner’s interaction has
the same learning time, approximately 1 minute correspond-
ing to 155 frames. We then analyze the results according to
each partner’s group.

2) Protocol 2: Posture specific analysis: To investigate
whether the interaction’s results are influenced by the nature
of postures, we learned posture specific models (i.e., learning
and testing with only one posture). We performed an off-
line learning/testing for each of the five postures. Each



posture is performed in total for approximately fourteen
seconds corresponding to 33 learned frames per posture for
each partner. We then analyze posture specific model results
according to the partner’s group.

3) Protocol 3: Learning-time impact on posture recog-
nition scores: The purpose of this protocol is to evaluate
the impact of the interaction learning duration on the pos-
ture recognition scores for each group. In other words, we
evaluate the impact of exposure of the model to postures.
We modify off-line the learning-time from two seconds to
50 seconds (corresponding respectively to a variation from 1
frame to 115 frames for each posture). Then for each learning
time, we evaluate posture recognition score for each partner
of each group and we also analyze the results by groups (TD
children, children with ASD, adults).

4) Protocol 4: Novelty detection threshold impact on
identity recognition scores: In this protocol, to have the same
amount of subjects in each group, we randomly discarded 4
children in the TD and ASD groups. The resulting database
was composed of 11 children with ASD, 11 TD children
and 11 adults. We simulated a variation of the threshold
parameter controlling the novelty detection sensitivity. The
partners’ identities in each group are learned sequentially.
Then, we evaluate the identity recognition scores for each
group (TD children, children with ASD, adults) and the
number of neurons used to learn the identities.

III. EXPERIMENTAL RESULTS
Each result of this section corresponds to an aforemen-

tioned protocol.

A. Result 1: Group specific interaction analysis

Fig. 4. Mean number of recruited neurons in the VF group of neurons
during the learning phase for each group (ASD, TD, Adults)

In Fig. 4, the number of recruited neurons needed to learn
in the VF neural network for each partner are reported. We
present the mean number by group (ASD, TD, Adults). The
neurons needed to learn for each group significantly differ
(mean ASD=341, mean TD=255, mean adult=169). This
results describes the fact that the interaction with an ASD
child is more complex. On average, the architecture needs
twice as many neurons to learn with an ASD child than for
an interaction with an adult and one-third more neurons than
for an interaction with a TD child. To test whether samples
originate from the same distribution we used the Kruskal–
Wallis test, p < 0.05.

B. Result 2: Posture specific analysis

Fig. 5. Mean number of neurons needed in the VF group of neurons
during the learning phase for each group (ASD, TD, Adults) according to
each posture

To assess whether or not the previous result is similar
across all the postures, we performed a posture specific
analysis. First, we find that the number of recruited neurons
in the VF neural network differs according to the postures.
The ranking of the postures in terms of recruited neurons
number is the same across the three groups. Concerning
the inter-group evaluation, there is a confirmation of Fig.4
independently of the postures. For all the postures, it re-
quires two times more neurons to interact with a child with
ASD than to interact with an adult except for the resting
posture where this ratio decreases. All the comparisons are
significant (Kruskal–Wallis test : p < 0.05) except for the
resting posture where the comparisons TD vs. ASD and TD
vs. Adult are not significant.

Using the two previous analyses we calculated the simi-
larity between the different postures in terms of descriptors.
This similarity is computed by comparing the number of
recruited neurons in Fig. 4 and the summation of the number
of neurons of the different postures for each group in Fig.5.
When postures are learned sequentially, similar descriptors
are learned only one time. However, when postures are
learned separately, similar descriptors are learned for each
posture. The results showed that adults partners have less
similarity in their different postures than children partners.

C. Result 3: Learning-time impact on posture recognition
scores

Interacting with a child with ASD requires more VF
neurons than with a partner of the two other groups. To
investigate if this surplus of neurons improves the posture
recognition we compared the results of posture recognition
for each partner of each group while changing the learning-
time The analysis shows that the longer is the interaction
the better is posture recognition performance for a given
partner. We also find a strong correlation between the number
of recruited VF neurons and the recognition scores for each
group: the correlation is higher than 0.95 with a p−value <
10−12 for each group (Spearman correlation test). However,



Fig. 6. Correspondence through time between a) the mean percentage for
each group of the recognition of each individuals postures and b) The mean
number of recruited neurons for each group when the robot is learning with
one individual

even if interacting with children with ASD requires a higher
number of VF neuron recruitment, their posture recognition
is lower than that of the two other groups. In contrast,
TD’s neuron number increase compensates the difference
with adults in terms of posture recognition scores. In graph
(a) the comparisons TD vs. ASD and ASD vs. Adult are
significant (Kruskal–Wallis test for each iteration).In graph
(b) all the comparisons, TD vs. ASD, TD vs. Adult and
ASD vs. Adult are significant (Kruskal–Wallis test for each
iteration : p < 0.05)

D. Result 4: Novelty detector threshold impact on learning
according to each group

In previous works [6] the threshold parameter have been
arbitrary chosen to allow one neuron recruitment per partner.
In this section we analyze the impact of this parameter on
identity recognition for the three groups. We also evaluate
the number of neurons recruited in the IR neural network for
each group (ASD, TD, adults) to assess how this learning
level is modifier in each group. We also asses the identity
recognition scores for each group while variating the thresh-
old parameter. Adult partners recognition score is higher than
TD children one. TD children score is higher compared with
children with ASD for all the tested thresholds. Considering
the recruitments of neurons, TD children and children with
ASD require a threshold ≤ 36× 10−4 and adults require a
threshold ≤ 41 × 10−4 otherwise the system recruits less
than 11 neurons to learn the 11 partners which means that
the system is confusing between some people. For almost
all the threshold intervals, the system recruits more neurons
while learning from children with ASD compared to TD
children and from TD children compared with adults. As
we can expect there is a strong correlation between the IR
number of neurons and the identity recognition scores for the
three groups a (Spearman correlation : ASD=0.77, TD=0.92,
adult=0.54) The system is able to recognize adults partners
even with a low amount of neurons (12 neurons for a score

Fig. 7. Correspondence through variation of the novelty detection threshold
between a) the identity recognition score for each group and b) The number
of recruited neurons by the IR group of neurons to code 11 partners for
each group. *Represents the minimum number of neurons possible for the
identity recognition task. Less than 11 neurons for the 11 partners means
the system makes a confusion between some partners

of 96%, 11neurons for 87%). For TD children it needs more
(38 neurons for a score of 95%, 14 neurons for 88%). Even
when ASD recruits more neurons, their recognition scores
are the lowest. When the system recruits less neurons with
children with ASD we note that the identity recognition score
for people of that group decreases under 80% and then under
60%.

IV. DISCUSSION & CONCLUSIONS

In this paper, we used a neural architecture to simultane-
ously learn partner posture and identity recognition. The aim
was to evaluate the impact of partners social traits (ASD vs.
TD, children vs. adults) on robot learning. While the human
imitates the robot, the VF neural network (visual features)
recruits neurons to learn the visual inputs of the robot. The
ISP neural network (Internal state prediction) associates the
VF’s neurons to the RIS neurons (Robot Internal State). The
IR neural network (Identity Recognition) recruits neurons to
learn partners identity thanks to a coupling between the VF
numbers of neurons needed to learn and a novelty detector.
In this paper we generalized the robot centered approach to
an interaction with individuals (posture recognition) and a
second group task (identity recognition). The results shown
in this paper support our view that the complexity of the
partners behavior can be detected in a learning system.

Previous results [5] showed that the robot learns more
visual features while interacting with a group of children
with ASD than it does when interacting with a group of
TD children or with an group of adults. Results in this
paper show that the same aspect is also perceivable when
interacting with individuals of these different groups. the
architecture needs more visual features when interacting with
a child with ASD (compared to a TD child) or with a TD
child (compared to an adult). Furthermore this results show
that for all partners of the different groups there was a
correlation between the learning phase duration, the number



of recruited neurons and the posture recognition scores.
However, while the surplus of recruited neurons in VF for the
TD partners ameliorates consistently the posture recognition
score to reach adults scores, the surplus for partners with
ASD is not sufficient. This results shows that individuals with
ASD have a higher variability in terms of posture realization
and the architecture has more difficulties to capture this
variability.

In this paper we variated an important parameter in our
architecture which have been fixed in previous works. The
novelty detector threshold represents the sensitivity of the
identity recognition group of neurons (IR) to detect new
partners and learn to recognize theme. This experiment’s
result showed that the recruitment of neurons behavior in
the posture recognition task is generalizable to the identity
recognition one, the system recruits more neurons while
learning with a child with ASD (compared to a TD child)
or with a TD child (compared to an adult). To achieve the
identity recognition task and reach score higher than 85%
The architecture needs 12 neurons for adults, 15 neurons
for TD children and more than 30 for children with ASD.
This can be considered as an adaptation of the system to the
complexity and variability in the partners’ behavior.

The current study has several limitations: (1) the group
were large enough to allow learning but small to conduct
statistical analysis to correlate learning scores and clinical
characteristics in the ASD group. (2) Ideally to assess both
diagnosis and age, we should also perform the experiment
with a group of adult individuals with ASD. (3) The imitation
process with Nao included some form of discontinuity with
poses between each change of motor posture. We wonder
whether the use of a more dynamic imitation interaction
with an avatar acting like a tightrope walker would produce
different forms of learning results.
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