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In this paper we study dynamical properties of blowup solutions to the focusing intercritical (mass-supercritical and energy-subcritical) nonlinear fourth-order Schrödinger equation. We firstly establish the profile decomposition of bounded sequences in Ḣγc ∩ Ḣ2 . We also prove a compactness lemma and a variational characterization of ground states related to the equation. As a result, we obtain the Ḣγc -concentration and the limiting profile with critical Ḣγc -norm of blowup solutions with bounded Ḣγc -norm.

Introduction

Consider the Cauchy problem for the focusing intercritical nonlinear fourth-order Schrödinger equation

i∂ t u -∆ 2 u = -|u| α u, on [0, ∞) × R d , u(0) = u 0 , (1.1) 
where u is a complex valued function defined on [0, ∞) × R d and 2 < α < 2 with (1.

2)

The fourth-order Schrödinger equation was introduced by Karpman [18] and taking into account the role of small fourth-order dispersion terms in the propagation of intense laser beams in a bulk medium with Kerr nonlinearity. Such fourth-order Schrödinger equations are of the form i∂ t -∆ 2 u + ∆u = µ|u| α u, u(0) = u 0 , (1.3) where ∈ {0, ±1}, µ ∈ {±} and α > 0. The equation (1.1) is a special case of (1.3) with = 0 and µ = -1. The study of nonlinear fourth-order Schrödinger equations (1.3) has attracted a lot of interest in the past several years (see [26], [START_REF] Pausader | The cubic fourth-order Schrödinger equation[END_REF], [START_REF] Hao | Well-posedness for the fourth-order Schrödinger equations[END_REF], [14], [START_REF] Huo | The Cauchy problem for the fourth-order nonlinear Schrödinger equation related to the vortex filament[END_REF], [START_REF] Miao | Global well-posedness and scattering for the defocusing energy critical nonlinear Schrödinger equations of fourth-order in the radial case[END_REF], [START_REF] Baruch | Singular solutions of the L 2 -supercritical biharmonic nonlinear Schrödigner equation[END_REF], [START_REF] Bergh | Interpolation spaces[END_REF], [START_REF] Dinh | On well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schrödinger equation[END_REF], [START_REF] Dinh | On the focusing mass-critical nonlinear fourth-order Schrödinger equation below the energy space[END_REF] and references therein).

The equation (1.1) enjoys the scaling invariance u λ (t, x) := λ 4 α u(λ 4 t, λx), λ > 0.

It means that if u solves (1.1), then u λ solves the same equation with intial data u λ (0, x) = λ 4 α u 0 (λx). A direct computation shows

u λ (0) Ḣγ = λ γ+ 4 α -d 2 u 0 Ḣγ .
From this, we define the critical Sobolev exponent

γ c := d 2 - 4 α .
(1.4)

We also define the critical Lebesgue exponent

α c := 2d d -2γ c = dα 4 . (1.5)
By Sobolev embedding, we have Ḣγc → L αc . The local well-posedness for (1.1) in Sobolev spaces was studied in [START_REF] Dinh | Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces[END_REF][START_REF] Dinh | On well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schrödinger equation[END_REF] (see also [26] for H 2 initial data). It is known that (1.1) is locally well-posed in H γ for γ ≥ max{γ c , 0} satisfying for α > 0 not an even integer,

γ ≤ α + 1, (1.6) 
where γ is the smallest integer greater than or equal to γ. This condition ensures the nonlinearity to have enough regularity. Moreover, the solution enjoys the conservation of mass

M (u(t)) = |u(t, x)| 2 dx = M (u 0 ),
and H 2 solution has conserved energy

E(u(t)) = 1 2 |∆u(t, x)| 2 dx - 1 α + 2 |u(t, x)| α+2 dx = E(u 0 ).
In the subcritical regime, i.e. γ > γ c , the existence time depends only on the H γ -norm of initial data. There is also a blowup alternative: if T is the maximal time of existence, then either

T = ∞ or T < ∞, lim t↑T u(t) H γ = ∞.
It is well-known (see e.g. [26]) that if γ c < 0 or 0 < α < 8 d , then (1.1) is globally well-posed in H 2 . Thus the blowup in H 2 may occur only for α ≥ 8 d . Recently, Boulenger-Lenzmann established in [5] blowup criteria for (1.3) with radial data in H 2 in the mass-critical (γ c = 0), mass and energy intercritical (0 < γ c < 2) and enery-critical (γ c = 2) cases. This naturally leads to the study of dynamical properties of blowup solutions such as blowup rate, concentration and limiting profile, etc.

In the mass-critical case γ c = 0 or α = 8 d , the study of H 2 blowup solutions to (1.1) is closely related to the notion of ground states which are solutions of the elliptic equation

∆ 2 Q + Q -|Q| 8 d Q = 0.
Fibich-Ilan-Papanicolaou in [START_REF] Fibich | Self-focusing with fourth-order dispersion[END_REF] showed some numerical observations which implies that if u 0 L 2 < Q L 2 , then the solution exists globally; and if u 0 L 2 ≥ Q L 2 , then the solution may blow up in finite time. Later, Baruch-Fibich-Mandelbaum in [START_REF] Dinh | Institut de Mathématiques de Toulouse UMR5219[END_REF] proved some dynamical properties such as blowup rate, L 2 -concentration for radial blowup solutions. In [START_REF] Zhu | Limiting profile of the blow-up solutions for the fourth-order nonlinear Schrödinger equation[END_REF], Zhu-Yang-Zhang established the profile decomposition and a compactness result to study dynamical properties such as L 2concentration, limiting profile with minimal mass of blowup solutions in general case (i.e. without radially symmetric assumption). For dynamical properties of blowup solutions with low regularity initial data, we refer the reader to [32] and [START_REF] Dinh | On the focusing mass-critical nonlinear fourth-order Schrödinger equation below the energy space[END_REF].

In the mass and energy intercritical case 0 < γ c < 2, there are few works concerning dynamical properties of blowup solutions to (1.1). To our knowledge, the only paper addressed this problem belongs to [START_REF] Zhu | L pc -concentration of blow-up solutions for the biharmonic nonlinear Schrödinger equation[END_REF] where the authors studied L αc -concentration of radial blowup solutions. We also refer to [3] for numerical study of blowup solutions to the equation.

The main purpose of this paper is to show dynamical properties of blowup solutions to (1.1) with initial data in Ḣγc ∩ Ḣ2 . The main difficulty in this consideration is the lack of conservation of mass. To study dynamics of blowup solutions in Ḣγc ∩ Ḣ2 , we firstly need the local well-posedness. For data in H 2 , the local well-posedness is well-known (see e.g. [26]). However, for data in Ḣγc ∩ Ḣ2 the local theory is not a trivial consequence of the one for H 2 data due to the lack of mass conservation. We thus need to show a new local theory for our purpose, and it will be done in Section 2. It is worth noticing that thanks to Strichartz estimates with a "gain" of derivatives, we can remove the regularity requirement (1.6). However, we can only show the local well-posedness in dimensions d ≥ 5, the one for d ≤ 4 is still open. After the local theory is established, we need to show the existence of blowup solutions. In [5], the authors showed blowup criteria for radial H 2 solutions to (1.3). In their proof, the conservation of mass plays a crucial role. In our setting, the lack of mass conservation makes the problem more difficult. We are only able to prove a blowup criteria for negative energy radial solutions with an additional condition

sup t∈[0,T ) u(t) Ḣγc < ∞. (1.7)
This condition is also needed in our results for dynamical properties of blowup solutions. We refer to Section 4 for more details. To study blowup dynamics for data in Ḣγc ∩ Ḣ2 , we establish the profile decomposition for bounded sequences in Ḣγc ∩ Ḣ2 . This is done by following the argument of [15] (see also [12]). With the help of this profile decomposition, we study the sharp constant to the Gagliardo-Nirenberg inequality

f α+2 L α+2 ≤ A GN f α Ḣγc f 2 Ḣ2 . ( 1.8) 
It follows (see Proposition 3.2) that the sharp constant A GN is attained at a function U ∈ Ḣγc ∩ Ḣ2 of the form U (x) = aQ(λx + x 0 ), for some a ∈ C * , λ > 0 and x 0 ∈ R d , where Q is a solution to the elliptic equation

∆ 2 Q + (-∆) γc Q -|Q| α Q = 0.

Moreover,

A GN = α + 2 2 Q -α
Ḣγc . The profile decomposition also gives a compactness lemma, that is for any bounded sequence

(v n ) n≥1 in Ḣγc ∩ Ḣ2 satisfying lim sup n→∞ v n Ḣ2 ≤ M, lim sup n→∞ v n L α+2 ≥ m, there exists a sequence (x n ) n≥1 in R d such that up to a subsequence, v n (• + x n ) V weakly in Ḣγc ∩ Ḣ2 , for some V ∈ Ḣγc ∩ Ḣ2 satisfying V α Ḣγc ≥ 2 α + 2 m α+2 M 2 Q α Ḣγc .
As a consequence, we show that the Ḣγc -norm of blowup solutions satisfying (1.7) must concentrate by an amount which is bounded from below by Q Ḣγc at the blowup time. Finally, we show the limiting profile of blowup solutions with critical norm sup

t∈[0,T ) u(t) Ḣγc = Q Ḣγc .
The plan of this paper is as follows. In Section 2, we give some preliminaries including Strichartz estimates, the local well-posednesss for data in Ḣγc ∩ Ḣ2 and the profile decomposition of bounded sequences in Ḣγc ∩ Ḣ2 . In Section 3, we use the profile decomposition to study the sharp Gagliardo-Nirenberg inequality (1.8). The global existence and blowup criteria will be given in Section 4. Section 5 is devoted to the blowup concentration, and finally the limiting profile of blowup solutions with critical norm will be given in Section 6.

Preliminaries

2.1. Homogeneous Sobolev spaces. We firstly recall the definition and properties of homogeneous Sobolev spaces (see e.g. [11, Appendix], [START_REF] Triebel | Theory of function spaces[END_REF]Chapter 5] or [4, Chapter 6]). Given γ ∈ R and 1 ≤ q ≤ ∞, the generalized homogeneous Sobolev space is defined by

Ẇ γ,q := {u ∈ S 0 | u Ẇ γ,q := |∇| γ u L q < ∞} ,
where S 0 is the subspace of the Schwartz space S consisting of functions φ satisfying D β φ(0) = 0 for all β ∈ N d with • the Fourier transform on S, and S 0 is its topology dual space. One can see S 0 as S /P where P is the set of all polynomials on R d . Under these settings, Ẇ γ,q are Banach spaces. Moreover, the space S 0 is dense in Ẇ γ,q . In this paper, we shall use Ḣγ := Ẇ γ,2 . We note that the spaces Ḣγ1 and Ḣγ2 cannot be compared for the inclusion. Nevertheless, for γ 1 < γ < γ 2 , the space Ḣγ is an interpolation space between Ḣγ1 and Ḣγ2 .

Strichartz estimates.

In this subsection, we recall Strichartz estimates for the fourth-order Schrödinger equation. Let I ⊂ R and p, q ∈ [1, ∞]. We define the mixed norm

u L p (I,L q ) := I R d |u(t, x)| q dx 1 q 1 p ,
with a usual modification when either p or q are infinity. We also denote for (p,

q) ∈ [1, ∞] 2 , γ p,q = d 2 - d q - 4 p .
(2.1) Definition 2.1. A pair (p, q) is called Schrödinger admissible, for short (p, q) ∈ S, if

(p, q) ∈ [2, ∞] 2 , (p, q, d) = (2, ∞, 2), 2 p + d q ≤ d 2 .
A pair (p, q) is call biharmonic admissible, for short (p, q) ∈ B, if (p, q) ∈ S, γ p,q = 0.

We have the following Strichartz estimates for the fourth-order Schrödinger equation.

Proposition 2.2 (Strichartz estimates [START_REF] Cho | Remarks on some dispersive estimates[END_REF][START_REF] Dinh | Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces[END_REF]). Let γ ∈ R and u be a weak solution to the inhomogeneous fourth-order Schrödinger equation, namely

u(t) = e it∆ 2 u 0 + i t 0 e i(t-s)∆ 2 F (s)ds, (2.2) 
for some data u 0 and F . Then for all (p, q) and (a, b) Schrödinger admissible with q < ∞ and b < ∞,

|∇| γ u L p (R,L q ) |∇| γ+γp,q u 0 L 2 + |∇| γ+γp,q-γ a ,b -4 F L a (R,L b ) , (2.3)
where (a, a ) and (b, b ) are conjugate pairs.

Note that the estimates (2.3) are exactly the ones given in [START_REF] Miao | Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations[END_REF] or [26] where the authors considered (p, q) and (a, b) are either sharp Schrödinger admissible, i.e.

(p, q) ∈ [2, ∞] 2 , (p, q, d) = (2, ∞, 2), 2 p + d q = d 2 ,
or biharmonic admissible. We refer to [START_REF] Cho | Remarks on some dispersive estimates[END_REF] or [START_REF] Dinh | Well-posedness of nonlinear fractional Schrödinger and wave equations in Sobolev spaces[END_REF] for the proof of Propsosition 2.2. Note that instead of using directly a dedicate dispersive estimate of [START_REF] Ben-Artzi | Saut Disperion estimates for fourth-order Schrödinger equations[END_REF] for the fundamental solution of the homogeneous fourth-order Schrödinger equation, one uses the scaling technique which is similar to the one of wave equation (see e.g. [20]). We also have the following consequence of Strichartz estimates (2.3).

Corollary 2.3. Let γ ∈ R and u be a weak solution to the inhomogeneous fourth-order Schrödinger equation (2.2) for some data u 0 and F . Then for all (p, q) and (a, b) biharmonic admissible satisfying q < ∞ and b < ∞,

u L p (R,L q ) u 0 L 2 + F L a (R,L b ) , (2.4)
and

|∇| γ u L p (R,L q ) |∇| γ u 0 L 2 + |∇| γ-1 F L 2 (R,L 2d d+2 ) , ( 2.5) 
Note that the estimates (2.5) is important to reduce the regularity requirement of the nonlinearity (see Subsection 2.4).

In the sequel, for a space time slab I × R d we define the Strichartz space Ḃ0 (I × R d ) as a closure of S 0 under the norm u Ḃ0 (I×R d ) := sup

(p,q)∈B q<∞ u L p (I,L q ) .
For γ ∈ R, the space Ḃγ (I × R d ) is defined as a closure of S 0 under the norm

u Ḃγ (I×R d ) := |∇| γ u Ḃ0 (I×R d ) .
We also use Ṅ 0 (I × R d ) to denote the dual space of Ḃ0 (I × R d ) and

Ṅ γ (I × R d ) := u : |∇| γ u ∈ Ṅ 0 (I × R d ) .
To simplify the notation, we will use Ḃγ (I), Ṅ γ (I) instead of Ḃγ (I × R d ) and Ṅ γ (I × R d ). By Corollary 2.3, we have

u Ḃ0 (R) u 0 L 2 + F Ṅ 0 (R) , (2.6) u Ḃγ (R) u 0 Ḣγ + |∇| γ-1 F L 2 (R,L 2d d+2 ) 
.

(2.7) 2.3. Nonlinear estimates. We next recall nonlinear estimates to study the local well-posedness for (1.1).

Lemma 2.4 (Nonlinear estimates [17]

).

Let F ∈ C k (C, C) with k ∈ N\{0}. Assume that there is α > 0 such that k ≤ α + 1 and |D j F (z)| |z| α+1-j , z ∈ C, j = 1, • • • , k.
Then for γ ∈ [0, k] and 1 < r, p < ∞, 1 < q ≤ ∞ satisfying 1 r = 1 p + α q , there exists C = C(d, α, γ, r, p, q) > 0 such that for all u ∈ S,

|∇| γ F (u) L r ≤ C u α L q |∇| γ u L p . (2.8)
Moreover, if F is a homogeneous polynomial in u and u, then (2.8) holds true for any γ ≥ 0.

The proof of Lemma 2.4 is based on the fractional Leibniz rule (or Kato-Ponce inequality) and the fractional chain rule. We refer the reader to [17, Appendix] for the proof.

Local well-posedness.

In this subsection, we recall the local well-posedness for (1.1) with initial data in H 2 and in Ḣγc ∩ Ḣ2 respectively. The case in H 2 is well-known (see e.g. [26]), while the one in Ḣγc ∩ Ḣ2 needs a careful consideration. 

u ∈ C([0, T ), H 2 ) ∩ L p loc ([0, T ), W 2,q
), for any biharmonic admissible pairs (p, q) satisfying q < ∞. The time of existence satisfies either T = ∞ or T < ∞ and lim t↑T u Ḣ2 = ∞. Moreover, the solution enjoys the conservation of mass and energy.

Proposition 2.6 (Local well-posedness in Ḣγc

∩ Ḣ2 ). Let d ≥ 5, 0 < α < 2 and u 0 ∈ Ḣγc ∩ Ḣ2 .
Then there exist T > 0 and a unique solution u to (1.1) satisfying

u ∈ C([0, T ), Ḣγc ∩ Ḣ2 ) ∩ L p loc ([0, T ), Ẇ γc,q ∩ Ẇ 2,q
), for any biharmonic admissible pairs (p, q) satisfying q < ∞. The existence time satisfies either T = ∞ or T < ∞ and lim t↑T u(t) Ḣγc + u(t) Ḣ2 = ∞. Moreover, the solution enjoys the conservation of energy.

Remark 2.7.

• When γ c = 0, Proposition 2.6 is a consequence of Proposition 2.5 since Ḣ0 = L 2 and L 2 ∩ Ḣ2 = H 2 .

• In [START_REF] Dinh | On well-posedness, regularity and ill-posedness for the nonlinear fourth-order Schrödinger equation[END_REF], a similar result holds with an additional regularity assumption α ≥ 1 if α is not an even integer. Thanks to Strichartz estimate with a "gain" of derivatives (2.7), we can remove this regularity requirement.

Proof of Proposition 2.6. We firstly choose

n = 2d d + 2 -(d -4)α , n * = 2d d + 4 -(d -4)α , m * = 8 (d -4)α -4 .
It is easy to check that

d + 2 2d = (d -4)α 2d + 1 n , 1 n = 1 n * - 1 d , d 2 = 4 m * + d n * . (2.9)
In particular, (m * , n * ) is a biharmonic admissible and

θ := 1 2 - 1 m * = 1 - (d -4)α 8 > 0.
(2.10)

Consider X := u ∈ Ḃγc (I) ∩ Ḃ2 (I) : u Ḃγc (I) + u Ḃ2 (I) ≤ M , equipped with the distance d(u, v) := u -v Ḃ0 (I) ,
where I = [0, τ ] and M, τ > 0 to be chosen later. By Duhamel's formula, it suffices to prove that the functional

Φ(u)(t) := e it∆ 2 u 0 + i t 0 e i(t-s)∆ 2 |u(s)| α u(s)ds is a contraction on (X, d). By Strichartz estimate (2.7), Φ(u) Ḃ2 (I) u 0 Ḣ2 + ∇(|u| α u) L 2 (I,L 2d d+2 ) 
.

By Lemma 2.4, ∇(|u| α u) L 2 (I,L 2d d+2 ) u α L ∞ (I,L 2d d-4 ) ∇u L 2 (I,L n ) .
We next use (2.9) together with the Sobolev embedding to bound

u L ∞ (I,L 2d d-4 ) ∆u L ∞ (I,L 2 ) u Ḃ2 (I) ,
and

∇u L 2 (I,L n ) ∆u L 2 (I,L n * ) |I| θ ∆u L m * (I,L n * ) |I| θ u Ḃ2 (I) .
Thus, we get Φ(u) Ḃ2 (I) u 0 Ḣ2 + |I| θ u α+1 Ḃ2 (I) . We now estimate Φ(u) Ḃγc (I) . To do so, we separate two cases γ c ≥ 1 and 0 < γ c < 1. In the case γ c ≥ 1, we estimate as above to get

Φ(u) Ḃγc (I) u 0 Ḣγc + |I| θ u α Ḃ2 (I) u Ḃγc (I) . In the case 0 < γ c < 1, we choose p = 8(α + 2) α(d -4) , q = d(α + 2) d + 2α , (2.11) and choose (m, n) so that 1 p = 1 m + α p , 1 q = 1 q + α n .
It is easy to check that (p, q) is biharmonic admissible and n = dq d-2q . The later fact gives the Sobolev embedding Ẇ 2,q → L n . By Strichartz estimate (2.6),

Φ(u) Ḃγc (I) u 0 Ḣγc + |∇| γc (|u| α u) L p (I,L q ) .
By Lemma 2.4,

|∇| γc (|u| α u) L p (I,L q ) u α L p (I,L n ) |∇| γc u L m (I,L q ) |I| 1 m -1 p ∆u α L p (I,L q ) |∇| γc u L p (I,L q ) |I| θ u α Ḃ2 (I) u Ḃγc (I) . In both cases, we have Φ(u) Ḃγc (I) u 0 Ḣγc + |I| θ u α Ḃ2 (I) u Ḃγc (I) . Therefore, Φ(u) Ḃγc (I)∩ Ḃ2 (I) u 0 Ḣγc ∩ Ḣ2 + |I| θ u α Ḃ2 (I) u Ḃγc (I)∩ Ḃ2 (I) . Similarly, by (2.6), Φ(u) -Φ(v) Ḃ0 (I) |u| α u -|v| α v L p (I,L q ) ,
where (p, q) is as in (2.11). We estimate

|u| α u -|v| α v L p (I,L q ) u α L p (I,L n ) + v α L p (I,L n ) u -v L m (I,L q ) |I| θ ∆u α L p (I,L q ) + ∆v α L p (I,L q ) u -v L p (I,L q ) |I| θ u α Ḃ2 (I) + v α Ḃ2 (I) u -v Ḃ0 (I) .
This shows that for all u, v ∈ X, there exists C > 0 independent of T and u 0 ∈ Ḣγc ∩ Ḣ2 such that

Φ(u) Ḃγc (I) + Φ(u) Ḃ2 (I) ≤ C u 0 Ḣγc ∩ Ḣ2 + Cτ θ M α+1 , (2.12) d(Φ(u), Φ(v)) ≤ Cτ θ M α d(u, v).
If we set M = 2C u 0 Ḣγc ∩ Ḣ2 and choose τ > 0 so that

Cτ θ M α ≤ 1 2 ,
then Φ is a strict contraction on (X, d). This proves the existence of solution

u ∈ Ḃγc (I) ∩ Ḃ2 (I).
The time of existence depends only on the Ḣγc ∩ Ḣ2 -norm of initial data. We thus have the blowup alternative. The conservation of energy follows from the standard approximation. The proof is complete.

Corollary 2.8 (Blowup rate). Let d ≥ 5, 0 < α < 2 and u 0 ∈ Ḣγc ∩ Ḣ2 . Assume that the corresponding solution u to (1.1) given in Proposition 2.6 blows up at finite time 0 < T < ∞.

Then there exists C > 0 such that

u(t) Ḣγc ∩ Ḣ2 > C (T -t) 2-γc 4 , (2.13)
for all 0 < t < T .

Proof. Let 0 < t < T . If we consider (1.1) with initial data u(t), then it follows from (2.12) and the fixed point argument that if for some M > 0,

C u(t) Ḣγc ∩ Ḣ2 + C(τ -t) θ M α+1 ≤ M, then τ < T . Thus, C u(t) Ḣγc ∩ Ḣ2 + C(τ -t) θ M α+1 > M, for all M > 0. Choosing M = 2C u(t) Ḣγc ∩ Ḣ2 , we see that (T -t) θ u(t) α Ḣγc ∩ Ḣ2 > C. This implies u(t) Ḣγc ∩ Ḣ2 > C (T -t) θ α , which is exactly (2.13) since θ α = 8-(d-4)α 8α = 2-γc 4 .
The proof is complete. 2.5. Profile decomposition. The main purpose of this subsection is to prove the profile decomposition related to the focusing intercritical NL4S by following the argument of [15] (see also [12]).

Theorem 2.9 (Profile decomposition)

. Let d ≥ 1 and 2 < α < 2 . Let (v n ) n≥1 be a bounded sequence in Ḣγc ∩ Ḣ2 . Then there exist a subsequence of (v n ) n≥1 (still denoted (v n ) n≥1 ), a family (x j n ) j≥1 of sequences in R d and a sequence (V j ) j≥1 of Ḣγc ∩ Ḣ2 functions such that • for every k = j, |x k n -x j n | → ∞, as n → ∞, (2.14) 
• for every l ≥ 1 and every

x ∈ R d , v n (x) = l j=1 V j (x -x j n ) + v l n (x), with lim sup n→∞ v l n L q → 0, as l → ∞, (2.15) 
for every q ∈ (α c , 2 ), where α c is given in (1.5). Moreover,

v n 2 Ḣγc = l j=1 V j 2 Ḣγc + v l n 2 Ḣγc + o n (1), , (2.16 
)

v n 2 Ḣ2 = l j=1 V j 2 Ḣ2 + v l n 2 Ḣ2 + o n (1), , (2.17) 
as n → ∞.

Remark 2.10. In the case γ c = 0 or α = 2 , Theorem 2.9 is exactly Proposition 2.3 in [START_REF] Zhu | Limiting profile of the blow-up solutions for the fourth-order nonlinear Schrödinger equation[END_REF] due to the fact Ḣ0 = L 2 and

L 2 ∩ Ḣ2 = H 2 .
Proof of Theorem 2.9. Since Ḣγc ∩ Ḣ2 is a Hilbert space, we denote Ω(v n ) the set of functions obtained as weak limits of sequences of the translated

v n (• + x n ) with (x n ) n≥1 a sequence in R d . Denote η(v n ) := sup{ v Ḣγc + v Ḣ2 : v ∈ Ω(v n )}. Clearly, η(v n ) ≤ lim sup n→∞ v n Ḣγc + v n Ḣ2 .
We shall prove that there exist a sequence (V j ) j≥1 of Ω(v n ) and a family (

x j n ) j≥1 of sequences in R d such that for every k = j, |x k n -x j n | → ∞,
as n → ∞, and up to a subsequence, the sequence (v n ) n≥1 can be written as for every l ≥ 1 and every

x ∈ R d , v n (x) = l j=1 V j (x -x j n ) + v l n (x),
with η(v l n ) → 0 as l → ∞. Moreover, the identities (2.16) and (2.17) hold as n → ∞. Indeed, if η(v n ) = 0, then we can take V j = 0 for all j ≥ 1. Otherwise we choose

V 1 ∈ Ω(v n ) such that V 1 Ḣγc + V 1 Ḣ2 ≥ 1 2 η(v n ) > 0.
By the definition of Ω(v n ), there exists a sequence (

x 1 n ) n≥1 ⊂ R d such that up to a subsequence, v n (• + x 1 n ) V 1 weakly in Ḣγc ∩ Ḣ2 . Set v 1 n (x) := v n (x) -V 1 (x -x 1 n ). We see that v 1 n (• + x 1 n ) 0 weakly in Ḣγc ∩ Ḣ2 and thus v n 2 Ḣγc = V 1 2 Ḣγc + v 1 n 2 Ḣγc + o n (1), v n 2 Ḣ2 = V 1 2 Ḣ2 + v 1 n 2 Ḣ2 + o n (1), as n → ∞. We now replace (v n ) n≥1 by (v 1 n ) n≥1 and repeat the same process. If η(v 1 n ) = 0, then we choose V j = 0 for all j ≥ 2. Otherwise there exist V 2 ∈ Ω(v 1 n ) and a sequence (x 2 n ) n≥1 ⊂ R d such that V 2 Ḣγc + V 2 Ḣ2 ≥ 1 2 η(v 1 n ) > 0, and v 1 n (• + x 2 n ) V 2 weakly in Ḣγc ∩ Ḣ2 . Set v 2 n (x) := v 1 n (x) -V 2 (x -x 2 n ). We thus have v 2 n (• + x 2 n ) 0 weakly in Ḣγc ∩ Ḣ2 and v 1 n 2 Ḣγc = V 2 2 Ḣγc + v 2 n 2 Ḣγc + o n (1), v 1 n 2 Ḣ2 = V 2 2 Ḣ2 + v 2 n 2 Ḣ2 + o n (1), V. D. DINH as n → ∞. We claim that |x 1 n -x 2 n | → ∞, as n → ∞. In fact, if it is not true, then up to a subsequence, x 1 n -x 2 n → x 0 as n → ∞ for some x 0 ∈ R d . Since v 1 n (x + x 2 n ) = v 1 n (x + (x 2 n -x 1 n ) + x 1 n ), and v 1 n (• + x 1 n
) converges weakly to 0, we see that V 2 = 0. This implies that η(v 1 n ) = 0 and it is a contradiction. An argument of iteration and orthogonal extraction allows us to construct the family (x j n ) j≥1 of sequences in R d and the sequence (V j ) j≥1 of Ḣγc ∩ Ḣ2 functions satisfying the claim above. Furthermore, the convergence of the series

∞ j≥1 V j 2 Ḣγc + V j 2 Ḣ2 implies that V j 2 Ḣγc + V j 2 Ḣ2 → 0, as j → ∞. By construction, we have η(v j n ) ≤ 2 V j+1 Ḣγc + ∇V j+1 Ḣ2 ,
which proves that η(v j n ) → 0 as j → ∞. To complete the proof of Theorem 2.9, it remains to show (2.15). To do so, we introduce for R > 1 a function χ R ∈ S satisfying χR : R d → [0, 1] and

χR (ξ) = 1 if 1/R ≤ |ξ| ≤ R, 0 if |ξ| ≤ 1/2R ∨ |ξ| ≥ 2R. We write v l n = χ R * v l n + (δ -χ R ) * v l n ,
where * is the convolution operator. Let q ∈ (α c , 2 ) be fixed. By Sobolev embedding and the Plancherel formula, we have

(δ -χ R ) * v l n L q (δ -χ R ) * v l n Ḣβ |ξ| 2β |(1 -χR (ξ))v l n (ξ)| 2 dξ 1/2 |ξ|≤1/R |ξ| 2β |v l n (ξ)| 2 dξ 1/2 + |ξ|≥R |ξ| 2β |v l n (ξ)| 2 dξ 1/2 R γc-β v l n Ḣγc + R β-2 v l n Ḣ2 ,
where β = d 2 -d q ∈ (γ c , 2). On the other hand, the Hölder interpolation inequality implies

χ R * v l n L q χ R * v l n αc q L αc χ R * v l n 1-αc q L ∞ v l n αc q Ḣγc χ R * v l n 1-αc q L ∞ . Observe that lim sup n→∞ χ R * v l n L ∞ = sup xn lim sup n→∞ |χ R * v l n (x n )|.
Thus, by the definition of Ω(v l n ), we infer that lim sup

n→∞ χ R * v l n L ∞ ≤ sup χ R (-x)v(x)dx : v ∈ Ω(v l n ) .
By the Plancherel formula, we have

χ R (-x)v(x)dx = χR (ξ)v(ξ)dξ ξ| -γc χR L 2 |ξ| γc v L 2 R d 2 -γc χR Ḣ-γc v Ḣγc R 4 α η(v l n ).
We thus obtain for every l ≥ 1,

lim sup n→∞ v l n L q lim sup n→∞ (δ -χ R ) * v l n L q + lim sup n→∞ χ R * v l n L q R γc-β v l n Ḣγc + R β-2 v l n Ḣ2 + v l n αc q Ḣγc R 4 α η(v l n ) (1-αc q ) . Choosing R = η(v l n ) -1 α 4
for some > 0 small enough, we see that

lim sup n→∞ v l n L q η(v l n ) (β-γc)( α 4 -) v l n Ḣγc + η(v l n ) (2-β)( α 4 -) v l n Ḣ2 + η(v l n ) 4 α (1-αc q ) v l n αc q Ḣγc .
Letting l → ∞ and using the fact that η(v l n ) → 0 as l → ∞ and the uniform boundedness in Ḣγc ∩ Ḣ2 of (v l n ) l≥1 , we obtain lim sup

n→∞ v l n L q → 0, as l → ∞.
The proof is complete.

Variational analysis

Let d ≥ 1 and 2 < α < 2 . We consider the variational problems

A GN := max{H(f ) : f ∈ Ḣγc ∩ Ḣ2 }, H(f ) := f α+2 L α+2 ÷ f α Ḣγc f 2 Ḣ2 , B GN := max{K(f ) : f ∈ L αc ∩ Ḣ2 }, K(f ) := f α+2 L α+2 ÷ f α L αc f 2 Ḣ2 .
Here A GN and B GN are respectively sharp constants in the Gagliardo-Nirenberg inequalities

f α+2 L α+2 ≤ A GN f α Ḣγc f 2 Ḣ2 , f α+2 L α+2 ≤ B GN f α L αc f 2 Ḣ2 .
Let us start with the following observation.

Lemma 3.1. If g and h are maximizers of H(f ) and K(f ) respectively, then g and h satisfy

A GN g α Ḣγc ∆ 2 g + α 2 A GN g α-2 Ḣγc g 2 Ḣ2 (-∆) γc g - α + 2 2 |g| α g = 0, (3.1) 
B GN h α L αc ∆ 2 h + α 2 B GN h α-αc L αc h 2 Ḣ2 |h| αc-2 h - α + 2 2 |h| α h = 0, (3.2) 
respectively.

Proof. If g is a maximizer of H in Ḣγc ∩ Ḣ2 , then g must satisfy the Euler-Lagrange equation

d d | =0 H(g + φ) = 0, for all φ ∈ S 0 . A direct computation shows d d =0 g + φ α+2 L α+2 = (α + 2) Re (|g| α gφ)dx, d d =0 g + φ α Ḣγc = α g α-2
Ḣγc Re ((-∆) γc gφ)dx,

and d d =0 g + φ 2 Ḣ2 = 2 Re (∆ 2 gφ)dx.
We thus get

(α + 2) g α Ḣγc g 2 Ḣ2 |g| α g -α g α+2 L α+2 g α-2 Ḣγc g 2 Ḣ2 (-∆) γc g -2 g α+2 L α+2 g α Ḣγc ∆g = 0
Dividing by 2 g α Ḣγc g 2 Ḣ2 , we obtain (3.1). The proof of (3.2) is similar using the fact that

d d =0 h + φ α L αc = α h α-αc L αc
Re (|h| αc-2 hφ)dx.

The proof is complete.

We next use the profile decomposition given in Theorem 2.9 to obtain the following variational structure of the sharp constants A GN and B GN .

Proposition 3.2 (Variational structure of sharp constants). Let d ≥ 1 and 2 < α < 2 . • The sharp constant A GN is attained at a function U ∈ Ḣγc ∩ Ḣ2 of the form U (x) = aQ(λx + x 0 ),
for some a ∈ C * , λ > 0 and x 0 ∈ R d , where Q is a solution to the elliptic equation

∆ 2 Q + (-∆) γc Q -|Q| α Q = 0. (3.3)
Moreover,

A GN = α + 2 2 Q -α Ḣγc .
• The sharp constant B GN is attained at a function V ∈ L αc ∩ Ḣ2 of the form

V (x) = bR(µx + y 0 ),
for some b ∈ C * , µ > 0 and y 0 ∈ R d , where R is a solution to the elliptic equation

∆ 2 R + |R| αc-2 R -|R| α R = 0. (3.4)
Moreover,

B GN = α + 2 2 R -α L αc .
Proof. We only give the proof for A GN , the one for B GN is treated similarly using the Sobolev embedding Ḣγc → L αc . We firstly observe that H is invariant under the scaling

f µ,λ (x) := µf (λx), µ, λ > 0.
Indeed, a simple computation shows

f µ,λ α+2 L α+2 = µ α+2 λ -d f α+2 L α+2 , f µ,λ α Ḣγc = µ α λ -4 f α Ḣγc , f µ,λ 2 Ḣ2 = µ 2 λ 4-d f 2 Ḣ2 . We thus get H(f µ,λ ) = H(f ) for any µ, λ > 0. Moreover, if we set g(x) = µf (λx) with µ =   f d 2 -2 Ḣγc f 4 α Ḣ2   1 2-γc , λ = f Ḣγc f Ḣ2 1 2-γc , then g Ḣγc = g Ḣ2 = 1 and H(g) = H(f ). Now let (v n ) n≥1 be the maximizing sequence such that H(v n ) → A GN as n → ∞. After scaling, we may assume that v n Ḣγc = v n Ḣ2 = 1 and H(v n ) = v n α+2 L α+2 → A GN as n → ∞. Since (v n ) n≥1 is bounded in Ḣγc ∩ Ḣ2 , it
follows from the profile decomposition given in Theorem 2.9 that there exist a sequence (V j ) j≥1 of Ḣγc ∩ Ḣ2 functions and a family (x j n ) j≥1 of sequences in R d such that up to a subsequence,

v n (x) = l j=1 V j (x -x j n ) + v l n (x),
and (2.15) and the identities (2.16), (2.17) hold. In particular, we have for any l ≥ 1,

l j=1 V j 2 Ḣγc ≤ 1, l j=1 V j 2 Ḣ2 ≤ 1, (3.5) and lim sup n→∞ v l n α+2 L α+2 → 0, as l → ∞.
We have

A GN = lim n→∞ v n α+2 L α+2 = lim sup n→∞ l j=1 V j (• -x j n ) + v l n α+2 L α+2 ≤ lim sup n→∞ l j=1 V j (• -x j n ) L α+2 + v l n L α+2 α+2 ≤ lim sup n→∞ ∞ j=1 V j (• -x j n ) α+2 L α+2 . (3.6)
By the elementary inequality

l j=1 a j α+2 - l j=1 |a j | α+2 ≤ C j =k |a j ||a k | α+1 , ( 3.7) 
we have

l j=1 V j (x -x j n ) α+2 dx ≤ l j=1 |V j (x -x j n )| α+2 dx + C j =k |V j (x -x j n )||V k (x -x k n )| α+1 dx ≤ l j=1 |V j (x -x j n )| α+2 dx + C j =k |V j (x + x k n -x j n )||V k (x)| α+1 dx.
Using the pairwise orthogonality (2.14), the Hölder inequality implies that V j (• + x k n -x j n ) 0 in Ḣγc ∩ Ḣ2 as n → ∞ for any j = k. This leads to the mixed terms in the sum (3.6) vanish as n → ∞. This shows that

A GN ≤ ∞ j=1 V j α+2 L α+2 .
By the definition of A GN , we have

V j α+2 L α+2 A GN ≤ V j α Ḣγc V j 2 Ḣ2 . This implies that 1 ≤ ∞ j=1 V j α+2 L α+2 A GN ≤ sup j≥1 V j α Ḣγc ∞ j=1 V j 2 Ḣ2 .
Since j≥1 V j 2 Ḣγc is convergent, there exists j 0 ≥ 1 such that

V j0 Ḣγc = sup j≥1 V j Ḣγc .
By (3.5), we see that

1 ≤ V j0 α Ḣγc ∞ j=1 V j 2 Ḣ2 ≤ V j0 α Ḣγc .
It follows from (3.5) that V j0 Ḣγc = 1. This shows that there is only one term V j0 is non-zero, hence

V j0 Ḣγc = V j0 Ḣ2 = 1, V j0 α+2 L α+2 = A GN . It means that V j0
is the maximizer of H and Lemma 3.1 shows that

A GN ∆ 2 V j0 + α 2 A GN (-∆) γc V j0 - α + 2 2 |V j0 | α V j0 = 0.
Now if we set V j0 (x) = aQ(λx + x 0 ) for some a ∈ C * , λ > 0 and x 0 ∈ R d to be chosen shortly, then Q solves (3.3) provided that

|a| = 2λ 4 A GN α + 2 1 α , λ = α 2 1 2(2-γc ) . (3.8)
This shows the existence of solutions to the elliptic equation (3.3). We now compute the sharp constant A GN in terms of Q. We have

1 = V j0 α Ḣγc = |a| α λ -4 Q α Ḣγc = 2A GN α + 2 Q α Ḣγc .
This implies

A GN = α+2 2 Q -α
Ḣγc . The proof is complete.

Remark 3.3. Using (3.8) and the fact

1 = V j0 α Ḣγc = |a| α λ -4 Q α Ḣγc , 1 = V j0 2 Ḣ2 = |a| 2 λ 4-d Q 2 Ḣ2 , A GN = V j0 α+2 L α+2 = |a| α+2 λ -d Q α+2 L α+2 , a direct computation shows the following Pohozaev identities Q 2 Ḣγc = α 2 Q 2 Ḣ2 = α α + 2 Q α+2 L α+2 . (3.9)
Another way to see above identities is to multiply (3.3) with Q and x • ∇Q and integrate over R d and perform integration by parts. Indeed, multiplying (3.3) with Q and integrating by parts, we get

Q 2 Ḣ2 + Q 2 Ḣγc -Q α+2 L α+2 = 0. (3.10)
Multiplying (3.3) with x • ∇Q, integrating by parts and taking the real part, we have

2 - d 2 Q 2 Ḣ2 + γ c - d 2 Q 2 Ḣγc + d α + 2 Q α+2 L α+2 = 0. (3.11)
From (3.10) and (3.11), we obtain (3.9). To see (3.11), we claim that for γ ≥ 0,

Re (-∆) γ Qx • ∇Qdx = γ - d 2 Q 2 Ḣγ .
(3.12)

In fact, by Fourier transform,

Re (-∆) γ Qx • ∇Qdx = Re F[(-∆) γ Q]F -1 [x • ∇Q]dξ = Re F[(-∆) γ Q]F[x • ∇Q]dξ = Re |ξ| 2γ F(Q) -dF (Q) -ξ • ∇ ξ F(Q) dξ = -d Q 2 Ḣγ -Re |ξ| 2γ F(Q)ξ • ∇ ξ F (Q)dξ. (3.13)
Here we use the fact that F(

x j ∂ xj u) = i∂ ξj F(∂ xj u) = i∂ ξj (iξ j F(u)) = -F(u) -ξ j ∂ ξj F(u)
. By integration by parts,

Re |ξ| 2γ F(Q)ξ • ∇ ξ F(Q)dξ = (-2γ -d) Q 2 Ḣγ -Re |ξ| 2γ ξ • ∇ ξ F(Q)F(Q)dξ, or Re |ξ| 2γ F(Q)ξ • ∇ ξ F(Q)dξ = -γ - d 2 Q 2 Ḣγ .
This together with (3.13) shows (3.12), and (3.11) follows.

The Pohozaev identities (3.9) imply in particular that

H(Q) = Q α+2 L α+2 ÷ Q α Ḣγc Q 2 Ḣ2 = α + 2 2 Q -α Ḣγc = A GN , E(Q) = 0. Similarly, we have R 2 L αc = α 2 R 2 Ḣ2 = α α + 2 R α+2 L α+2 . In particular, K(R) = R α+2 L α+2 ÷ R α L αc R 2 Ḣ2 = α + 2 2 R -α L αc = B GN , E(R) = 0.
Definition 3.4 (Ground state).

• We call Sobolev ground states the maximizers of H which are solutions to (3.3). We denote the set of Sobolev ground states by G.

• We call Lebesgue ground states the maximizers of K which are solutions to (3.4). We denote the set of Lebesgue ground states by H.

Note that by Lemma 3.1, if g, h are Sobolev and Lebesgue ground states respectively, then

A GN = α + 2 2 g -α Ḣγc , B GN = α + 2 2 h -α L αc .
This implies that Sobolev ground states have the same Ḣγc -norm, and all Lebesgue ground states have the same L αc -norm. Denote

S gs := g Ḣγc , ∀g ∈ G, (3.14) L gs := h L αc , ∀h ∈ H. (3.15)
In particular, we have the following sharp Gagliardo-Nirenberg inequalities

f α+2 L α+2 ≤ A GN f α Ḣγc f 2 Ḣ2 , (3.16) f α+2 L α+2 ≤ B GN f α L αc f 2 Ḣ2 , (3.17) with A GN = α + 2 2 S -α gs , B GN = α + 2 2 L -α
gs . We next give another application of the profile decomposition given in Theorem 2.9.

Theorem 3.5 (Compactness lemma)

. Let d ≥ 1 and 2 < α < 2 . Let (v n ) n≥1 be a bounded sequence in Ḣγc ∩ Ḣ2 such that lim sup n→∞ v n Ḣ2 ≤ M, lim sup n→∞ v n L α+2 ≥ m.
• Then there exists a sequence (x n ) n≥1 in R d such that up to a subsequence,

v n (• + x n ) V weakly in Ḣγc ∩ Ḣ2 , for some V ∈ Ḣγc ∩ Ḣ2 satisfying V α Ḣγc ≥ 2 α + 2 m α+2 M 2 S α
gs .

(3.18)

• Then there exists a sequence (y n ) n≥1 in R d such that up to a subsequence,

v n (• + y n ) W weakly in L αc ∩ Ḣ2 , for some W ∈ L αc ∩ Ḣ2 satisfying W α L αc ≥ 2 α + 2 m α+2 M 2 L α gs . (3.19)
Remark 3.6. The lower bounds (3.18) and (3.19) are optimal. In fact, if we take v n = Q ∈ G in the first case and v n = R ∈ H in the second case, then we get the equalities.

Proof of Theorem 3.5. As in the proof of Proposition 3.2, we only consider the first case, the second case is similar using the Sobolev embedding Ḣγc → L αc . According to Theorem 2.9, there exist a sequence (V j ) j≥1 of Ḣγc ∩ Ḣ2 functions and a family (x j n ) j≥1 of sequences in R d such that up to a subsequence, the sequence (v n ) n≥1 can be written as

v n (x) = l j=1 V j (x -x j n ) + v l n (x),
and (2.15), (2.16), (2.17) hold. This implies that

m α+2 ≤ lim sup n→∞ v n α+2 L α+2 = lim sup n→∞ l j=1 V j (• -x j n ) + v l n α+2 L α+2 ≤ lim sup n→∞ l j=1 V j (• -x j n ) L α+2 + v l n L α+2 α+2 ≤ lim sup n→∞ ∞ j=1 V j (• -x j n ) α+2 L α+2 .
(3.20)

By the elementary inequality (3.7) and the pairwise orthogonality (2.14), the mixed terms in the sum (3.20) vanish as n → ∞. We thus get

m α+2 ≤ ∞ j=1 V j α+2 L α+2 .
We next use the sharp Gagliardo-Nirenberg inequality (3.16) to estimate

∞ j=1 V j α+2 L α+2 ≤ α + 2 2 1 S α gs sup j≥1 V j α Ḣγc ∞ j=1 V j 2 Ḣ2 .
(3.21) By (2.17), we infer that

∞ j=1 V j 2 Ḣ2 ≤ lim sup n→∞ v n 2 Ḣ2 ≤ M 2 .
Therefore,

sup j≥1 V j α Ḣγc ≥ 2 α + 2 m α+2 M 2 S α gs .
Since the series j≥1 V j 2 Ḣγc is convergent, the supremum above is attained. In particular, there exists j 0 such that

V j0 α Ḣγc ≥ 2 α + 2 m α+2 M 2 S α
gs . By a change of variables, we write

v n (x + x j0 n ) = V j0 (x) + 1≤j≤l j =j 0 V j (x + x j0 n -x j n ) + ṽl n (x),
where ṽl n (x) := v l n (x + x j0 n ). The pairwise orthogonality of the family (

x j n ) j≥1 implies V j (• + x j0 n -x j n ) 0 weakly in Ḣγc ∩ Ḣ2 ,
as n → ∞ for every j = j 0 . We thus get

v n (• + x j0 n ) V j0 + ṽl , as n → ∞, (3.22) 
where ṽl is the weak limit of (ṽ l n ) n≥1 . On the other hand, ṽl

L α+2 ≤ lim sup n→∞ ṽl n L α+2 = lim sup n→∞ v l n L α+2 → 0, as l → ∞.
By the uniqueness of the weak limit (3.22), we get ṽl = 0 for every l ≥ j 0 . Therefore, we obtain

v n (• + x j0 n ) V j0 .
The sequence (x j0 n ) n≥1 and the function V j0 now fulfill the conditions of Theorem 3.5. The proof is complete.

Global existence and blowup

We firstly use the sharp Gagliardo-Nirenberg inequality (3.16) to show the following global existence.

Proposition 4.1 (Global existence in Ḣγc ∩ Ḣ2 ). Let d ≥ 5 and 2 < α < 2 . Let u 0 ∈ Ḣγc ∩ Ḣ2 and the corresponding solution u to (1.1) defined on the maximal time [0, T ). Assume that

sup t∈[0,T ) u(t) Ḣγc < S gs . (4.23)
Then T = ∞, i.e. the solution exists globally in time.

Proof. By the sharp Gagliardo-Nirenberg inequality (3.16), we bound

E(u(t)) = 1 2 u(t) 2 Ḣ2 - 1 α + 2 u(t) α+2 L α+2 ≥ 1 2 1 - u(t) Ḣγc S gs α u(t) 2 Ḣ2 .
Thanks to the conservation of energy and the assumption (4.23), we obtain sup t∈[0,T ) u(t) Ḣ2 < ∞. By the blowup alternative given in Proposition 2.6 and (4.23), the solution exists globally in time. The proof is complete.

We also have the following global well-posedness result.

Proposition 4.2. Let d ≥ 5 and 2 < α < 2 . Let u 0 ∈ Ḣγc ∩ Ḣ2 and the corresponding solution u to (1.1) defined on the maximal time [0, T ). Assume that

S gs ≤ sup t∈[0,T ) u(t) Ḣγc < ∞, sup t∈[0,T ) u(t) L αc < L gs . (4.24)
Then T = ∞, i.e. the solution exists globally in time.

The proof is similar to the one of Proposition 4.1 by using the shap Gagliardo-Nirenberg inequality (3.17).

We next recall blowup criteria for H 2 solutions to the equation (1.1) due to [5].

Proposition 4.3 (Blowup in H 2 [5]). Let d ≥ 2, 2 < α < 2 , α ≤ 8 and u 0 ∈ H 2 be radial.
Assume that

E(u 0 )M (u 0 ) σ < E(Q)M (Q) σ , u 0 Ḣ2 u 0 σ L 2 > Q Ḣ2 Q σ L 2 , where σ := 2 -γ c γ c = 8 -(d -4)α dα -8 . (4.25)
Then the corresponding solution u to (1.1) blows up in finite time.

Remark 4.4.

• The restriction α ≤ 8 comes from the radial Sobolev embedding (or Strauss's inequality). An analogous restriction on α appears in the blowup of H 1 solutions for the nonlinear Schrödinger equation.

• Note that if E(u 0 ) < 0, then the assumption E(u 0 )M (u 0 ) σ < E(Q)M (Q) σ holds trivially.
If we assume u 0 ∈ Ḣγc ∩ Ḣ2 , then the above blowup criteria does not hold due to the lack of mass conservation. Nevertheless, we have the following blowup criteria for initial data in Ḣγc ∩ Ḣ2 . Proposition 4.5 (Blowup in Ḣγc ∩ Ḣ2 ). Let d ≥ 5, 2 < α < 2 , α < 4 and u 0 ∈ Ḣγc ∩ Ḣ2 be radial satisfying E(u 0 ) < 0. Assume that the corresponding solution u to (1.1) defined on a maximal interval [0, T ) satisfies

sup t∈[0,T ) u(t) Ḣγc < ∞. (4.26)
Then the solution u to (1.1) blows up in finite time.

Proof. Let θ : [0, ∞) → [0, ∞) be a smooth function such that θ(r) = r 2 if r ≤ 1, 0 if r ≥ 2,
and θ (r) ≤ 2 for r ≥ 0.

For R > 0 given, we define the radial function ϕ R :

R d → R by ϕ R (x) = ϕ R (r) := R 2 θ(r/R), |x| = r. (4.27)
By definition, we have

2 -ϕ R (r) ≥ 0, 2 - ϕ R (r) r ≥ 0, 2d -∆ϕ R (x) ≥ 0, for all r ≥ 0 and all x ∈ R d , and ∇ j ϕ R L ∞ R 2-j , for j = 0, • • • , 6, and also, supp(∇ j ϕ R ) ⊂ {|x| ≤ 2R} for j = 1, 2, {R ≤ |x| ≤ 2R} for j = 3, • • • , 6.
Let u ∈ Ḣγc ∩ Ḣ2 be a solution to (1.1). We define the localized virial action associated to (1.1) by

M ϕ R (t) := 2 ∇ϕ R (x) • Im (u(t, x)∇u(t, x))dx.
(4.28)

We firstly show that M ϕ R (t) is well-defined. To do so, we need the following estimate

u L 2 (|x| R) R γc u L αc (|x| R) R γc u Ḣγc (|x| R) , ( 4.29) 
which follows easily by Hölder's inequality and the Sobolev embedding. Here γ c and α c are given in (1.4) and (1.5) respectively. Since ∇ϕ R is supported in |x| R, the Hölder inequality together with (4.29) imply

|M ϕ R (t)| ∇ϕ R L ∞ u(t) L 2 (|x| R) ∇u(t) L 2 (|x| R) ∇ϕ R L ∞ u(t) 3/2 L 2 (|x| R) ∆u(t) 1/2 L 2 (|x| R) R 3γc/2 ∇ϕ R L ∞ u(t) 3/2 Ḣγc (|x| R) u(t) 1/2 Ḣ2 (|x| R) .
Note that in the case θ(r) = r 2 and ϕ R (x) = |x| 2 , we have formally the virial law (see e.g. [5]):

M |x| 2 (t) = d dt 4 x • Im (u(t, x)∇u(t, x))dx = 16 ∆u(t) 2 L 2 - 4dα α + 2 u(t) α+2 L α+2 = 4dαE(u(t)) -2(dα -8) ∆u(t) 2 L 2 .
(4.30)

We have the following variation rate of the virial action (see e. 

M R (u(t)) = ∆ 3 ϕ R |u| 2 dx -4 j,k ∂ 2 jk ∆ϕ R Re (∂ j u∂ k u)dx + 8 j,k,l ∂ 2 jk ϕ R Re (∂ 2 lj u∂ 2 kl u)dx -2 ∆ 2 ϕ R |∇u| 2 dx - 2α α + 2 ∆ϕ R |u| α+2 dx. (4.31)
Since ϕ R (x) = |x| 2 for |x| ≤ R, we use (4.30) to have

M ϕ R (t) = 16 ∆u(t) 2 L 2 - 4dα α + 2 u(t) α+2 L α+2 -16 ∆u(t) 2 L 2 (|x|>R) + 4dα α + 2 u(t) α+2 L α+2 (|x|>R) + |x|>R ∆ 3 ϕ R |u(t)| 2 dx -4 j,k |x|>R ∂ 2 jk ∆ϕ R Re (∂ j u(t)∂ k u(t))dx +8 j,k,l |x|>R ∂ 2 jk ϕ R Re (∂ 2 lj u(t)∂ 2 kl u(t))dx -2 |x|>R ∆ 2 ϕ R |∇u(t)| 2 dx - 2α α + 2 |x|>R ∆ϕ R |u(t)| α+2 dx = 4dαE(u(t)) -2(dα -8) ∆u(t) 2 L 2 + |x|>R ∆ 3 ϕ R |u(t)| 2 dx -4 j,k |x|>R ∂ 2 jk ∆ϕ R Re (∂ j u(t)∂ k u(t))dx -2 |x|>R ∆ 2 ϕ R |∇u(t)| 2 dx +8 j,k,l |x|>R ∂ 2 jk ϕ R Re (∂ 2 lj u(t)∂ 2 kl u(t))dx -16 ∆u(t) 2 L 2 (|x|>R) + 2α α + 2 |x|>R (2d -∆ϕ R )|u(t)| α+2 dx.
By the choice of ϕ R , the assumption (4.26) and (4.29), we bound

|x|>R ∆ 3 ϕ R |u(t)| 2 dx R -4 u(t) 2 L 2 (|x| R) R -2(2-γc) u(t) 2 Ḣγc R -2(2-γc) , |x|>R ∂ 2 jk ∆ϕ R ∂ j u(t)∂ k u(t)dx R -2 ∇u 2 L 2 (|x| R) R -(2-γc) u(t) Ḣγc ∆u(t) L 2 R -(2-γc) ∆u(t) L 2 , |x|>R ∆ 2 ϕ R |∇u(t)| 2 dx R -(2-γc) u(t) Ḣγc ∆u(t) L 2 R -(2-γc) ∆u(t) L 2 .
Using the fact

∂ 2 jk = δ jk - x j x k r 2 ∂ r r + x j x k r 2 ∂ 2 r ,
a calculation combined with integration by parts yields that j,k,l

∂ 2 jk ϕ R ∂ 2 lj u(t)∂ 2 kl u(t)dx = ϕ R |∂ 2 r u(t)| 2 + d -1 r 2 ϕ R r |∂ r u(t)| 2 dx = 2 |∆u(t)| 2 -(2 -ϕ R )|∂ 2 r u(t)| 2 -2 - ϕ R r d -1 r 2 |∂ r u(t)| 2 dx ≤ 2 ∆u(t) 2 L 2 .
Here we use the identity

∆u(t) 2 L 2 = |∂ 2 r u(t)| 2 + d -1 r 2 |∂ r u(t)| 2 dx. Thus, 8 j,k,l |x|>R ∂ 2 jk ϕ R Re (∂ 2 lj u(t)∂ 2 kl u(t))dx -16 ∆u(t) 2 L 2 (|x|>R) ≤ 0.
We obtain

M R (t) ≤ 4dαE(u(t)) -2(dα -8) ∆u(t) 2 L 2 + O R -2(2-γc) + R -(2-γc) ∆u(t) L 2 + 2α α + 2 |x|>R (2d -∆ϕ R )|u(t)| α+2 dx.
We now estimate the last term of the above inequality. To do so, we use the argument of [21].

Consider for A > 0 the annulus C = {A < |x| ≤ 2A}, we claim that for any > 0,

u(t) α+2 L α+2 (C) ≤ ∆u(t) L 2 (C) + C( )A -2(2-γc) . (4.32)
To see this, we use the radial Sobolev embedding (see e.g. [28]) and (4.29) to estimate

u(t) α+2 L α+2 (C) = sup C |u(t, x)| α u(t) 2 L 2 (C) A -(d-1)α 2 ∇u(t) α 2 L 2 (C) u(t) α 2 +2 L 2 (C) A -(d-1)α 2 ∆u(t) α 4 L 2 (C) u(t) 3α 4 +2 L 2 (C) A -ϑ ∆u(t) α 4 L 2 (C) , where ϑ = (d -1)α 2 - 3α 4 + 2 γ c = 2(2 -γ c ) 4 -α 4 > 0.
By the Young inequality, we have for any > 0, -γc) .

u(t) α+2 L α+2 (C) ∆u(t) L 2 (C) + -α 4-α A -4ϑ 4-α = ∆u(t) L 2 (C) + C( )A -2(2
This shows the claim above. Note that the condition α < 4 is crucial to show (4.32). We now write

|x|>R |u(t)| α+2 dx = ∞ j=0 2 j R<|x|≤2 j+1 R |u(t)| α+2 dx,
and apply (4.32) with A = 2 j R to get

|x|>R |u(t)| α+2 dx ≤ ∞ j=0 ∆u(t) L 2 (2 j R<|x|≤2 j+1 R) + C( ) ∞ j=0 (2 j R) -2(2-γc) ≤ ∆u(t) L 2 (|x|>R) + C( )R -2(2-γc) .
Since 2d -ϕ R L ∞ 1, we obtain for any > 0,

|x|>R (2d -ϕ R )|u(t)| α+2 dx ∆u(t) L 2 (|x|>R) + C( )R -2(2-γc) . Therefore, M R (t) ≤ 4dαE(u(t)) -2(dα -8) ∆u(t) 2 L 2 + O R -2(2-γc) + R -(2-γc) ∆u(t) L 2 (4.33) + ∆u(t) L 2 + C( )R -2(2-γc) .
By taking > 0 small enough and R > 0 large enough depending on , the conservation of energy implies 

M R (t) ≤ 2dαE(u 0 ) -δ ∆u(t)
u(t) Ḣ2 > C (T -t) 2-γc 4 , for t ↑ T . Rewriting 1 a(t) u(t) 1 2-γc Ḣ2 = 4 √ T -t a(t) 1 4 √ T -t u(t) 1 2-γc Ḣ2 = 4 √ T -t a(t) 1 (T -t) 2-γc 4 u(t) Ḣ2 1 2-γc < C 4 √ T -t a(t) ,
we see that any function a(t) > 0 satisfying 4 √ T -t a(t) → 0 as t ↑ T fulfills the conditions of Theorem 5.1.

Proof of Theorem 5.1. Let (t n ) n≥1 be a sequence such that t n ↑ T and g ∈ G. Set

λ n := g Ḣ2 u(t n ) Ḣ2 1 2-γc , v n (x) := λ 4 α n u(t n , λ n x).
By the blowup alternative and the assumption (4.23), we see that λ n → 0 as n → ∞. Moreover, we have

v n Ḣγc = u(t n ) Ḣγc < ∞, uniformly in n and v n Ḣ2 = λ 2-γc n u(t n ) Ḣ2 = g Ḣ2 , and E(v n ) = λ 2(2-γc) n E(u(t n )) = λ 2(2-γc) n E(u 0 ) → 0, as n → ∞. This implies in particular that v n α+2 L α+2 → α + 2 2 g 2 Ḣ2 , as n → ∞.
The sequence (v n ) n≥1 satisfies the conditions of Theorem 3.5 with

m α+2 = α + 2 2 g 2 Ḣ2 , M 2 = g 2 Ḣ2 .
Therefore, there exists a sequence (x n ) n≥1 in R d such that up to a subsequence,

v n (• + x n ) = λ 4 α n u(t n , λ n • +x n ) V weakly in Ḣγc ∩ Ḣ2 ,
as n → ∞ with V Ḣγc ≥ S gs . In particular, (-∆)

γc 2 v(• + x n ) = λ d 2 n [(-∆) γc 2 u](t n , λ n • +x n ) (-∆) γc 2 V weakly in L 2 . This implies for every R > 0, lim inf n→∞ |x|≤R λ d 2 n |[(-∆) γc 2 u](t n , λ n x + x n )| 2 dx ≥ |x|≤R |(-∆) γc 2 V (x)| 2 dx, or lim inf n→∞ |x-xn|≤Rλn |[(-∆) γc 2 u](t n , x)| 2 dx ≥ |x|≤R |(-∆) γc 2 V (x)| 2 dx.
In view of the assumption a(tn) λn → ∞ as n → ∞, we get lim inf

n→∞ sup y∈R d |x-y|≤a(tn) |(-∆) γc 2 u(t n , x)| 2 dx ≥ |x|≤R |(-∆) γc 2 V (x)| 2 dx, for every R > 0, which means that lim inf n→∞ sup y∈R d |x-y|≤a(tn) |(-∆) γc 2 u(t n , x)| 2 dx ≥ |(-∆) γc 2 V (x)| 2 dx ≥ S 2 gs .
Since the sequence (t n ) n≥1 is arbitrary, we infer that lim inf

t↑T sup y∈R d |x-y|≤a(t) |(-∆) γc 2 u(t, x)| 2 dx ≥ S 2 gs .
But for every t ∈ (0, T ), the function y → |x-y|≤a(t) |(-∆) γc 2 u(t, x)| 2 dx is continuous and goes to zero at infinity. As a result, we get sup

y∈R d |x-y|≤a(t) |(-∆) γc 2 u(t, x)| 2 dx = |x-x(t)|≤a(t) |(-∆) γc 2 u(t, x)| 2 dx,
for some x(t) ∈ R d . This shows (5.3). The proof for (5.4) is similar using Item 2 of Theorem 3.5. The proof is complete.

Limiting profile with critical norms

Let us start with the following characterization of solution with critical norms. Lemma 6.1. Let d ≥ 1 and 2 < α < 2 .

• If u ∈ Ḣγc ∩ Ḣ2 is such that u Ḣγc = S gs and E(u) = 0, then u is of the form

u(x) = e iθ λ 4 α g(λx + x 0 ), for some g ∈ G, θ ∈ R, λ > 0 and x 0 ∈ R d . • If u ∈ Ḣγc ∩ Ḣ2 is such that u L αc = L gs and E(u) = 0, then u is of the form u(x) = e iϑ µ 4
α h(µx + y 0 ), for some h ∈ H, ϑ ∈ R, µ > 0 and y 0 ∈ R d .

Proof. We only prove Item 1, Item 2 is treated similarly. Since E(u) = 0, we have

u 2 Ḣ2 = 2 α + 2 u α+2 L α+2 . Thus H(u) = u α+2 L α+2 u α Ḣγc u 2 Ḣ2 = α + 2 2 u -α Ḣγc = α + 2 2 S -α gs = A GN .
This shows that u is the maximizer of H. It follows from Proposition 3.2 that u is of the form u(x) = ag(λx + x 0 ) for some g ∈ G, a ∈ C , λ > 0 and x 0 ∈ R d . On the other hand, since u Ḣγc = S gs = g Ḣγc , we have |a| = λ 4 α . This shows the result.

We now have the following limiting profile of blowup solutions with critical norms. Proof. We only give the proof for the first case, the second case is similar. We will show that for any (t n ) n≥1 satisfying t n ↑ T , there exist a subsequence still denoted by (t n ) n≥1 , g ∈ G, sequences of θ n ∈ R, λ n > 0 and x n ∈ R d such that e itθn λ 4 α n u(t n , λ n • +x n ) → g strongly in Ḣγc ∩ Ḣ2 as n → ∞. (6.3) Let (t n ) n≥1 be a sequence such that t n ↑ T . Set where Q is as in Proposition 3.2. By the blowup alternative and (6.1), we see that λ n → 0 as n → ∞. Moreover, we have

λ n := Q Ḣ2 u(t n ) Ḣ2
v n Ḣγc = u(t n ) Ḣγc ≤ S gs = Q Ḣγc , ( 6.4) 
and The sequence (v n ) n≥1 satisfies the conditions of Theorem 3.5 with

v n Ḣ2 = λ 2-γc n u(t n ) Ḣ2 = Q Ḣ2 , ( 6 
m α+2 = α + 2 2 Q 2 Ḣ2 , M 2 = Q 2 Ḣ2 .
Therefore, there exists a sequence (x n ) n≥1 in R d such that up to a subsequence,

v n (• + x n ) = λ 2 α n u(t n , λ n • +x n ) V weakly in Ḣγc ∩ Ḣ2 ,
as n → ∞ with V Ḣγc ≥ S gs . Since v n (• + x n ) V weakly in Ḣγc ∩ Ḣ2 as n → ∞, the semi-continuity of weak convergence and (6.4) imply

V Ḣγc ≤ lim inf n→∞ v n Ḣγc ≤ S gs .
This together with the fact V Ḣγc ≥ S gs show that V Ḣγc = S gs = lim n→∞ v n Ḣγc .

(6.7) Therefore v n (• + x n ) → V strongly in Ḣγc as n → ∞. On the other hand, the Gagliardo-Nirenberg inequality (3.16) shows that v n (• + x n ) → V strongly in L α+2 as n → ∞. Indeed, by (6.5),

v n (• + x n ) -V α+2 L α+2 v n (• + x n ) -V α Ḣγc v n (• + x n ) -V 2 Ḣ2 ( Q Ḣ2 + V Ḣ2 ) 2 v n (• + x n ) -V α
Ḣγc → 0, as n → ∞. Moreover, using (6.6) and (6.7), the sharp Gagliardo-Nirenberg inequality (3.16) yields

Q 2 Ḣ2 = 2 α + 2 lim n→∞ v n α+2 L α+2 = 2 α + 2 V α+2 L α+2 ≤ V Ḣγc S gs α V 2 Ḣ2 = V 2 Ḣ2 ,
or Q Ḣ2 ≤ V Ḣ2 . By the semi-continuity of weak convergence and (6.5),

V Ḣ2 ≤ lim inf n→∞ v n Ḣ2 = Q Ḣ2 .
Therefore,

V Ḣ2 = Q Ḣ2 = lim n→∞ v n Ḣ2 . ( 6.8) 
Combining (6.7), (6.8) and using the fact v n (• + x n ) V weakly in Ḣγc ∩ Ḣ2 , we conclude that v n (• + x n ) → V strongly in Ḣγc ∩ Ḣ2 as n → ∞.

In particular, we have

E(V ) = lim n→∞ E(v n ) = 0.
This shows that there exists V ∈ Ḣγc ∩ Ḣ2 such that V Ḣγc = S gs , E(V ) = 0.

By Lemma 6.1, there exists g ∈ G such that V (x) = e iθ λ 4 α g(λx + x 0 ) for some θ ∈ R, λ > 0 and x 0 ∈ R d . Thus

v n (• + x n ) = λ 4 α n u(t n , λ n • +x n ) → V = e iθ λ 4 α g(λ • +x 0 ) strongly in Ḣγc ∩ Ḣ2 as n → ∞.

Redefining variables as

λ n := λ n λ -1 , x n := λ n λ -1 x 0 + x n , we get e -iθ λ 4 α n u(t n , λ n • +x n ) → g strongly in Ḣγc ∩ Ḣ2 as n → ∞. This proves (6.3) and the proof is complete.

Proposition 2 . 5 (

 25 Local well-posedness in H 2 [26]). Let d ≥ 1, u 0 ∈ H 2 and 0 < α < 2 . Then there exist T > 0 and a unique solution u to (1.1) satisfying

  g. [5, Lemma 3.1] or [24, Proposition 3.1]):

  , v n (x) := λ 4 α n u(t n , λ n x),

  .5) and E(v n ) = λ 2(2-γc) n E(u(t n )) = λ 2(2-γc) n E(u 0 ) → 0, as n → ∞.This yields in particular that

  The restriction d ≥ 5 comes from the local well-posedness and blowup results. The result still holds true for dimensions d ≤ 4 provided that one can show local well-posedness and blowup in such dimensions. • By the blowup rate given in Corollary 2.8 and the assumption (4.23), we have

	Let a(t) > 0 be such that			
						1
				a(t) u(t)	2-γc Ḣ2	→ ∞,	(5.2)
	as t ↑ T . Then there exist x(t), y(t) ∈ R d such that
		lim inf t↑T	|x-x(t)|≤a(t)	|(-∆)	γc 2 u(t, x)| 2 dx ≥ S 2 gs ,	(5.3)
	and				
		lim inf t↑T	|x-y(t)|≤a(t)	|u(t, x)| αc dx ≥ L 2 gs .	(5.4)
	Remark 5.2.	•			
						2 L 2 ,	(4.34)
	for all t ∈ [0, T ), where δ := dα -8 > 0. With (4.34) at hand, the finite time blowup follows by a
	standard argument (see e.g. [5]).			
			5. Blowup concentration
	Theorem 5.1 (Blowup concentration). Let d ≥ 5 and 2 < α < 2 . Let u 0 ∈ Ḣγc ∩ Ḣ2 be such
	that the corresponding solution u to (1.1) blows up at finite time 0 < T < ∞. Assume that the
	solution satisfies				
				sup	u(t) Ḣγc < ∞.	(5.1)
				t∈[0,T )	

  Theorem 6.2 (Limiting profile with critical norms). Let d ≥ 5 and 2 < α < 2 . Let u 0 ∈ Ḣγc ∩ Ḣ2 be such that the corresponding solution u to (1.1) blows up at finite time 0 < T < ∞.Then there exist g ∈ G, θ(t) ∈ R, λ(t) > 0 and x(t) ∈ R d such that e iθ(t) λ

	• Assume that		
		sup	u(t) Ḣγc = S gs .	(6.1)
		t∈[0,T )	
	• Assume that		
	sup	u(t) Ḣγc < ∞,	sup
	t∈[0,T )			t∈[0,T )

4 α (t)u(t, λ(t) • +x(t)) → g strongly in Ḣγc ∩ Ḣ2 as t ↑ T. u(t) L αc = L gs . (6.2)

Then there exist h ∈ H, ϑ(t) ∈ R, µ(t) > 0 and y(t

) ∈ R d such that e iϑ(t) µ 4 α (t)u(t, µ(t) • +y(t)) → h strongly in L αc ∩ Ḣ2 as t ↑ T.
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