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Abstract: The need for the sharing of genetic data, for instance, in genome-wide association studies is incessantly grow-
ing. In parallel, serious privacy concerns rise from a multi-party access to genetic information. Several tech-
niques, such as encryption, have been proposed as solutions for the privacy-preserving sharing of genomes.
However, existing programming means do not support guarantees for privacy properties and the performance
optimization of genetic applications involving shared data. We propose two contributions in this context.
First, we present new cloud-based architectures for cloud-based genetic applications that are motivated by the
needs of geneticians. Second, we propose a model and implementation for the composition of watermarking
with encryption, fragmentation, and client-side computations for the secure and privacy-preserving sharing of
genetic data in the cloud.

1 INTRODUCTION

Information about the human genome has become
highly valuable for development of new treatments of
genetic-based diseases. Advanced sequencing tech-
nologies (NGS) (Behjati S, 2013) have made it much
easier to obtain complete genetic data of human be-
ings. However, in general genetic samples are not suf-
ficiently available to genetic research. Indeed, genetic
research has often be conducted collaboratively be-
tween several (groups of) geneticians. Doing so, more
meaningful sizes of genetic cohorts can be established
and allow for accurate results. For instance, Genome
Wide Association Studies (GWAS) use two, if pos-
sible, large sets of data, case data which belongs to
subjects of the studied disease and control data that is
obtained from healthy donors. Control data is partic-
ularly difficult to obtain because it has to be provided
on a voluntary basis by healthy individuals. This is
one case in which researchers want to share and work
on the already available corresponding data.

Though sharing in this fashion seems to be
straightforward, the very private aspect of genetic in-
formation (Erlich and Narayanan, 2014) pushes ge-
neticians to protect their collected data and hence,
hamper the practical and flexible sharing of genetic
data. Instead of sharing raw data, genetic research
often relied on public aggregated data, e.g., allele
frequency, in a false belief that this procedure was
privacy-preserving. However, since the attack by

Homer and et al. (Homer et al., 2008), the aggre-
gated information has been retired from public ac-
cess1. In fact, the attack shows how to infer a specific
individual presence in a study based on those aggre-
gated data only. This clearly threatens the privacy of
patients. As a consequence, sharing of genetic data,
notably via cloud-based services is very limited cur-
rently and performed using very restrictive queries on
genetic databases.

Secure and privacy-preserving sharing of high
volumes of genetic data constitute a very active re-
search field nowadays. Data is shared using a clien-
t/server architecture where the server is often a cloud
provider storing and processing, e.g., homomorphi-
cally encrypted data (Lu et al., 2015; Zhang et al.,
2015), which enables computations to be directly per-
formed on encrypted data; another architecture con-
sists in the collaboration between different biomedical
sites which make use of multi-party computation pro-
tocols. However, the corresponding approaches, e.g.,
(Liina Kamm et al., 2013; Tang et al., 2016), only
handle a limited number of sites in the scenario and
are yet to be extended so to handle realistic scenarios
for a wider sharing of genetic data.

Some approaches have proposed the combi-
nation of different privacy-enhancing techniques,
e.g., homomorphic encryption, multi-party compu-
tation protocols to provide secure sharing of ge-
netic data (McLaren et al., 2016). The combination

1http://help.gwascentral.org/data/download/



of data fragmentation and client-side computations
has been proposed in the context of an outsourcing
schema (Wang et al., 2009). It locally stores identi-
fying genome components, i.e., SNPs, while compu-
tations on the common and publicly known parts of
the human genome are outsourced. Combining dif-
ferent techniques for security purposes has also been
explored for other related purposes. For instance, in
(Ciriani et al., 2010) and (Bkakria et al., 2013), a com-
bination of encryption and fragmentation is used to
protect outsourced databases. For multimedia data,
(Chang et al., 2005) suggest a combination of encryp-
tion and watermarking to transmit images through an
untrusted network securely.

A crucial result of the current situation is that the
secure and privacy-related handling of shared data re-
quires different technologies to be composed in or-
der to handle realistic collaboration scenarios. How-
ever, no such general compositional approach for the
sharing of genetic data exists. In particular, while
the existing approaches focus on confidentiality prop-
erties, ownership and integrity properties have been
receiving few attention. In this paper, we provide
a compositional approach supporting notably own-
ership and integrity properties by extending the ap-
proach by (Cherrueau et al., 2015) to genetic data sce-
narios. Cherrueau et al. allow the composition of en-
cryption, data fragmentation and localized computa-
tions to establish confidentiality of sensitive data.

In this paper, we present two main contributions:

• We present and discuss several new architectures
and scenarios for the cloud-based sharing of ge-
netic data. These architectures and scenarios have
been defined in cooperation with geneticians as
extensions of their existing systems.

• We add watermarking techniques to the approach
by (Cherrueau et al., 2015) in order to support
ownership and integrity properties of shared ge-
netic data. Concretely, we present a language-
based approach for building applications and
servers for the composition of privacy-preserving
applications manipulating shared genetic data.2

We also present an algebraic theory that allows for
the optimization of such applications and servers.

The paper is structured as follows. Sec. 2 presents
basic information about the sharing of genetic data
and introduces new corresponding software architec-
tures for this purpose. In Sec. 3 we present our ap-
proach COSHED for the compositional construction
of systems for the sharing of genetic data. We close
with a conclusion.

2The Idris implementation of our approach is available
at: https://github.com/BoujdadFz/PrivGen-Rep/blob/master/coshed.idr.
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Figure 1: Genetic data sharing via a trusted party

2 GENETIC DATA SHARING

As part of the research project PRIVGEN3 com-
puter scientists are working with geneticians on more
flexible architectures that support wider sharing of
genetic cohorts in the Cloud while preserving data
privacy properties. Existing genetic data and com-
putation servers are limited essentially to simple
client-server systems that allow geneticians to per-
form highly restricted stateless queries. In contrast,
the partners of PRIVGEN are working on more pow-
erful collaborative data-sharing architectures. Con-
cretely, the geneticians in the PRIVGEN project are in-
terested in a scalable architecture that allows for shar-
ing between multiple owners of genetic data (research
or private institutions) and researchers in genetics.

2.1 Architectures

Based on the requirements of geneticians we are
proposing new architectures that allow for genetic
data sets provided by different organizations to be
shared. Sharing is performed using trusted parties
mediating data that is stored and (partially) manipu-
lated in federated clouds. In the following, we pro-
pose two new such architectures. These architectures
differ, in particular, in the policies for genetic data
sharing (GDS) they allow for. Additionally, we moti-
vate that watermarking techniques are a crucial means
to satisfy ownership and integrity properties in this
context.

3PRIVGEN: Privacy-preserving sharing and process-
ing of genetic data, http://www.privgen.cominlabs.
ueb.eu
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Figure 2: Genetic data sharing via local servers and cloud

2.1.1 Trusted party architecture

The first architecture we propose, shown in Fig. 1, en-
ables data to be shared among different geneticians (G
in the figure) and to be transferred to a cloud infras-
tructure. Communications are mediated by a trusted
party (TP) that can enforce privacy and security prop-
erties of the data and computations shared among the
other participants. Because of the strong control pro-
vided by the mediating trusted party, this architecture
is particularly suitable to cooperation scenarios be-
tween partners having different GDS policies.

Since this kind of architecture includes data to
be transferred from the geneticians (or corresponding
owner institutions) to both the Cloud and the TP, own-
ership and integrity properties of shared genetic data
are crucial in addition to more frequently-used confi-
dentiality properties.

Trusted parties can be integrated into genetic
applications in different ways: Kantarcioglu et
al. (Kantarcioglu et al., 2008) employ a trusted en-
tity for storing encrypted genetic data and processing
(anonymous) computations on it; Xie et al. (Xie et al.,
2014) uses a trusted component for key distribution
and management. We rather allow for direct access to
genetic data by the trusted party in our architecture,
which is in fact conform to real-world applications
(Gulcher et al., 2000).

This architecture can be generalized to allow for
sharing as part of federated Clouds. In Sec. 3.1.1.1
we harness such an architecture in the context of a
concrete sharing scenario.

2.1.2 Local computations architecture

Fig. 2 shows a model for computations performed
by geneticians that all have their own infrastructure
able to handle computations on genetic datasets of

bearable sizes. In this case, sharing of data is done
through the Cloud. A typical workflow may define a
dataset, encrypt it for transfer in the Cloud where it
may undergo some privacy-neutral processing, before
finally being transmitted to its final recipient. This
workflow requires fragmentation techniques, crypto-
graphic techniques and client-side computations. In
this architecture as well ownership properties have to
be satisfied which can be assured by watermarking.

This architecture and corresponding workflows re-
quire closer integration between the collaborators, no-
tably their GDS policies.

3 PRIVACY FOR SHARED
GENETIC DATA

The architectures manipulating shared genetic
data introduced in the previous section may easily
lead to violations, for instance, of privacy proper-
ties. Such violations may stem from simple program-
ming errors or more difficult errors in the applica-
tions’ logic. Our approach is based on the C2QL
approach by (Cherrueau et al., 2015) who provide
composition and query languages for the secure and
privacy-preserving programming of distributed appli-
cations. In the following, we first review the basic
mechanisms of their approach before detailing ours.

C2QL enables the development of privacy-aware
applications by the implementation of distributed
algorithms composing computations involving en-
crypted and fragmented data, as well as client-side
computations. SQL-like queries are supported on top
of possibly encrypted and fragmented data. The ap-
proach essentially consists of two parts: language
support for the development of secure and privacy-
preserving applications and an algebraic theory sup-
porting corresponding optimizations and correctness
proofs.

Language support The C2QL language provides
de/constructors for the encryption and the fragmen-
tation of data, respectively denoted Decrypt, Crypt,
Defrag and Frag. Client-side computations are ini-
tiated automatically depending on the fragmentation
and encryption status of data. The constructors are
used as part of a domain specific language that is em-
bedded in the Idris (www.idris-lang.org) program-
ming language. Idris programs are used to compose
secure and privacy-aware applications as well as the
queries over genomic data. Idris’ dependent type sys-
tem enables the verification of basic secure properties
at compile time, e.g., that a given encrypted data frag-
ment can only be used after decryption.



1 -- Basic value types
2 data Ty = BOOL | NAT | TEXT
3 | CRYPT CryptTy Ty
4
5 -- Attribute: (column name , value type)
6
7 Attribute : Type
8 Attribute = (String , Ty)
9

10 -- Table schema: list of attributes
11
12 Schema : Type
13 Schema = List Attribute
14
15 -- DB environment: vector of table schemas
16
17 Env : Nat → Type
18 Env n = Vect (S n) Schema

Figure 3: Basic data types

Figure 3 shows the basic types implementing data
bases. Figure 4 shows the abstract definitions of

1 -- ADT (algebraic data type) for privacy operators
2 data Privy : (env0 : Env n) → (env1 : Env m) →
3 (∆ : Schema) → Type where
4
5 -- encrypts an attribute in an environment
6 -- @ p proof that ‘a‘ is in ‘env ‘.
7
8 Crypt : (a : Attribute) → (c : CryptTy) →
9 {auto p : EnvElem a env} →

10 Privy env (cryptEnv c a env) []
11
12 -- fragments an envir. at the ’most right ’ schema
13 -- @ p proof that ‘δ‘ ⊆ ‘(last env)‘
14
15 Frag : (δ: Schema) → {auto p: Inc δ (last env)} →
16 Privy env (fragEnv δ env) []
17
18 -- ADT for data recovery operators
19 data Query : (∆ : Schema) → Type where
20
21 -- decrypts values of ‘a‘ using information ‘d‘
22 -- @ p1 proof that values of ‘a‘ are encrypted
23 -- with schema ‘c‘.
24
25 Decrypt :
26 (a : Attribute) → (d : Decrypt c) →
27 {default Refl p1 : (CRYPT c t) = (snd a)} →
28 {auto p2 : Elem a ∆} →
29 Query ∆ → Query (replaceOn a (fst a, t) ∆)
30
31 -- defragments values of ‘q1‘ and ‘q2‘
32
33 Defrag : (q1 : Query δ) → (q2 : Query δ’) →
34 Query (delete Id (nub (δ ++ δ’)))

Figure 4: Privacy-enforcing operators and queries

privacy-enforcing operators (type Privy) and the en-
cryption/fragmentation constructors as well as queries
(Query) that are constructed by, if necessary, decrypt-
ing and defragmenting shared data.

Algebraic theory The compositions of privacy-
enforcing operators and query operations are linked
by numerous algebraic laws that express, for instance,
the commutativity of certain compositions of opera-
tions. Based on these laws, applications over shared
data can be transformed. Such transformations are
useful, for instance, in order to distribute data by

fragmentation (and thus helping privacy through de-
identification of data) or optimize application perfor-
mance (in particular, by harnessing the cloud to han-
dle most of the benign computations).

Henceforth, we denote a set of attributes
(columns) in a given relational database as a and use
◦ as the symbol for composition. SQL-like projection
is denoted by πa while selection is σp where p is the
selection predicate. The algebraic operators used are:

• crypt(s,a), decrypt(s,a): encryption and decryption
operators parameterized by a schema s (e.g., AES)
and the target attribute a to be encrypted in the
relational database.

• fragπa , defragπa : column-oriented fragmentation
and defragmentation operators

Figure 5 shows some examples of the algebraic laws
that are used later.

πaā ◦defragπa ≡ defragπa ◦ (πa,πā) (1)

σpa∧pā ◦defragπa ≡ defragπa ◦ (σpa,σpā) (2)

πa ◦decrypt(s,a) ≡ decrypt(s,a) ◦πa (3)

if dom(p) /∈℘(a)

σp ◦decrypt(s,a) ≡ decrypt(s,a) ◦σp (4)

Figure 5: commutation laws

3.1 The COSHED approach

Our approach for a COnstructive SHaring of gEnetic
Data (COSHED) extends the C2QL approach with
watermarking functions. In fact, genetic data water-
marking is a promising technique for integrity, trace-
ability or ownership protection. Concretely, we have
added the watermarking scheme in (Iftikhar et al.,
2015) that supports ownership and integrity protec-
tion properties for digital genetic data. In the fol-
lowing, we present operators for watermarking and
the detection of watermarks that can be composed
with the ones for encryption and fragmentation. We
also introduce the corresponding algebraic laws that
govern the relationship between the different privacy-
enforcing techniques.

Language support. Watermarks are represented as
a type WATERMARK whose first argument represents the
watermarking scheme (for now we have implemented
only one scheme GIG (Iftikhar et al., 2015)). We have
implemented operators wata and detectw(a,secrets),
see Fig. 6, respectively for watermark application (as
part of the privacy-enhancing technologies of ADT



1 -- @GIG stands for GenInfoGuard watermarking scheme
2
3 data WmTy = GIG
4 data Ty = ... | WATERMARK WmTy Ty
5
6 -- a function that watermarks an attribute
7 -- @ p is a proof that @ a is in ’env’
8
9 watEnv : (a: Attribute) → (wms: WmTy) → (env: Env n)

10 → {auto p : So (isInEnv a env)} → Env n
11 watEnv a wms env =
12 map (\s => if (elem a s) then replaceOn a
13 (fst a,WATERMARK wms (snd a)) s
14 else s) env
15
16 -- ADT with information for watermark detection
17
18 data ReadM : WmTy → Type where
19 RGIG : (k:Key) → ReadM GIG
20
21 -- watermark application operator
22
23 data Privy :
24 ...
25 Wat : (a: Attribute) →
26 {auto p1 : So (isRawType (snd a))} →
27 {auto p2 : So (isInEnv a env)} →
28 Privy env (watEnv a GIG env) []
29
30 -- watermark detection operator
31
32 data Query :
33 ...
34 detectw :
35 (a : Attribute) → (info : ReadM GIG) →
36 {default Refl p1: (snd a) = (WATERMARK GIG t)}
37 → Query ∆ → {auto p2 : Elem a ∆} →
38 Query ((replaceOn a (fst a, t) ∆)++[MyTattoo])

Figure 6: Watermarking operators

Privy) and watermark detection as used in queries
(ADT Query). The wata operator has as parameters
the attribute that indicates which columns have to be
watermarked in addition to two implicit arguments for
compile-time verification. More precisely, p1 serves
as a (pre-defined) proof that the passed attribute is not
watermarked nor encrypted; p2 ensures its member-
ship in the targeted environment. Similarly, in the
query operator detectw(a,secrets), p1 is a proof that the
parameter attribute was previously watermarked with
the right schema, i.e., GIG, so that watermark detec-
tion makes sense.

Laws. The watermarking schema GIG is reversible,
we can hence define the identity law

id ≡ detectwa ◦wata (5)

Unlike for the encryption/decryption operators,
the watermarking schema is not a parameter because
the entire schema has already been defined (Iftikhar
et al., 2015). Actually, most watermarking laws will
be specific to the watermarking schema, contrary to
encryption which essentially is a more general opera-
tion.

The second law stipulates that watermark detec-
tion can be delayed to after decryption provided that
the watermark application took place before encryp-

tion.

decrypt(s,a) ◦ crypt(s,a) ◦detectwa ◦wata ≡
detectwa ◦decrypt(s,a) ◦ crypt(s,a) ◦wata

(6)

Furthermore, watermark detection commutes with
projection:

πa ◦detectwa ≡ detectwa ◦πa (7)

Provided that selection is not performed on wa-
termarked attributes, watermark detection commutes
with selection: if dom(p)∩a = Ø

detectwa ◦σp = σp ◦detectwa (8)

3.1.1 Cloud-based association studies

We are now ready to present our definition of the ad-
vanced architectures for sharing of genetic data. Con-
sidering a scenario for large genomic-wide associa-
tion studies (GWAS), a federated cloud architecture
as proposed in Sec. 2.1 is considered that satisfies the
characteristics required by geneticians from the Priv-
Gen project:

• The public cloud provider should not be able to
get direct access to identifying data

• Geneticians/researchers should not be able to get
direct access to external identifying data, e.g.,
genomes.

• Ownership and integrity properties of the data
have to be satisfied.

Explanation of how these requirements are satis-
fied in our architecture is given later in this section.
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Figure 7: Genetic data sharing scenario via a trusted party

3.1.1.1 Scenario architecture. We illustrate an
implementation of a variant of the sharing through
the trusted-party architecture presented in Sec. 2.1,



variant shown in Fig. 7. This architecture variant is
used as part of a scenario for sharing genetic cohorts
in GWAS. In this scenario, genetic data is of two
sorts: case data represents the set of vcf files contain-
ing variants belonging to patients holding the studied
disease, while control data concerns healthy partici-
pants. As is often the case in genetics, control data
are not in sufficient supply in research centers: data
sharing with external researchers that possess inter-
esting control data is therefore of high interest.

We present participants with their zip code, day of
birth (DoB), gender, information of whether the sub-
ject is contributing case or control data and their
corresponding vcf file. Had the database been local,
the representation would be in two tables as follows:

Subject (SubjectId,ZIP,DoB,Gender,CaseCtrl)

SubjectVcf (recordId,Variant,TypeVariant,
position,SubjectId)

For privacy-preserving outsourcing in the cloud
that fits the aforementioned requirements defined by
geneticians, four security techniques are applied in
the scenario:

• Fragmentation for confidentiality: the triplet
(zip code,gender,DoB) forms a quasi-identifier
(Sweenay, 2000): fragmentation is therefore used
to forbid any re-identification attempts. There-
fore, we store the pair (zip code, gender) and
DoB in different fragments in different non-
communicating Clouds (denoted as LeftCloud
and RightCloud in Fig. 7);

• Encryption for confidentiality: used for any data
that can not be fragmented nor it can be kept plain
at cloud level; in our scenario case, the vcf file
is symmetrically encrypted (field-wise) except for
the position field;

• Watermarking for ownership and integrity protec-
tion of genomes. In fact, genomes will be ac-
cessed in clear format by the trusted party and any
unintended disclosure of data can also threaten the
ownership of data and its integrity.

• Client-side computations are used for TP com-
putations. This means that the geneticians need
to share (only) their decryption keys with the TP
which satisfies the first requirement of geneticians
as any access to identifying data is performed
through the trusted party.

Querying a database is more efficient when data is
plain. Therefore, increasing performance can be
achieved by decreasing the application of costly se-
curity techniques. One essential idea behind the com-
position of security and privacy-enhancing techniques

is foremost using any security method that will keep
data in plain format and does not threaten privacy. A
typical corresponding application case consists in in-
formation whose sensitivity results from it being asso-
ciated to other data. The triplet (zip code,gender,DoB)
is an example.

As part of the scenario, G1, G2 are genetic re-
search sites that initially each possess case data files;
G3 holds control data. We first assume that every re-
searcher and genetic center already outsourced their
data to a cloud provider as introduced above. In the
scenario, G1 wishes to process an association study
over a disease X. For this purpose, G3’s control sets
are needed. The scenario then proceeds as follows:

1. G1 starts by requesting TP to perform an associa-
tion study over indicated variants (Q1,Q2,Q3).

2. TP asks G3 for authorization (A1) to use its con-
trol data in the cloud for G1’s research.

3. Assuming G3 provided its authorization, TP can
apply distributed queries to the corresponding
cloud databases and thus get the necessary data
(demographic data and parts of vcf files).

4. After computations are done, TP communicates
the inferred results to G1 (in a secure manner e.g.,
an SSL connection).

The architecture can also accommodate special
cases of sharing. For instance, it may happen that
G1’s datasets are not sufficient for some study: TP
then can search complementary data from other ge-
neticians which obviously requires their authorization
(A2).

To prepare for the implementation of the scenario,
we need to write correct queries, a process which
is performed using the laws about privacy-enhancing
compositions. We consider two queries, one for re-
trieving demographic data and another query to recu-
perate genetic data. The new tables of the new dis-
tributed database after applying the aforementioned
techniques become (cf. Fig. 7):

leftCloudTab (SubjectId,ZIP,Gender)

rightCloudTab1 (recordId,VariantWE,
TypeVarE,position,
SubjectId,)

rightCloudTab2 (SubjectId,DoB,CaseCtrl)

As the genetic application represented in the sce-
nario is an (abstract) genetic association computa-
tion performed by the trusted party, both demo-
graphic and genetic data should be provided by the
cloud providers. The first query over the distributed
Subject table is meant to return the zip code and the



π(zip,dob) ◦σ(gender=male∧caseCtrl=true)

(a) local query

π(zip,dob) ◦σ(gender=male∧caseCtrl=true)◦
defragzip,gender ◦ fragzip,gender

laws 1,2 ↓

defragzip,gender◦
(πzip ◦σ(gender=male),πdob ◦σ(caseCtrl=true))◦

fragzip,gender

(b) distributed query

Figure 8: Query for demographic case data recovery

DoB of male subjects holding the disease. In order
to retrieve this data from the distributed environment
the query should be split. Fig. 8a shows a suitable lo-
cal version of the query. In a distributed setting, we
use commutation laws to obtain a distributed query
(Fig. 8b) from a local one. As for the genetic data
recovery query, the goal is to retrieve some specific
positions in the genomes of the previously selected
males demographic data (which are the results of the
first query, referred to as mdd in the figure). There-
fore, the right Variant and TypeVariant elements are
returned. Similarly, this second query is transformed
from a local formula (Fig. 9a) to a distributed one
(Fig. 9b) using the identity and commutation laws
of encryption and watermarking described earlier in
Secs. 3 and 3.1, respectively. The last distributed
query obtained shows, after law-driven transforma-
tions, that to have access to both columns, firstly a
decryption step and then a watermark detection oper-
ation should be executed over the data, a step that ’de-
constructs’ the previous encryption and watermark-
ing introduction that were necessary for a secure and
privacy-preserving outsourcing process.

3.1.1.2 Scenario implementation. The scenario
implementation is given in Fig. 10: it initially sends
query requests from the genetician G1 to the trusted
party TP that forwards them to the two clouds where
they are executed. The resulting data is sent back to
TP where the genetic computation is performed. The
corresponding results are then communicated to G1.

Fig. 11 shows the entity definitions for geneti-
cians, trusted parties and clouds, a query and the main
part of the ADT for genetic queries that is relevant to
the scenario.

π(variant,typeVar)◦
σ((sub jectId∈mdd)∧(position=i,position= j,..))

(a) local query

π(variant,typeVar)◦
σ((sub jectId∈mdd)∧(position=i,position= j,..))◦
decryptvariant,typeVar ◦ cryptvariant,typeVar◦

detectwvariant ◦watvariant

laws 3,4,6,7,8 ↓

detectwvariant ◦decryptvariant,typeVar◦
π(variant,typeVar)◦

σ((sub jectId∈mdd)∧(position=i,position= j,..))◦
cryptvariant,typeVar ◦watvariant

(b) distributed query

Figure 9: Query for genetic case data recovery

1 scenario : GeneticQuery [SubjectId ,ZIP,Gender ,DoB,
2 Variant ,TypeVar ,MyTattoo]
3 scenario = do
4
5 G1 ‘SendRequest ‘ (TP,[Q1])
6 G1 ‘SendRequest ‘ (TP,[Q2,Q2 ’])
7 G1 ‘SendRequest ‘ (TP,[Q3,Q3 ’])
8
9 TP ‘SendRequest ‘ (LeftCloud ,[Q1])

10 TP ‘SendRequest ‘ (RightCloud ,[Q2,Q2 ’])
11 TP ‘SendRequest ‘ (RightCloud ,[Q3,Q3 ’])
12
13 let q1 = LeftCloud ‘executeRequest ‘ [Q1];
14 let q2 = RightCloud ‘executeRequest ‘ [Q2,Q2’];
15 let q3 = RightCloud ‘executeRequest ‘ [Q3,Q3’];
16
17 demDatal ← LeftCloud ‘SendData ‘ (TP,q1)
18 demDatar ← RightCloud ‘SendData ‘ (TP,q2)
19 vcfFiles ← RightCloud ‘SendData ‘ (TP,q3)
20
21 let r1 = decrypt VariantWE (AESD "key2") vcfFiles;
22 let r2 = decrypt TypeVarE (AESD "key1") r1;
23 let vcfFiles = detectw VariantW (RGIG "wkey1") r2;
24 let Data = defrag (defrag demDatal demDatar) vcfFiles
25
26 TP ‘ReturnResults ‘ (G1, TP ‘Compute ‘ Data)

Figure 10: Scenario implementation

Ensuring privacy properties. Our approach,
being based on Idris, allows for proofs of certain
safety properties (that entail security and privacy
properties) to be passed as arguments to operators that
are part of correctly built queries. For instance, if we
try to watermark a genetic data that is already en-
crypted, type checking will not pass because of the
proof p1 of the wat operator that verifies data has not
been transformed yet. Similarly, trying to detect a wa-
termark from data that has not been decrypted yet will
give rise to a type checking error, see Fig. 12.



1 -- Entities
2 data Entity = Genetician | TrustedP | Cloud
3
4 G1, TP, LeftCloud , RightCloud : Entity
5 G1 = Genetician; TP = TrustedP
6 LeftCloud = Cloud; RightCloud = Cloud
7
8 leftCloudTab ,rightCloudTab1 ,rightCloudTab2 : Schema
9 leftCloudTab = index 1 SafeTPEnv ...

10
11 -- Queries
12 Q1 : Query [SubjectId ,ZIP,Gender]
13 Q1 = π [SubjectId ,ZIP,Gender]
14 $ σ (Gender == "male") (toQuery leftCloudTab);
15
16 -- ADT which parameter indicates the expected results
17 -- of an exchange or computation involving genetic data
18
19 data GeneticQuery : Schema → Type where
20
21 SendRequest :
22 Entity → (Entity ,List (Query ∆)) → GeneticQuery ∆

23 SendData : ...
24 Compute : ...

Figure 11: Entities, queries and ADT for scenario building

1
2 ... let r1 =
3 detectw VariantWE (AESD "key2") vcfFiles -- error
4 let r2 = decrypt TypeVarE (AESD "key1") r1; ...

Figure 12: Ill typed query

4 CONCLUSION

In this paper we have pointed to the lack of
programming support for privacy-preserving applica-
tions that manipulate shared genetic data. We have
presented two contributions: (i) new cloud-based ar-
chitectures for such applications that are motivated
by concrete requirements from researchers in genet-
ics and (ii) a model and corresponding security- and
privacy-enhancing techniques for the development of
such applications, notably using watermarking for the
preservation of ownership and integrity properties.

As future work, we are striving for the integra-
tion of other privacy-enhancing techniques, an effi-
cient implementation of a general Java library for the
implementation of biomedical analyses using shared
genetic data, and its application to real-world genetic
analyses.
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