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Introduction

The starting point of this work is the study of the asymptotic behavior of the Exponential Tail (ET) estimator, a nonparametric estimator of the extreme quantiles from an unknown distribution. Theoretical developments can be found in [START_REF] Breiman | Robust confidence bounds for extreme upper quantiles[END_REF] while numerical aspects are investigated in [START_REF] Diebolt | Estimation of extreme quantiles: Empirical tools for methods assessment and comparison[END_REF]. Given a n-sample X 1 , . . . , X n from a cumulative distribution function F with associated survival distribution function F , an extreme quantile is a (1 -p n )th quantile q(p n ) of F essentially larger than the maximal observation, i.e. such that F (q(p n )) = p n with np n → 0 as n → ∞. The estimation of extreme quantiles requires specific methods. Among them, the Peaks Over Threshold (POT) method relies on an approximation of the distribution of excesses over a given threshold [START_REF] Smith | Estimating tails of probability distributions[END_REF]. More precisely, let u n be a deterministic threshold such that F (u n ) = α n or equivalently u n = q(α n ) with α n → 0 and nα n → ∞ as n → ∞. The excesses above u n are defined as Y i = X i -u n for all X i > u n . The survival distribution function of an excess is given by Fun (x) = F (u n + x)/ F (u n ). Pickands theorem [START_REF] Pickands | Statistical inference using extreme order statistics[END_REF] states that, under mild conditions, Fun can be approximated by a Generalized Pareto Distribution (GPD). As a consequence, the extreme quantile q(p n ) can be in turn approximated by the deterministic term qGPD (p n ;

α n ) = q(α n ) + σ n γ n α n p n γn -1 , (1) 
where σ n and γ n are respectively the scale and shape parameters of the GPD distribution.

Then, the POT method consists in estimating these two unknown parameters. The ET method corresponds to the important particular case where F belongs to Gumbel Maximum Domain of Attraction, MDA(Gumbel). In such a situation, γ n = 0 and the GPD distribution reduces to an Exponential distribution with scale parameter σ n . Thus, approximation (1) can be rewritten as

qET (p n ; α n ) = q(α n ) + σ n log(α n /p n ) (2) 
and the associated estimator [START_REF] Breiman | Robust confidence bounds for extreme upper quantiles[END_REF] is qET (p n ; α n ) = q(α n ) + σn log(α n /p n )

where q(α n ) = X n-kn+1,n with k n = nα n and σn = 1 k n kn i=1

X n-i+1,n -X n-kn+1,n .

Let us recall that X 1,n ≤ . . . ≤ X n,n denote the order statistics associated with X 1 , . . . , X n . The error (q(p n ) -qET (p n ; α n )) can be expanded as a sum of two terms:

q(p n ) -qET (p n ; α n ) = (q ET (p n ; α n ) -qET (p n ; α n )) + (q(p n ) -qET (p n ; α n )),
the first one being a random estimation error qET (p n ; α n ) -qET (p n ; α n ) = q(α n ) -q(α n ) + (σ n -σn ) log(α n /p n )

and the second one being a deterministic extrapolation error

q(p n ) -qET (p n ; α n ) = q(p n ) -q(α n ) -σ n log(α n /p n ). (4) 
The asymptotic behavior of the estimation error (3) is driven by the asymptotic distributions of q(α n ) and σn established for instance in [START_REF] Diebolt | A note on the asymptotic normality of the ET method for extreme quantile estimation[END_REF] or [START_REF] De Haan | Extreme value theory: an introduction[END_REF]Theorem 2.4.1 and Theorem 3.4.2].

In this paper, we focus on the asymptotic behavior of the extrapolation error [START_REF] Beirlant | On the relative approximation error of the generalized Pareto approximation for a high quantile[END_REF]. Indeed, in view of (2), the ET method extrapolates in the distribution tail from q(α n ) to q(p n ) thanks to an additive correction proportional to log(α n /p n ). Our goal is thus to quantify to what extent this extrapolation can be performed in a consistent way. More specifically, we provide conditions on the pair (p n , α n ) such that the relative extrapolation error ε ET (p n ; α n ) := (q(p n ) -qET (p n ; α n ))/q(p n ) [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of Mathematics and its application[END_REF] tends to zero as n → ∞. These conditions depend on the underlying distribution function F and they lead to a subdivision of MDA(Gumbel) into three sub-domains depending on the restrictions they impose on the extrapolation range. Related works include [START_REF] Cohen | Convergence rates for the ultimate and penultimate approximations in extremevalue theory[END_REF][START_REF] Gomes | Penultimate limiting forms in extreme value theory[END_REF] who exhibited penultimate approximations for F n together with convergence rates for distributions in MDA(Gumbel). These results were extended to other maximum domains of attraction in [START_REF] Gomes | Approximation by penultimate extreme value distributions[END_REF][START_REF] Gomes | Nonstandard domains of attraction and rates of convergence[END_REF] while penultimate approximations were established for the distribution of the excesses [START_REF] Worms | Penultimate approximation for the distribution of the excesses[END_REF]. The relative extrapolation error induced by the approximation of Fun by the survival distribution function of a GPD is studied in [START_REF] Beirlant | On the relative approximation error of the generalized Pareto approximation for a high quantile[END_REF].

Here, similarly to [START_REF] Beirlant | On the relative approximation error of the generalized Pareto approximation for a high quantile[END_REF], we focus on the approximation of quantiles rather than approximations of distribution functions. Let us also highlight that these investigations are not limited to the ET method. To illustrate this, let us introduce x(n) = log(1/α n ), y(n) = log(1/p n ) and ϕ(•) = ( F ) -1 (1/ exp(•)). The extrapolation error (4) can thus be interpreted as the remainder of a first order Taylor expansion:

q(p n ) -qET (p n ; α n ) = ϕ(y(n)) -ϕ(x(n)) -σ n (y(n) -x(n)) where σ n = ϕ (x(n)). ( 6 
)
We shall show that Weissman estimator [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF] dedicated to MDA(Fréchet) can also enter this framework thanks to adapted definitions of functions x, y and ϕ. In this case, the necessary and sufficient conditions on the extrapolation range are automatically fulfilled for most distributions in MDA(Fréchet) which is a very different situation from MDA(Gumbel). It is also shown that, in some sub-domains of MDA(Gumbel), Weissman approximation is better than (or equivalent to) the ET one even though Weissman estimator was not initially designed for this framework. The paper is organized as follows: The asymptotic behavior of the remainder associated with the first order Taylor expansion [START_REF] Breiman | Robust confidence bounds for extreme upper quantiles[END_REF] is investigated in Section 2. The applications to ET and Weissman approximations are detailed in Section 3 and Section 4 respectively. Some numerical illustrations are presented in Section 5 and an application to real data is proposed in Section 6. Proofs are postponed to Section 7 and auxiliary results can be found in the Appendix.

Theoretical framework

The following functions are introduced.

(A1) x and y are two functions R + → R + such that 0 < x(t) ≤ y(t) for t large enough, x(t) → ∞ as t → ∞ and 0 < lim inf t→∞ x(t)/y(t) ≤ lim sup t→∞ x(t)/y(t) ≤ 1.

(A2) ϕ is a twice differentiable, increasing function.

Motivated by ( 5) and ( 6), we introduce

∆(t) = ϕ(y(t)) -ϕ(x(t)) -(y(t) -x(t))ϕ (x(t)) ϕ(y(t)) , (7) 
for all t > 0. The goal of this section is to establish necessary and sufficient conditions on δ(t) := (y(t) -x(t))/y(t) so that ∆(t) → 0 as t → ∞ in the setting 0 ≤ lim inf δ(t) ≤ lim sup δ(t) < 1 of assumption (A1). The following two functions are of the utmost importance in this study:

K 1 (s) = sϕ (s) ϕ(s) , K 2 (s) = s 2 ϕ (s) ϕ(s) , s ≥ 0.
The study of ∆ relies on the assumption that K 1 is regularly-varying at infinity with index θ 1 ≤ 1. This property is denoted for short by

(A3) K 1 ∈ RV θ 1 , θ 1 ≤ 1
and means that K 1 is ultimately positive such that K 1 (ts)/K 1 (s) → t θ 1 as s → ∞ for all t > 0. We refer to [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of Mathematics and its application[END_REF] for a general account on regular variation theory. This assumption is discussed in Section 3 and Section 4 while applying this general framework to the particular cases of ET and Weissman estimators. Finally, a monotonicity assumption is also considered:

(A4) K 1 is ultimately monotone.
Under (A4), K 1 is also ultimately monotone and therefore the limits of K 1 (s) and K 2 (s) when s → ∞ exist in R. The following notations are thus introduced:

lim s→∞ K 1 (s) = 1 ∈ R+ and lim s→∞ K 2 (s) = 2 ∈ R.
We are now in position to state our first main result:

Proposition 1 (Role of 1 for ∆ → 0) Suppose (A1)-(A4) hold. (i) If 1 ∈ {0, 1} then 2 = 0 and ∆(t) → 0 as t → ∞. (ii) If 1 ∈ (0, ∞) \ {1} then 2 ∈ (0, ∞) and ∆(t) → 0 if and only if δ(t) → 0 as t → ∞. (iii) If 1 = ∞ then | 2 | = ∞ and ∆(t) → 0 if and only if δ 2 (t)K 2 (y(t)) → 0 as t → ∞.
Three cases appear. If 1 ∈ {0, 1} then ∆(t) → 0 as t → ∞ as soon as (A1) holds. If 0 < 1 < ∞ and 1 = 1 then a necessary and sufficient condition for ∆(t

) → 0 is δ(t) → 0 as t → ∞. If 1 = ∞ then the necessary and sufficient condition for ∆(t) → 0 is δ 2 (t)K 2 (y(t)) → 0 as t → ∞. Clearly, this condition implies δ(t) → 0 since, in this situation, | 2 | = ∞. Finally, letting c(a, b) = 1 0 (1 -au) b-2 udu, a ≥ 0, b ≥ 0,
first order approximations of ∆ can be provided in each situation.

Proposition 2 (First order approximations of ∆) Suppose (A1)-(A4) hold.

(i) Assume 1 ∈ {0, 1} (and thus 2 = 0). If 1 = 1, let us suppose that there exists

θ 2 ≤ 0 such that |K 2 | ∈ RV θ 2 . (a) If δ(t) → 0 as t → ∞, then ∆(t) ∼ 1 2 δ 2 (t)K 2 (x(t)) as t → ∞. (b) If δ(t) → δ ∞ ∈ (0, 1) as t → ∞, then ∆(t) ∼ δ 2 ∞ (1 -δ ∞ ) -θ 2 c(δ ∞ , 1 + θ 2 )K 2 (x(t)) as t → ∞. (ii) Assume 0 < 1 < ∞ and 1 = 1. (a) If δ(t) → 0 as t → ∞, then ∆(t) ∼ 1 ( 1 -1) 2 δ 2 (t) as t → ∞. (b) If δ(t) → δ ∞ ∈ (0, 1) as t → ∞, then ∆(t) → δ 2 ∞ c(δ ∞ , 1 ) 1 ( 1 -1) as t → ∞. (iii) Assume 1 = ∞. (a) If δ(t)K 1 (y(t)) → 0 as t → ∞, then ∆(t) = 1 2 δ 2 (t)K 2 1 (x(t)) ∼ 1 2 δ 2 (t)K 2 (x(t)) as t → ∞. (b) If δ(t)K 1 (y(t)) → a ∈ (0, ∞] as t → ∞, then ∆(t) → a 0 u exp(-u)du as t → ∞.
In situation (i) where 1 ∈ {0, 1}, ∆ → 0 in both cases δ → 0 and δ → δ ∞ = 0, and the convergence is the fastest in the case δ → 0. In situation (ii) where 0 < 1 < ∞ and 1 = 1, ∆ is asymptotically proportional to δ 2 . In situation (iii) where 1 = ∞, ∆ → 0 is the only case where δK 1 (y) → 0 and ∆ is asymptotically proportional to (δK 1 (x)) 2 or equivalently to δ 2 K 2 (x).

Remark 1 When δ → 0, the first order approximations provided in (i), (ii) and (iii) can be rewritten in an unified way as

∆(t) ∼ 1 2 δ 2 (t)K 2 (x(t)).
This opens the door to the estimation of ∆(t) via the estimation of K 2 (x(t)), see also [START_REF] De Haan | Extreme value theory: an introduction[END_REF] in the ET framework and Section 6.

Application to the ET approximation

Recall that y(n

) = log(1/p n ), x(n) = log(1/α n ) with 0 < p n ≤ α n < 1. Introduce τ n = log(1/p n ) log(n) and τ n = log(1/α n ) log(n) so that p n = n -τn , α n = n -τ n , τ n ≤ τ n and δ(n) = (y(n)-x(n))/y(n) = 1-τ n /τ n .
In the sequel, F is assumed to be increasing and twice differentiable and the cumulative hazard rate function is denoted by H(•) = -log F (•). Following the ideas of Section 1, we let

ϕ(•) = ( F ) -1 (1/ exp(•)) = H -1 (•) so that ε ET (p n ; α n ) = ∆(n).
In this context, the assumption K 1 ∈ RV θ 1 , θ 1 ∈ R is a sufficient condition for log H -1 is extended regularly varying, see [START_REF] De Haan | Extreme value theory: an introduction[END_REF]Section B.2] for details on extended regular variation. This assumption has been introduced and discussed in [START_REF] Valk | Approximation and estimation of very small probabilities of multivariate extreme events[END_REF][START_REF] Valk | Approximation of high quantiles from intermediate quantiles[END_REF][START_REF] Valk | A high quantile estimator based on the log-generalized Weibull tail limit[END_REF]. The next result describes the tail behavior of F according to the sign of θ 1 . We refer to [10, Theorem 1] for a characterization under the weaker assumption of extended regular variation.

Proposition 3 (Characterizations, ET framework) Suppose F is increasing, twice differentiable and K 1 is ultimately monotone. Let x * := sup{x : F (x) < 1} be the endpoint of F .

(i) If H ∈ RV β , β > 0, then K 1 ∈ RV 0 and 1 = 1/β. (ii) K 1 ∈ RV θ 1 , θ 1 > 0 (and thus 1 = ∞) if and only if x * = ∞ and H(exp •) ∈ RV 1/θ 1 . (iii) K 1 ∈ RV θ 1 , θ 1 < 0 (and thus 1 = 0) if and only if x * < ∞ and H(x * (1 -1/•)) ∈ RV -1/θ 1 .
In the case (i) where H is regularly varying with index β > 0, necessarily θ 1 = 0 and F is referred to as a Weibull tail-distribution, see for instance [START_REF] Beirlant | The mean residual life function at great age: Applications to tail estimation[END_REF][START_REF] Gardes | Estimation of the Weibull tail-coefficient with linear combination of upper order statistics[END_REF][START_REF] Goegebeur | Generalized kernel estimators for the Weibulltail coefficient[END_REF]. Such distributions encompass Gaussian, Gamma, Exponential and strict Weibull distributions. In the case (ii) where H(exp •) is regularly varying, F is called a log-Weibull tail-distribution, see [START_REF] Alves | A test procedure for detecting super-heavy tails[END_REF][START_REF] Methni | Estimation of extreme quantiles from heavy and light tailed distributions[END_REF][START_REF] Gardes | Weibull tail-distributions revisited: a new look at some tail estimators[END_REF]], the most popular example being the lognormal distribution. The case (iii) corresponds to distributions with a Weibull tail behavior in the neighborhood of a finite endpoint.

Besides, let us highlight that the domain of attraction associated with F depends on the position of θ 1 with respect to 1. Note that [10, Proposition 1] provides a similar classification under the weaker assumption of extended regular variation.

Proposition 4 (Domains of attraction, ET framework) Suppose F is increasing, twice differentiable and K 1 is ultimately monotone.

(i) If K 1 ∈ RV θ 1 , θ 1 < 1, then F ∈MDA(Gumbel). (ii) If F ∈ MDA(Fréchet) then K 1 ∈ RV 1 . (iii) If K 1 ∈ RV θ 1 , θ 1 > 1,
then F does not belong to any domain of attraction.

These results justify the assumption θ 1 ≤ 1 introduced in (A3): MDA(Gumbel) is associated with θ 1 < 1 while MDA(Fréchet) is associated with θ 1 = 1. However, there is no perfect one-to-one correspondence as illustrated by the following two examples:

• Consider the distribution defined by H -1 a (x) = exp x 1 exp(-log(t) a )dt, x ≥ 1, a > 1.
From [START_REF] De Haan | Extreme value theory: an introduction[END_REF]Corollary 1.1.10], this distribution belongs to MDA(Gumbel) while K 1 (x) = x exp(-(log x) a ) is not regularly varying.

• Consider the distribution defined by H -1 (x) = exp(x log x), x ≥ 1. From [8, Corollary 1.2.10], this distribution does not belong to MDA(Fréchet) while K 1 (x) ∼ x log x is regularly varying with index θ 1 = 1.

The situation θ 1 > 1 which does not correspond to any domain of attraction is sometimes referred to as super-heavy tails, see [START_REF] Alves | A test procedure for detecting super-heavy tails[END_REF] or [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of Mathematics and its application[END_REF]Section 8.8] for further developments on this topic. Applying Proposition 1 to the ET framework yields:

Theorem 1 (Necessary and sufficient conditions on (α n , p n ) for ε ET (p n ; α n ) → 0) Suppose F is increasing, twice differentiable and (A3), (A4) hold. Let 0 < p n ≤ α n < 1 such that lim sup δ(n) < 1 or equivalently lim sup log(1/p n )/ log(1/α n ) < ∞.

(i) If 1 ∈ {0, 1} then ε ET (p n ; α n ) → 0 as n → ∞. (ii) If 1 ∈ (0, ∞) \ {1} then ε ET (p n ; α n ) → 0 if and only if δ(n) → 0 as n → ∞. (iii) If 1 = ∞ then ε ET (p n ; α n ) → 0 if and only if δ 2 (n)K 2 (τ n log n) → 0 as n → ∞. If, moreover, nα n → ∞ then δ(n) → 0 implies lim sup τ n ≤ 1 i.e. lim sup log(1/p n )/ log(n) ≤ 1.
First, if F ∈MDA(Fréchet) then θ 1 = 1 in view of Proposition 4(ii) and thus 1 = ∞. From Theorem 1(iii), it is possible to extrapolate even though the ET method has not be designed for this situation:

ε ET (p n ; α n ) → 0 under the restriction on (α n , p n ) that δ 2 (n)K 2 (τ n log n) → 0 as n → ∞.
Second, it appears that, from the extrapolation error point of view, three sub-domains of MDA(Gumbel) can be exhibited:

• MDA 1 (Gumbel) defined by 1 ∈ {0, 1} and where the relative extrapolation error tends to zero as soon as lim sup log(1/p n )/ log(1/α n ) < ∞. As illustrated by Proposition 3(iii), the case 1 = 0 includes distributions with a finite endpoint. The case 1 = 1 encompasses Weibull tail-distributions with shape parameter β = 1 (Proposition 3(i)), i.e close to the Exponential distribution (e.g. the Gamma distribution) as well as the class E, see [START_REF] Cohen | Convergence rates for the ultimate and penultimate approximations in extremevalue theory[END_REF].

• MDA 2 (Gumbel) defined by 1 ∈ (0, ∞) \ {1} and where the relative extrapolation error tends to zero for extreme quantiles close to the maximal observation in the sense that lim sup log(1/p n )/ log(n) ≤ 1 as n → ∞. Extreme orders such as p n = n -τ , τ > 1 are thus not permitted. As illustrated by Proposition 3(i), this situation encompasses Weibull tail-distributions with shape parameter β = 1 i.e far from the Exponential distribution (the Gaussian distribution for instance).

• MDA 3 (Gumbel) defined by 1 = ∞ and where the relative extrapolation error tends to zero under strong restrictions on the order p n of the extreme quantile: log

(1/p n )/ log(n) = 1+o(|K 2 (τ n log n)| 1/2 ) as n → ∞.
As illustrated by Proposition 3(ii), this case corresponds to log-Weibull tail-distributions (including the lognormal distribution).

We refer to Table 1 for examples of distributions in each sub-domain. Note that these three sub-domains do not cover the whole MDA(Gumbel) since they require the existence of 1 and thus K 1 . To conclude this part, one may obtain first order approximations of the relative extrapolation error ε ET (p n ; α n ) thanks to Proposition 2. The results are collected in Theorem 2 below. Remark that the assumption |K 2 | is regularly varying is needed only in the case 1 = 1, since, in other situations it is a consequence of (A3), see Lemma 3.

Theorem 2 (First order approximations of ε ET (p n ; α n )) Suppose the assumptions of Theorem 1 hold.

(i) Assume F ∈ MDA 1 (Gumbel). If 1 = 1, assume there exists θ 2 ≤ 0 such that |K 2 | ∈ RV θ 2 . (a) If δ(n) → 0 then ε ET (p n ; α n ) ∼ 1 2 δ 2 (n)K 2 (τ n log n). (b) If δ(n) → δ ∞ ∈ (0, 1) then ε ET (p n ; α n ) ∼ δ 2 ∞ (1 -δ ∞ ) -θ 2 c(δ ∞ , 1 + θ 2 )K 2 (τ n log n). (ii) Assume F ∈ MDA 2 (Gumbel) (a) If δ(n) → 0 then ε ET (p n ; α n ) ∼ 1 ( 1 -1) 2 δ 2 (n). (b) If δ(n) → δ ∞ ∈ (0, 1) then ε ET (p n ; α n ) → δ 2 ∞ 1 ( 1 -1)c(δ ∞ , 1 ). (iii) Assume F ∈ MDA 3 (Gumbel) (a) If δ(n)K 1 (log n) → 0 then ε ET (p n ; α n ) ∼ 1 2 δ 2 (n)K 2 (τ n log n). (b) If δ(n)K 1 (log n) → a ∈ (0, ∞] then ε ET (p n ; α n ) → a 0 u exp(-u)du.
Before commenting the asymptotic behavior of ε ET (p n ; α n ), let us compare our results with [START_REF] Beirlant | On the relative approximation error of the generalized Pareto approximation for a high quantile[END_REF].

Remark 2

The asymptotic equivalents provided by [START_REF] Beirlant | On the relative approximation error of the generalized Pareto approximation for a high quantile[END_REF]Theorem 2] can be compared to our results. However, let us point out that [4, Theorem 2] only holds in the case where δ(n) → 0 as n → ∞ and for the particular case of "Weibull type distributions" implying in particular that 1 = 0. It can be shown that the asymptotic equivalents provided by [START_REF] Beirlant | On the relative approximation error of the generalized Pareto approximation for a high quantile[END_REF], Theorem 2.1, Theorem 2. The only situation where δ(n) → δ ∞ = 0 and ε ET (p n ; α n ) → 0 as n → ∞ occurs for F ∈ MDA 1 (Gumbel). In this particular case, it is possible to choose extreme orders such that p n = n -τ , τ > 1, and the relative extrapolation error tends to zero at a logarithmic rate. As expected, in the three situations (i,ii,iii)-(a) where δ(n) → 0 and ε ET (p n ; α n ) → 0 as n → ∞, the convergence is the fastest in MDA 1 (Gumbel) and the slowest in MDA 3 (Gumbel). Let us also highlight that the rate of convergence is independent from the distribution in MDA 2 (Gumbel). As already pointed out in Remark 1, in all three cases, the equivalent provided by Theorem 2(i,ii,iii)-(a) can be rewritten in an unified way as

ε ET (p n ; α n ) ∼ 1 2 δ 2 (n)K 2 (τ n log n) as n → ∞, (8) 
which can thus be estimated from real data, see Section 6. Before that, to illustrate these results, let us focus on the distributions introduced in Table 1. Clearly, in all six cases, F ∈ MDA(Gumbel), K 1 and |K 2 | are regularly varying so that the assumptions of Theorem 2 are fulfilled. Let us consider the case where p n = 1/(n log n) and α n = (log n)/n leading to

τ n = 1 + log log n log n , τ n = 1 - log log n log n and δ(n) ∼ 2 log log n log n as n → ∞. (9) 
Let us stress that δ(n) → 0 and δ(n)K 1 (log n) → 0 so that Theorem 2(i,ii,iii)-(a) holds and ε ET (p n ; α n ) → 0 as n → ∞ for all six distributions. The associated first order approximations of ε ET (p n ; α n ) are provided in Table 2 (second column). In most cases the convergence of the relative extrapolation error to zero is rather slow. The log-Weibull(β > 1) distribution corresponds to the worst case, since arbitrary low rates of convergence can be obtained by letting β > → 1. At the opposite, the Finite endpoint(β > 0) distribution is the most favorable case, letting β > → 0 could lead to arbitrary high logarithmic rates of convergence. As a conclusion, the extrapolation abilities of the ET method are poor. To overcome this limitation, two main approaches are usually considered. The first one is to focus on a subset of distributions, for instance Weibull tail-distributions in MDA 2 (Gumbel), where adapted estimators can outperform the ET method, see [START_REF] Gardes | Estimating extreme quantiles of Weibull tail-distributions[END_REF] for an illustration. The second one is to rely on new assumptions on the distribution tail, such as the log-generalized Weibull tail limit [START_REF] Albert | An extreme quantile estimator for the log-generalized Weibull-tail model[END_REF][START_REF] Valk | A high quantile estimator based on the log-generalized Weibull tail limit[END_REF].

Application to Weissman approximation

When F ∈ MDA(Fréchet), γ n > 0 and the GPD approximation (1) can be simplified by letting

σ n = γ n q(α n ), see [8, Theorem 1.2.5], leading to qW (p n ; α n ) = q(α n ) α n p n γn , (10) 
which is called Weissman approximation in the sequel. Weissman estimator [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF] is then obtained by replacing the intermediate quantile q(α n ) and the tail index γ n by appropriate estimators:

qW (p n ; α n ) = q(α n ) α n p n γn .
The most common choices are q(α n ) = X n-kn+1,n , see Section 1, and Hill estimator [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF]:

γn = 1 k n kn i=1 log X n-i+1,n -log X n-kn+1,n .
Taking the logarithm of (10) yields

log q(p n ) -log qW (p n ; α n ) = log q(p n ) -log q(α n ) -γ n log(α n /p n )
and thus, similarly to the ET case (4), the extrapolation error can be interpreted as a first order Taylor remainder. To this end, recall that y(n

) = log(1/p n ), x(n) = log(1/α n ) with 0 < p n < α n < 1 and introduce ϕ(•) = log( F ) -1 (1/ exp(•)) = log H -1 (•) = log U (exp •) where U is the tail quantile function, so that log q(p n ) -log qW (p n ; α n ) = ϕ(y(n)) -ϕ(x(n)) -γ n (y(n) -x(n)) where γ n = ϕ (x(n)).
The quantity of interest is

ε W (p n ; α n ) := (q(p n ) -qW (p n ; α n ))/q(p n ) = 1 -exp(-∆(n) log q(p n )), (11) 
where ∆(n) is defined in [START_REF] Cohen | Convergence rates for the ultimate and penultimate approximations in extremevalue theory[END_REF]. The next result provides a characterization of the tail behavior of F according to the limit 1 .

Proposition 5 (Characterizations, Weissman framework) Suppose F is increasing, twice differentiable and K 1 is ultimately monotone.

(i) If exp H ∈ RV 1/γ , γ > 0, then K 1 ∈ RV 0 and 1 = 1. (ii) If H ∈ RV β , β > 0, then K 1 ∈ RV 0 and 1 = 0. (iii) If H(exp(•)) ∈ RV β , β > 0 then K 1 ∈ RV 0 and 1 = 1/β.
In the case (i) where exp H is regularly varying with positive index, F is referred to as a Pareto tail-distribution. Burr, Cauchy, Fréchet, Pareto, Student distributions are the most famous ones.

The cases (ii) and (iii) correspond respectively to Weibull and log-Weibull tail-distributions, see Proposition 3(i,ii). Besides, let us highlight that, in the Weissman framework, the domain of attraction associated with F depends on the position of θ 1 with respect to 0:

Proposition 6 (Domains of attraction, Weissman framework) Suppose F is increasing, twice differentiable and K 1 is ultimately monotone.

(i) If F ∈ MDA(Fréchet) then K 1 ∈ RV 0 and 1 = 1. (ii) If K 1 ∈ RV θ 1 , θ 1 > 0, then F does not belong to any domain of attraction. (iii) If K 1 ∈ RV θ 1 , θ 1 < 0, then F is not a proper cumulative distribution function.
Let us first note that, in case (i), there is no perfect one-to-one correspondence between K 1 ∈ RV 0 and F ∈ MDA(Fréchet) as illustrated by the following example. Consider the distribution defined by H -1 (x) = exp(x log x), x ≥ 1. From [8, Corollary 1.2.10], this distribution does not belong to MDA(Fréchet) while K 1 (x) = 1 + (x log x) -1 is verifying 1 = 1 and is thus regularly varying with index θ 1 = 0. Second, in view of Proposition 5 and 6, the only case of interest is θ 1 = 0. The asymptotic behavior of ε W (p n ; α n ) is thus investigated in the three situations where K 1 ∈ RV 0 described by Proposition 5: Pareto / Weibull / log-Weibull tail-distributions. The next two results are derived by applying Proposition 2 to the Weissman framework.

Theorem 3 (Necessary and sufficient conditions on

(α n , p n ) for ε W (p n ; α n ) → 0) Suppose F is increasing, twice differentiable and (A4) holds. Let 0 < p n ≤ α n < 1 such that lim sup δ(n) < 1 or equivalently lim sup log(1/p n )/ log(1/α n ) < ∞. (i) Suppose F ∈ MDA(Fréchet) with tail index γ > 0. Let L(t) := t -γ U (t), η(t) := tL (t)/L(t), t > 0 and assume |η| ∈ RV ρ with ρ < 0. If δ(n) → δ ∞ ∈ [0, 1) then ε W (p n ; α n ) → 0 as n → ∞. (ii) Weibull tail-distributions. Suppose H ∈ RV β , β > 0. Then, ε W (p n ; α n ) → 0 if and only if δ(n) → 0 as n → ∞. (iii) Log-Weibull tail-distributions. Suppose H(exp •) ∈ RV β , β > 0 and β = 1. Then, ε W (p n ; α n ) → 0 if and only if δ 2 (n) log q(p n ) → 0 as n → ∞.
In the situation (i) where F ∈ MDA(Fréchet), the function L is slowly-varying [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of Mathematics and its application[END_REF] and η is called the auxiliary function associated with L. The assumption |η| ∈ RV ρ , ρ < 0, is recurrent in extreme-value statistics to control the bias of estimators, ρ being known as the second-order parameter, see e.g. [START_REF] Gardes | Conditional extremes from heavy-tailed distributions: An application to the estimation of extreme rainfall return levels[END_REF]. This assumption holds for most heavy-tailed distributions such as Burr, Cauchy, Fréchet, Pareto or Student distributions. Let us also remark that one can choose extreme orders such that p n = n -τ , τ > 1 as in MDA 1 (Gumbel), see Theorem 2(i)-(b), and still obtain ε W (p n ; α n ) → 0 as n → ∞. Theorem 3(ii,iii) also shows that ε W (p n ; α n ) asymptotically vanishes provided δ(n) → 0 in case of Weibull distributions or provided δ 2 (n) log q(p n ) → 0 in case of log-Weibull tail-distributions even though they do not belong to MDA(Fréchet).

Theorem 4 (First order approximations of ε W (p n ; α n ))

(i) Suppose the assumptions of Theorem 3(i) hold. If δ(n) → δ ∞ ∈ [0, 1) then ε W (p n ; α n ) ∼ -1 1-δ∞ δ(n) log(1/α n )η(1/α n ).
(ii) Suppose the assumptions of Theorem 3(ii) hold.

(a) If δ(n) → 0 then ε W (p n ; α n ) ∼ -1 2β δ 2 (n). (b) If δ(n) → δ ∞ ∈ (0, 1) then ε W (p n ; α n ) → 1 -exp 1 β δ 2 ∞ 1-δ∞ . (iii) Suppose the assumptions of Theorem 3(iii) hold. (a) If δ 2 (n) log q(p n ) → 0 then ε W (p n ; α n ) ∼ 1-β 2β 2 δ 2 (n) log q(p n ). (b) If δ 2 (n) log q(p n ) → a ∈ (0, ∞) then ε W (p n ; α n ) → 1 -exp -1-β 2β 2 a .
If F ∈ MDA(Fréchet), case (i), one can choose extreme orders such that p n = n -τ , τ > 1 leading to polynomial extrapolation errors which is coherent with usual convergence rates, see for instance [8, Section 3.2].

Remark 3 These conclusions can also be found in [4, Theorem 1] where it is established that ε W (p n ; α n ) ∼ c η(1/p n ), for some explicit constant c ∈ R, under a second order assumption on F ∈ MDA(Fréchet).

Up to our knowledge, situations (ii) and (iii) have not been considered so far. They can be illustrated similarly to Section 3 by considering p n = 1/(n log n) and α n = (log n)/n. These choices entail δ(n) → 0 and δ 2 (n) log q(p n ) → 0, see [START_REF] Valk | Approximation and estimation of very small probabilities of multivariate extreme events[END_REF], so that Theorem 4(ii,iii)-(a) can be applied and ε W (p n ; α n ) → 0 as n → ∞ for the last five distributions of Table 1. The first order approximations of ε W (p n ; α n ) are provided in Table 2 (third column). Surprisingly, in MDA 2 (Gumbel) and MDA 3 (Gumbel), the convergence of ε W (p n ; α n ) to zero is equivalent to, or even faster than, the convergence of ε ET (p n ; α n ). In such cases, Weissman approximation is better than the ET one even though Weissman estimator was not initially designed for these frameworks. This confirms the conclusion drawn in Section 3: the extrapolation abilities of the ET method are poor, even when compared to a priori ill-adapted competitors. Finally, since ε W (p n ; α n ) < 0 while ε ET (p n ; α n ) > 0 for log-Weibull tail-distributions, there is a hope to build extrapolation methods achieving a compromise between ET and Weissman approximations leading to smaller errors.

Numerical illustrations

First, the quality of the first order approximations of the ET relative extrapolation error given in Table 2 is assessed graphically. Recall that these results are obtained by applying Theorem 2 to sequences (τ n ) and (τ n ) given in [START_REF] Valk | Approximation and estimation of very small probabilities of multivariate extreme events[END_REF] and distributions described in Table 1: Finite endpoint(β = 5), Gamma(a = 0.1), Weibull(β = 5), Gaussian, log-Weibull(β = 3) and lognormal(σ = 0.5). The exact relative extrapolation error ε ET (p n ; α n ) as well as the corresponding first order approximation provided by Theorem 2 are computed as functions of log n.

The results are displayed on Figures 123. It appears that, for all six distributions, the relative extrapolation error converges towards zero as predicted by Theorem 2, even though the convergence can be very slow in MDA 3 (Gumbel), see Figure 3. In all cases, the asymptotic sign of ε ET (p n ; α n ) is coherent with the first order equivalent given in Table 2 (second column):

Positive for Gamma(a < 1), log-Weibull(β > 1) and lognormal distributions, negative for Finite endpoint(β > 0), Weibull(β > 1) and Gaussian distributions. Finally, the first order equivalent provides a reasonable approximation of the error behavior in all situations. Second, Figure 4 displays the relative extrapolation error ε W (p n ; α n ) associated with Weissman estimator together with its first order approximation in MDA(Fréchet) provided by Theorem 4(i) as a function of log n. These results are obtained by choosing sequences p n = n -5/4 and α n = n -3/4 such that δ(n) = 2/5 and by considering a Burr distribution defined by U (t) := (t -ρ -1) -1/ρ , t ≥ 1, ρ < 0, with tail index γ = 1 and auxiliary function η(t) = 1/(t -ρ -1). Clearly, η is regularly varying with index ρ. In both cases ρ = -1/3 (top) and ρ = -1/4 (bottom), it appears that the relative extrapolation error converges to zero even though δ(n) is constant. This graphical assessment is in agreement with Theorem 4(i). As expected, both errors are negative since the auxiliary function η is positive. It also appears that, the smaller ρ, the faster the convergence is. This is in accordance with η ∈ RV ρ . Finally, the first order equivalent also provides a reasonable approximation of the error behavior in the Burr case.

Application to real data

The goal of this section is to illustrate how the first order approximations of the relative extrapolation error provided by Theorem 2 and Theorem 4 can be used to assess the extrapolation range associated with ET or Weissman methods. Focusing on the ET framework and letting α n := k n /n with k n → ∞ and k n /n → 0, Remark 3 or equivalently (8) yields

ε ET (p n ; α n ) ∼ 1 2 δ 2 (n)K 2 (log(n/k n ))
when δ(n) → 0. In view of [START_REF] Gomes | Penultimate limiting forms in extreme value theory[END_REF] in the proof of Lemma 3, we thus introduce

εET (p n ; α n ) := 1 2 δ 2 (n) K1 (log(n/k n )) K1 (log(n/k n )) + θ1 -1 ,
where θ1 and K1 (log(n/k n )) are suitable estimators of θ 1 and K 1 (log(n/k n ) respectively. We refer to [START_REF] Valk | A high quantile estimator based on the log-generalized Weibull tail limit[END_REF]Equations (19,[START_REF] Gomes | Penultimate limiting forms in extreme value theory[END_REF]] and [START_REF] Albert | An extreme quantile estimator for the log-generalized Weibull-tail model[END_REF]Equations (7,[START_REF] De Haan | Extreme value theory: an introduction[END_REF]] for examples.

The finite-sample behavior of εET (p n ; α n ) is first illustrated on simulated samples from the Gamma(a = 0.1) distribution, where p n = 1/(n log n) and α n = 40 log(n)/n. Figure 5 displays the behavior of εET (p n ; α n ) built on [START_REF] Valk | A high quantile estimator based on the log-generalized Weibull tail limit[END_REF]Equations (19,[START_REF] Gomes | Penultimate limiting forms in extreme value theory[END_REF]] and averaged over N = 100 replications as a function of n ∈ {10 3 , . . . , 10 6 } compared to the true relative error ε ET (p n ; α n ) and its first order approximation. It appears that εET (p n ; α n ) shows pretty good results in terms of bias, even for moderate values of n. This justifies the use of εET (p n ; α n ) on the considered real dataset, that we shall graphically demonstrate to be approximately Gamma distributed.

The dataset under consideration is a set of wind daily measures (in m/s) at Reims (France) from 01/01/1981 to 04/30/2011. For seasonality reasons, only the months from October to March are considered, resulting in n = 5, 371 measures. Figure 6 displays two estimators of θ 1 as functions of the number of exceedances k n : The proposal introduced in [1, Equation ( 7)] together with its 95% asymptotic confidence interval provided in [1, Theorem 3] and the proposal associated with [START_REF] Valk | A high quantile estimator based on the log-generalized Weibull tail limit[END_REF]Equation (19)]. It appears that the two estimates are similar, and, for k n ≥ 200, the value θ 1 = 0 cannot be excluded since it belongs to all the 95% asymptotic confidence intervals. Moreover, the quantile-quantile plot on Figure 7 (empirical quantiles vs Gamma quantiles) displays a strong linear trend. These two graphical assessments point towards the same conclusion: It makes sense to estimate the relative extrapolation error induced by the ET method using εET (p n ; α n ). Letting k = 40 log n (which is in the stability range of θ1 , see Figure 6) yields |ε ET (p n ; α n )| ≈ δ 2 (n) × 1% which is accordance with our previous conclusions: The ET method is able to extrapolate far into the tails in case of Gamma-like distributions.

Proofs of main results

Proof of Proposition 1. (i) If 1 ∈ {0, 1} then Lemma 3(i,ii) shows that 2 = 0. Lemma 5(i) concludes the proof. (ii) If 0 < 1 < ∞ and 1 = 1 then Lemma 3(iii) entails that 2 is finite and non zero. Lemma 5(i,ii) concludes the proof. (iii) If 1 = ∞ then K 2 is regularly varying from Lemma 3(iv) and thus K 2 (x(t)) and K 2 (y(t)) are of the same order as t → ∞ under (A1). Lemma 5(i,ii) concludes the proof.

Proof of Proposition 2. (i) If

1 ∈ {0, 1} and δ(t) → δ ∞ ∈ [0, 1) as t → ∞, then the result is a consequence of Lemma 4(i) and of K 2 (y(t)) ∼ (1 -δ ∞ ) -θ 2 K 2 (x(t)) since |K 2 | ∈ RV θ 2 . (ii) Assume 0 < 1 < ∞ and 1 = 1. Lemma 3(iii) entails 2 = 1 ( 1 -1), and Lemma 4(i) yields ∆(t) ∼ δ 2 (t) 1 0 K 2 (y(t)(1 -δ(t)u))(1 -δ(t)u) 1 -2 udu. When δ(t) → δ ∞ ∈ [0, 1) as t → ∞, Lebesgue's dominated convergence theorem entails 1 0 K 2 (y(t)(1 -δ(t)u))(1 -δ(t)u) 1 -2 udu → 1 ( 1 -1) 1 0 (1 -δ ∞ u) 1 -2 udu,
and the result is proved. (iii) Assume 1 = ∞. Then Lemma 3(iv) entails that K 2 (x) ∼ K 2 1 (x) as x → ∞. Consequently, [START_REF] Gomes | Approximation by penultimate extreme value distributions[END_REF] in the proof of Lemma 4 and Lebesgue's dominated convergence theorem yield

∆(t) ∼ δ 2 (t) 1 0 K 2 1 (y(t)(1 -δ(t)u)) (1 -δ(t)u) 2 exp (K 1 (y(t))L θ 1 (1 -δ(t)u)(1 + o(1))) udu ∼ δ 2 (t)K 2 1 (y(t)) 1 0 (1 -δ(t)u) 2θ 1 -2 exp (K 1 (y(t))(L θ 1 (1 -δ(t)u)(1 + o(1))) udu,
in view of the regular variation property (A3). Two main situations are considered:

1. If δ(t) → 0 as t → ∞, then L θ 1 (1 -δ(t)u) ∼ -δ(t)u. Letting A(t) = δ(t)K 1 (y(t)), it follows ∆(t) ∼ A 2 (t) 1 0 exp(-A(t)u(1 + o(1)))udu ∼ Φ(A(t)(1 + o(1)))A 2 (t), with Φ(•) = Ψ 1 (•; 1), see Lemma 1. Three sub-cases arise: (a) If A(t) → 0 as t → ∞, then Φ(A(t)) → 1/2 in view of Lemma 1(i) and ∆(t) ∼ 1 2 δ 2 (t)K 2 1 (y(t))∼ 1 2 δ 2 (t)K 2 1 (x(t))
since K 1 is regularly varying and x(t) ∼ y(t) when δ(t

) → 0 as t → ∞. (b) If A(t) → a ∈ (0, ∞) then ∆(t) → a 2 Φ(a) = a 0 u exp(-u)du as t → ∞ in view of the continuity of Φ, see Lemma 1(i). If A(t) → ∞, then Φ(A(t)) ∼ 1/A 2 (t) from Lemma 1(ii) and therefore ∆(t) → 1 = ∞ 0 u exp(-u)du as t → ∞. 2. If δ(t) → δ ∞ ∈ (0, 1), then A(t) → ∞ as t → ∞. Two successive change of variables yield ∆(t) ∼ δ 2 ∞ K 2 1 (y(t)) 1 0 (1 -δ ∞ u) 2θ 1 -2 exp (K 1 (y(t))L θ 1 (1 -δ(t)u)(1 + o(1))) udu ∼ K 2 1 (y(t)) 1 1-δ∞ (1 -v)v 2θ 1 -2 exp (K 1 (y(t))L θ 1 (v)(1 + o(1))) dv ∼ K 2 1 (y(t)) 0 L θ 1 (1-δ∞) (L -1 θ 1 (w)) θ 1 -1 (1 -L -1 θ 1 (w)) exp (K 1 (y(t))w(1 + o(1))) dw. Let us introduce ξ(w) = (L -1 θ 1 (w)) θ 1 -1 (1 -L -1 θ 1 (w)) for all w ∈ [L θ 1 (1 -δ ∞ ), 0]
. Routine calculations show that ξ(0) = 0 and ξ (0) = -1. A second order Taylor expansion thus yields

ξ(w) = -w + w 2 ξ (η w )/2 with η w ∈ [w, 0] ⊂ [L θ 1 (1 -δ ∞ ), 0]. Replacing, we get ∆(t) = -K 2 1 (y(t)) 0 L θ 1 (1-δ∞) w exp (K 1 (y(t))w(1 + o(1))) dw(1 + o(1)) + R(t) = K 2 1 (y(t))Ψ 1 (K 1 (y(t))(1 + o(1)); -L θ 1 (1 -δ ∞ )) + R(t),
where Ψ 1 is defined in Lemma 1 and

R(t) = 1 2 K 2 1 (y(t)) 0 L θ 1 (1-δ∞) w 2 ξ (η w ) exp (K 1 (y(t))w(1 + o(1))) dw(1 + o(1)).
Remarking that |ξ | is bounded on compact sets, there exists M > 0 such that

|R(t)| ≤ M K 2 1 (y(t))Ψ 2 (K 1 (y(t))(1 + o(1)); -L θ 1 (1 -δ ∞ )) ,
where Ψ 2 is defined in Lemma 1. As a consequence of Lemma 1(ii), R(t) = O(1/K 1 (y(t))) and ∆(t) → 1 as t → ∞.

Proof of Proposition 3. Proposition 3(i) (resp. (ii), (iii)) is a straightforward consequence of Lemma 2(i) (resp. (ii), (iii)), with ϕ = H -1 in the ET framework.

Proof of Proposition 4. (i) Assume K 1 ∈ RV θ 1 , θ 1 < 1 and let U (•) = H -1 (log •) be the tail quantile function. For all x > 0 and t > 0, consider

U (tx) U (t) = 1 x H -1 (log tx) (H -1 ) (log t) = 1 x log t log tx H -1 (log tx) H -1 (log t) K 1 (log tx) K 1 (log t) ∼ 1 x H -1 (log tx) H -1 (log t) as t → ∞ since K 1 ∈ RV θ 1 and thus K 1 (log •)/ log(•) ∈ RV 0 . Besides, H -1 (log tx) H -1 (log t) = exp log tx log t (log H -1 ) (u)du = exp log x 1 0 K 1 (log t + v log x) log t + v log x dv ,
and the regular variation property of K 1 implies that 

K 1 (log t + v log x) log t + v log x = K 1 (log t) log t (1 + o(1)) as t → ∞ uniformly locally on v ∈ [0, 1]. It follows that H -1 (log tx) H -1 (log t) = exp log x K 1 (log t) log t (1 + o(1)) → 1 (12) as t → ∞ since K ∈ RV θ 1 with θ 1 < 1. As a conclusion, U (tx)/U (t) → 1/x
K 1 ∈ RV 1 . (iii) Assume K 1 ∈ RV θ 1 , θ 1 > 1.
First, Proposition 3(ii) implies that x * = ∞ and thus F / ∈ MDA(Weibull). Second, Proposition 4(ii) shows that F ∈ MDA(Fréchet) entails K 1 ∈ RV 1 . It is thus clear that F / ∈ MDA(Fréchet). Finally, it remains to show that F / ∈ MDA(Gumbel). To this end, consider for all x > 0 and t → ∞,

U (tx) U (t) = H -1 (log tx) H -1 (log t) = exp log x K 1 (log t) log t (1 + o(1))
from [START_REF] Diebolt | Estimation of extreme quantiles: Empirical tools for methods assessment and comparison[END_REF]. Recalling that

θ 1 > 1, it is then clear that K 1 (log t)/(log t) → ∞ as t → ∞ and therefore U (tx)/U (t) → 0 if x < 1 while U (tx)/U (t) → ∞ if x > 1. Finally [8, Lemma 1.2.9]
shows that F / ∈ MDA(Gumbel) since U (tx)/U (t) does not converge to 1 as t → ∞.

Proof of Theorem 1. The proof of (i)-(iii) is a direct application of Proposition 1 since (A1) is fulfilled under the assumptions 0 < p n ≤ α n < 1 and lim sup δ(n

) < 1. If δ(n) → 0 and nα n → ∞ as n → ∞ then, for all A > 0, (1 -τ n ) log(n) ≥ A for n large enough. Thus τ n ≤ τ n τ n 1 - A log n = 1 1 -δ(n) 1 - A log n
and consequently lim sup τ n ≤ 1.

Proof of Theorem 2. The result is a consequence of Proposition 2.

Proof of Proposition 5. The proof of (i) (resp (ii), (iii)) relies on the application of Lemma 2 (iv) (resp (v), (i)) together with the fact that ϕ = log H -1 in the Weissman framework.

Proof of Proposition 6. (i) Assume F ∈ MDA(Fréchet). From [8, Corollary 1.2.1], U ∈ RV γ for some γ > 0 which can be rewritten as exp H ∈ RV 1/γ . Proposition 5(i) proves the result. (ii) Assume K 1 ∈ RV θ 1 , θ 1 > 0 or equivalently that (log ϕ) ∈ RV θ 1 -1 . Then log ϕ ∈ RV θ 1 from [5, Theorem 1.5.11]. Consequently, log log U (exp(•)) ∈ RV θ 1 and therefore U is not regularly varying. Lemma 1.2.9 and Corollary 1.2.10 in [START_REF] De Haan | Extreme value theory: an introduction[END_REF] conclude the proof. (iii) From (ii), θ 1 < 0 implies that U is ultimately decreasing and the conclusion follows.

Proof of Theorem 3. (i) The proof relies on the application of Lemma 4(i) with 1 = 1:

∆(n) ∼ δ 2 (n) 1 0 K 2 (y(n)(1 -δ(n)u)) (1 -δ(n)u) -1 udu.
Besides, ϕ (t) = exp(t)η (exp(t)) and consequently, as t → ∞,

K 2 (t) ∼ 1 γ t exp(t)η (exp(t)) ∼ ρ γ tη(exp(t)), since |η| ∈ RV ρ implies xη (x)/η(x) → ρ as x → ∞. It follows, when δ(n) → δ ∞ ∈ [0, 1), ∆(n) ∼ y(n)δ 2 (n) ρ γ 1 0 uη e y(n)(1-δ(n)u) du.
Since |η| ∈ RV ρ , from Potter's bounds [8, Proposition B.1.9], there exists 0 < < |ρ| such that

(1 -)e y(n)δ(n)(1-u)(ρ-) ≤ |η| e y(n)(1-δ(n)u) |η| e x(n) ≤ (1 + )e y(n)δ(n)(1-u)(ρ+ ) .
Recalling that η is ultimately monotone with a constant sign yields

∆(n) ∼ ρ γ η e x(n) I n y(n)δ 2 (n),
where

I - n ≤ I n ≤ I + n with I - n = (1 -) 1 0 ue y(n)δ(n)(1-u)(ρ-) du and I + n = (1 + ) 1 0 ue y(n)δ(n)(1-u)(ρ+ ) du. Straightforward calculations show that y(n)δ(n)x 1 0 ue y(n)δ(n)(1-u)x du → -1, as n → ∞ for all x < 0, since y(n)δ(n) → ∞ in view of α n /p n → ∞ as n → ∞. Consequently, I - n ∼ (1 -)/(y(n)δ(n)( -ρ)), I + n ∼ (1 + )/(y(n)δ(n)(--ρ)) and thus (1 -) ( -ρ) (1 + o(1)) ≤ I n y(n)δ(n) ≤ (1 + ) (--ρ) (1 + o(1)).
Letting → 0 entails

I n y(n)δ(n) → -1/ρ as n → ∞ and thus ∆(n) ∼ - 1 γ δ(n)η e x(n) .
Remarking that log q(p n ) = ϕ(y(n)) ∼ γy(n) ∼ γx(n)/(1 -δ ∞ ) and taking account of (11) yield

ε W (p n ; α n ) = 1 -exp - γ 1 -δ ∞ ∆(n)x(n)(1 + o(1)) , (13) 
when

δ(n) → δ ∞ ∈ [0, 1). Finally, since |η| ∈ RV ρ , ρ < 0, ∆(n)x(n) ∼ - 1 γ δ(n)x(n)η(e x(n) ) → 0
as n → ∞ and the conclusion follows.

(ii) From [START_REF] Valk | A high quantile estimator based on the log-generalized Weibull tail limit[END_REF],

ε W (p n ; α n ) → 0 if and only if ∆(n) log q(p n ) → 0 as n → ∞.
Besides, in view of Proposition 5(ii), θ 1 = 0 and 1 = 0 leading to K 2 (t) ∼ -K 1 (t) as t → ∞ and θ 2 = 0 from Lemma 3(i). Proposition 2(i) thus yields

∆(n) ∼ 1 2 δ 2 (n)K 2 (x(n)) if δ(n) → 0 as n → ∞, (14) 
∆(n) ∼ δ 2 ∞ 1 -δ ∞ K 2 (x(n)) if δ(n) → δ ∞ ∈ (0, 1) as n → ∞, (15) 
since c(δ ∞ , 0) = 1/(1 -δ ∞ ). In view of the regular variations of H -1 , the key quantity is

K 1 (x(n)) log q(p n ) ∼ 1 β ϕ(y(n)) ϕ(x(n)) ∼ 1 β log H -1 (y(n)) log H -1 (x(n)) ∼ 1 β log y(n) log x(n) = 1 β 1 - log(1 -δ(n)) log x(n) → 1 β (16) 
as n → ∞ since lim sup δ(n) < 1. As a consequence, ∆(n) log q(p n ) → 0 if and only if δ(n) → 0 and the result follows.

(iii) The proof is similar to (ii). From [START_REF] Valk | A high quantile estimator based on the log-generalized Weibull tail limit[END_REF], ε W (p n ; α n ) → 0 if and only if ∆(n) log q(p n ) → 0 as n → ∞. Besides, in view of Proposition 5(iii), θ 1 = 0 and 1 = 1/β = 1 leading to K 2 (t) → (1 -β)/β 2 as t → ∞ and θ 2 = 0 from Lemma 3(iii). Proposition 2(ii) thus shows that δ(n) → 0 is a necessary condition for ∆(n) → 0 and, in that case, ∆(n

) ∼ 1-β 2β 2 δ 2 (n).
Proof of Theorem 4. (i) Equation ( 13) in the proof of Theorem 3(i) states that

ε W (p n ; α n ) = 1 -exp - γ 1 -δ ∞ ∆(n)x(n)(1 + o(1)) . with ∆(n)x(n) ∼ - 1 γ δ(n)x(n)η(e x(n) ) → 0 as n → ∞ and thus ε W (p n ; α n ) ∼ - 1 1 -δ ∞ x(n)δ(n)η(e x(n) ) ∼ - 1 1 -δ ∞ log(1/α n )δ(n)η (1/α n ) .
(ii) Equations ( 14)-( 16) in the proof of Theorem 3(ii) yield

∆(n) log q(p n ) ∼ - 1 2β δ 2 (n) if δ(n) → 0 as n → ∞, ∆(n) log q(p n ) → - 1 β δ 2 ∞ 1 -δ ∞ if δ(n) → δ ∞ ∈ (0, 1) as n → ∞.
The conclusion follows from [START_REF] Valk | A high quantile estimator based on the log-generalized Weibull tail limit[END_REF].

(iii) The result is a direct consequence of [START_REF] Valk | A high quantile estimator based on the log-generalized Weibull tail limit[END_REF] and ∆(n) ∼ 1-β 2β 2 δ 2 (n).

Appendix: Auxiliary results

We begin with an elementary result whose proof is straightforward.

Lemma 1 For all (a, b, t

) ∈ R 3 + , let Ψ a (t; b) = b 0 u a exp(-tu)du. (i) Ψ a (•; b) is continuous, non-increasing on R + , Ψ a (0; b) = b a+1 a+1 and Ψ a (t; b) → 0 as t → ∞. (ii) Ψ 1 (t, b) ∼ 1/t 2 and Ψ 2 (t, b) ∼ 1/t 3 as t → ∞.
The next lemma establishes some links between the regular variation properties of ϕ and K 1 .

Lemma 2 Assume (A2) and (A4) hold.

(i) If ϕ ∈ RV 1/β , β > 0 then K 1 ∈ RV 0 and 1 = 1/β. (ii) Let β > 0. Then, log ϕ ∈ RV β if and only if K 1 ∈ RV β . (iii) Let ϕ ∞ := lim t→∞ ϕ(t) ∈ (0, ∞] and θ 1 < 0. Then, ϕ ∞ < ∞ and 1 -ϕ/ϕ ∞ ∈ RV θ 1 if and only if K 1 ∈ RV θ 1 . (iv) If exp ϕ(log(•)) ∈ RV γ , γ > 0 then K 1 ∈ RV 0 and 1 = 1. (v) If exp ϕ ∈ RV 1/β , β > 0 then K 1 ∈ RV 0 and 1 = 0.
Proof. Recall that K 1 (x) = x(log ϕ) (x). 

(log ϕ(t)) dt = x x 0 K 1 (t) t dt ∼ 1 β K 1 (x), (17) 
as x → ∞. It is thus clear that log ϕ ∈ RV β . (iii, =⇒) Let us assume that ϕ ∞ < ∞, ϕ(•) = ϕ ∞ (1 -h(•)) where h ∈ RV θ 1 , θ 1 < 0.
Straightforward calculations and the monotone density theorem lead to

log ϕ(x) = log ϕ ∞ + log (1 -h(x)) and K 1 (x) = xh (x) h(x) -1 ∼ -θ 1 h(x).
As a conclusion, K 1 ∈ RV θ 1 , θ 1 < 0.

(iii, ⇐=) Conversely, assume K 1 ∈ RV θ 1 , θ 1 < 0. Thus (log ϕ) ∈ RV θ 1 -1 and [5, Theorem 1.5.8] yields first, for all x sufficiently large,

log ϕ ∞ -log ϕ(x) = ∞ x (log ϕ) (t)dt < ∞ (18) 
and thus ϕ ∞ < ∞. Second, one also has

K 1 (x) ∞ x (log ϕ) (t)dt → -θ 1 (19) 
as x → ∞. Combining the two above results ( 18), ( 19) yields K 1 (x)/(log ϕ ∞ -log ϕ(x)) → -θ 1 as x → ∞ and consequently

ϕ(x) = ϕ ∞ exp 1 θ 1 K 1 (x)(1 + o(1)) = ϕ ∞ 1 + 1 θ 1 K 1 (x)(1 + o(1)) since K 1 (x) → 0 as x → ∞. (iv) Assume exp ϕ(log(•)) ∈ RV γ , γ > 0. The monotone density theorem implies ϕ (x) → γ as x → ∞. Thus K 1 (x) → 1 as x → ∞ and therefore K 1 ∈ RV 0 . (v) Assume exp ϕ ∈ RV 1/β , β > 0. From the monotone density theorem, xϕ (x) → 1/β as x → ∞. Thus ϕ ∈ RV 0 implies K 1 ∈ RV 0 and ϕ(x) → ∞ as x → ∞ yields 1 = 0. Lemma 3 shows that K 1 ∈ RV θ 1 implies |K 2 | ∈ RV θ 2 when 1 = 1.
In the situation where 1 = 1, the logistic distribution defined by H -1 (x) = log(exp(x) -1), x > 0 is a case where -K 2 (x) ∼ x exp(-x) is not regularly varying as x → ∞.

Lemma 3 Assume (A2)-(A4) hold. (i) If 1 = 0 then θ 1 ≤ 0, 2 = 0, -K 2 ∈ RV θ 1 and K 2 (x) ∼ (θ 1 -1)K 1 (x) as x → ∞. (ii) If 1 = 1 then θ 1 = 0 and 2 = 0. (iii) If 0 < 1 < ∞ and 1 = 1 then θ 1 = 0, 2 = 1 ( 1 -1) = 0 and |K 2 | ∈ RV 0 . (iv) If 1 = ∞ then θ 1 ≥ 0, 2 = ∞, K 2 ∈ RV 2θ 1 and K 2 (x) ∼ K 2 1 (x) as x → ∞.
Proof. The proof relies on the following four facts: First, for all x ∈ R,

K 2 (x) K 2 1 (x) = 1 + 1 K 1 (x) xK 1 (x) K 1 (x) -1 . (20) 
Second, xK 1 (x)/K 1 (x) → θ 1 as x → ∞ from the monotone density theorem [START_REF] Bingham | Regular Variation, volume 27 of Encyclopedia of Mathematics and its application[END_REF]Theorem 1.7.2]. Third, it straightforwardly follows that 2 = 1 ( 1 + θ 1 -1). Finally, for all positive function K, K(x) → c > 0 as x → ∞ implies K ∈ RV 0 .

The next lemma establishes the links between δ and ∆ through K 1 and K 2 .

Lemma 4 Suppose (A1)-(A4) hold.

(i) Suppose 1 < ∞. Then, as t → ∞,

∆(t) ∼ δ 2 (t) 1 0 K 2 (y(t)(1 -δ(t)u))(1 -δ(t)u) 1 -2 udu.
(ii) Suppose 1 = 1. Then, for all t > 0:

|∆(t)| ≤ max(|K 2 (y(t))|, |K 2 (x(t))|) δ 2 (t) (1 -δ(t)) 2 Φ (δ(t)K 1 (y(t))(1 + o(1))) and |∆(t)| ≥ min(|K 2 (y(t))|, |K 2 (x(t))|) δ 2 (t)Φ δ(t)K 1 (y(t))(1 -δ(t)) θ 1 -1 (1 + o(1)) ,
where Φ(s) = Ψ 1 (s; 1) = 1 0 u exp(-us)du for all s ≥ 0.

Proof. (i) Under (A2), a second order Taylor expansion with integral remainder yields

∆(t) = y(t) x(t) K 2 (s) s 2 ϕ(s) ϕ(y(t)) (y(t) -s)ds = δ 2 (t) 1 0 K 2 (y(t)(1 -δ(t)u)) (1 -δ(t)u) 2 ϕ(y(t)(1 -δ(t)u)) ϕ(y(t)) udu,
thanks to the change of variable u = (y(t) -s)/(y(t) -x(t)). Besides,

ϕ(y(t)(1 -δ(t)u)) ϕ(y(t)) = exp y(t)(1-δ(t)u) y(t)
(log ϕ(s)) ds = exp K 1 (y(t))

1-δ(t)u 1 K 1 (vy(t)) K 1 (y(t)) dv v . Since 1 -δ(t)u ∈ [1 -δ(t), 1], (A3) yields K 1 (vy(t))/K 1 (y(t)) → v θ 1 uniformly locally as t → ∞ and consequently y(t) → ∞. Condition (A1) then leads to ϕ(y(t)(1 -δ(t)u)) ϕ(y(t)) = exp (K 1 (y(t))L θ 1 (1 -δ(t)u)(1 + o(1))) ,
where

L θ 1 (x) = x 1 u θ 1 -1 du for all x ∈ R. It thus follows that ∆(t) = δ 2 (t) 1 0 K 2 (y(t)(1 -δ(t)u)) (1 -δ(t)u) 2 exp (K 1 (y(t))L θ 1 (1 -δ(t)u)(1 + o(1))) udu. ( 21 
) If 1 = 0 then ∆(t) ∼ δ 2 (t) 1 0 K 2 (y(t)(1 -δ(t)u))(1 -δ(t)u) -2 udu.
In the situation where 0 < 1 < ∞, Lemma 3(iii) entails θ 1 = 0 and (21) yields 1) udu, the first part of the result is proved.

∆(t) ∼ δ 2 (t) 1 0 K 2 (y(t)(1 -δ(t)u))(1 -δ(t)u) 1 -2+o ( 
(ii) From Lemma 3, when 1 = 1 the sign of K 2 is ultimately constant so that (21) entails

|∆(t)| = δ 2 (t) 1 0 |K 2 (y(t)(1 -δ(t)u))| (1 -δ(t)u) 2 exp (K 1 (y(t))L θ 1 (1 -δ(t)u)(1 + o(1))) udu.
Let us remark that, for all u ∈ [0, 1] and θ 1 ≤ 1, one has 1 -δ(t) ≤ 1 -δ(t)u ≤ 1 and

-(1 -δ(t)) θ 1 -1 δ(t)u ≤ L θ 1 (1 -δ(t)u) ≤ -δ(t)u.
It is thus clear that

|∆(t)| ≤ δ 2 (t) (1 -δ(t)) 2 1 0 |K 2 (y(t)(1 -δ(t)u))| exp (-δ(t)K 1 (y(t))u(1 + o(1))) udu, |∆(t)| ≥ δ 2 (t) 1 0 |K 2 (y(t)(1 -δ(t)u))| exp -δ(t)K 1 (y(t))(1 -δ(t)) θ 1 -1 u(1 + o(1)) udu.
Besides, Lemma 3 entails that |K 2 | is regularly varying when 1 = 1. Therefore, |K 2 | is ultimately monotone and it follows that, for t large enough, m

(t) ≤ |K 2 (y(t)(1 -δ(t)u))| ≤ M (t), where m(t) := min(|K 2 (y(t))|, |K 2 (x(t))|) and M (t) := max(|K 2 (y(t))|, |K 2 (x(t))|), leading to |∆(t)| ≤ M (t) δ 2 (t) (1 -δ(t)) 2 1 0 u exp (-δ(t)K 1 (y n )u(1 + o(1))) du and |∆(t)| ≥ m(t)δ 2 (t) 1 0 u exp -δ(t)K 1 (y(t))(1 -δ(t)) θ 1 -1 u(1 + o(1)) du.
Introducing for all s ≥ 0, Φ(s) = 1 0 u exp(-us)du, the above bounds can be rewritten as

|∆(t)| ≤ M (t) δ 2 (t) (1 -δ(t)) 2 Φ (δ(t)K 1 (y(t))(1 + o(1))) and |∆(t)| ≥ m(t)δ 2 (t)Φ δ(t)K 1 (y(t))(1 -δ(t)) θ 1 -1 (1 + o(1)) ,
which concludes the proof.

As a consequence of the above result, a sufficient condition as well as a necessary condition can be established under (A1) such that ∆(t) → 0 as t → ∞.

Lemma 5 Suppose (A1)-(A4) hold. (i) If δ 2 (t) max(|K 2 (y(t))|, |K 2 (x(t))|) → 0 then ∆(t) → 0 as t → ∞. (ii) If ∆(t) → 0 then δ 2 (t) min(|K 2 (y(t))|, |K 2 (x(t))|) → 0 as t → ∞.
Proof. Let us first note that when 1 = 1 then 2 = 0 from Lemma 3(ii). It is thus clear in view of Lemma 4(i) that ∆(t) → 0 as t → ∞ under (A1). In the following, we thus focus on the case where 1 = 1. Lemma 3 entails that |K 2 | is regularly varying since 1 = 1. Therefore, |K 2 | is ultimately monotone. Let us focus on the situation where |K 2 | is ultimately non decreasing and introduce A(t) = δ(t)K 1 (y(t)) for all t > 0. (i) Assume that δ 2 (t)|K 2 (y(t))| → 0 as t → ∞. From Lemma 1(i), 0 ≤ Φ(s) ≤ 1/2 for all s ≥ 0 and thus Lemma 4(ii) entails

|∆(t)| ≤ δ 2 (t)|K 2 (y(t))| 2(1 -δ(t)) 2 → 0 ( 22 
)
as t → ∞ in view of (A1).

(ii) From Lemma 4(ii), one has

|∆(t)| ≥ |K 2 (x(t))|δ 2 (t)Φ A(t)(1 -δ(t)) θ 1 -1 (1 + o(1)) ≥ |K 2 (x(t))|δ 2 (t)Φ (cA(t))
for t large enough and some c > 0 since Φ is non-increasing, see Lemma 1(i). For all s ≥ 0, let ψ(s) = s 0 x exp(-x)dx = s 2 Φ(s). Consider s 0 ≥ c(3 -2θ 1 ) with θ 1 ≤ 1 and remark that Φ(s) ≥ Φ(s 0 ) for all 0 ≤ s ≤ s 0 and ψ(s) ≥ ψ(s 0 ) for all s ≥ s 0 . As a consequence, for all s > 0,

Φ(s) ≥ ψ(s 0 ) s 2 0 I{s ≤ s 0 } + ψ(s 0 ) s 2 I{s ≥ s 0 }, and thus 
|∆(t)| ≥ ψ(s 0 ) s 2 0 |K 2 (x(t))|δ 2 (t)I{A(t) ≤ s 0 /c} + ψ(s 0 ) c 2 |K 2 (x(t))| K 2 1 (y(t)) I{A(t) ≥ s 0 /c} (23) ≥ ψ(s 0 ) s 2 0 |K 2 (x(t))|δ 2 (t)I{A(t) ≤ s 0 /c} + ψ(s 0 ) c 2 |K 2 (x(t))| K 2 1 (x(t)) K 2 1 (x(t)) K 2 1 (y(t)) I{A(t) ≥ s 0 /c}. Since K 1 ∈ RV θ 1 , K 1 (x(t))/K 1 (y(t)) ∼ (1 -δ(t)) θ 1 ≥ c > 0 as t → ∞ in view of (A1) and 
|∆(t)| ≥ ψ(s 0 ) s 2 0 |K 2 (x(t))|δ 2 (t)I{A(t) ≤ s 0 /c} + ψ(s 0 ) c c
Remarking that [START_REF] Gomes | Penultimate limiting forms in extreme value theory[END_REF] in the proof of Lemma 3 implies that, for t large enough, -0.06 -0.05 -0.04 -0.03 -0.02 -0.01 0.00 ε ET (p n ; α n ) (solid line), first order approximation 1 2 δ 2 (n)K 2 (log(n/k n )) (dashed line) and estimation εET (p n ; α n ) built on [START_REF] Valk | A high quantile estimator based on the log-generalized Weibull tail limit[END_REF]Equations (19,[START_REF] Gomes | Penultimate limiting forms in extreme value theory[END_REF]] and averaged over N = 100 replications (dotted line). Horizontally: log n. 

K 2 (x(t)) K 2 1 (x(t)) = 1 + 1 K 1 (x(t)) x(t)K 1 (x(t)) K 1 (x(t)) -1 = 1 + δ(t) A(t) (θ 1 -1 + o(1)) which yields when A(t) ≥ s 0 /c, K 2 (x(t)) K 2 1 (x(t)) -1 ≤ cδ(t) s 0 |θ 1 -1 + o(1)| ≤ c s 0 (3/2 -θ 1 ) ≤ 1 2 . It thus follows that |K 2 (x(t))| K 2 1 (x(t)) I{A(t) ≥ s 0 /c} ≥ 1 

  2 and Theorem 2.3 coincide with the ones of Theorem 2(ii)-(a), Theorem 2(i)-(a) and Theorem 2(iii)-(a) respectively, up to a typo in the statement of [4, Theorem 2.2].

  (i) If ϕ ∈ RV 1/β , β > 0 then the monotone density theorem [5, Theorem 1.7.2] yields ϕ(x) ∼ βxϕ (x) or equivalently K 1 (x) → 1/β as x → ∞. It follows that 1 = 1/β and K 1 ∈ RV 0 . (ii, =⇒) Let us assume that log ϕ ∈ RV β , β > 0. Then, the monotone density theorem implies (log ϕ) ∈ RV β-1 i.e. K 1 ∈ RV β . (ii, ⇐=) Conversely, assume K 1 ∈ RV β , β > 0. Then, necessarily 1 = ∞. From [5, Theorem 1.5.8], we have for all x 0 sufficiently large, log ϕ(x) -log ϕ(x 0 ) = x x 0

Figure 1 :

 1 Figure 1: Extrapolation in MDA 1 (Gumbel). Vertically: Relative extrapolation error ε ET (p n ; α n ) (solid line) and its first order approximation 1 2 δ 2 (n)K 2 (log n) (dashed line) provided by Theorem 2(i)-(a). Horizontally: log n. Top: Finite endpoint(β = 5) distribution, bottom: Gamma(a = 0.1) distribution.
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 234 Figure 2: Extrapolation in MDA 2 (Gumbel). Vertically: Relative extrapolation error ε ET (p n ; α n ) (solid line) and its first order approximation 1 ( 1 -1)

Figure 5 :

 5 Figure 5: Relative extrapolation error for a Gamma(a = 0.1) distribution. Vertically:ε ET (p n ; α n ) (solid line), first order approximation 1 2 δ 2 (n)K 2 (log(n/k n )) (dashed line) and estimation εET (p n ; α n ) built on[START_REF] Valk | A high quantile estimator based on the log-generalized Weibull tail limit[END_REF] Equations (19,[START_REF] Gomes | Penultimate limiting forms in extreme value theory[END_REF]] and averaged over N = 100 replications (dotted line). Horizontally: log n.

Figure 6 :

 6 Figure6: Estimations of θ 1 as functions of k n on the wind speeds dataset. Full line: θ1 defined in [1, Equation (7)] together with its 95% asymptotic confidence interval. Dashed line: θ1 proposed by[START_REF] Valk | A high quantile estimator based on the log-generalized Weibull tail limit[END_REF] Equation (19)]. Vertical dotted line: k n = 40 log n ≈ 344. Horizontal dotted line : θ 1 = 0.

Figure 7 :

 7 Figure 7: Quantile-quantile plot. •: empirical quantiles of the wind speeds dataset (vertically) vs quantiles from a Gamma distribution (horizontally). Continuous line: diagonal line.

Table 1 :

 1 Consequently, A(t) ≤ s 0 /c eventually and δ 2 (t)K 2 (x(t)) → 0 as t → ∞. Let us now consider the situation where |K 2 | is ultimately non increasing. (i) The proof is similar, the upper bound (22) is replaced by|∆(t)| ≤ δ 2 (t)|K 2 (x(t))| 2(1 -δ(t))2 . Examples of distributions in MDA(Gumbel), ET framework: ϕ = H -1 . 25 Distribution ε ET (p n ; α n ) ε W (p n ; α n )

	2	I{A(t) ≥ s 0 /c}

2

I{A(t) ≥ s 0 /c}. As a conclusion, |∆(t)| → 0 implies |K 2 (x(t))|δ 2 (t)I{A(t) ≤ s 0 /c} → 0 and I{A(t) ≥ s 0 /c} → 0 as t → ∞.

Table 2 :

 2 First order approximations of ε ET (p n ; α n ) and ε W (p n ; α n ) with p n = 1/(n log n) and α n = (log n)/n associated with the distributions described in Table1.

δ 2 (n) (dashed line) provided by Theorem 2(ii)-(a). Horizontally: log n. Top: Weibull(β = 5) distribution, bottom: Gaussian distribution.
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