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Abstract

We investigate the asymptotic behavior of the (relative) extrapolation error associated with

some estimators of extreme quantiles based on extreme-value theory. It is shown that the

extrapolation error can be interpreted as the remainder of a first order Taylor expansion.

Necessary and sufficient conditions are then provided such that this error tends to zero as

the sample size increases. Interestingly, in case of the so-called Exponential Tail estimator,

these conditions lead to a subdivision of Gumbel maximum domain of attraction into three

subsets. In constrast, the extrapolation error associated with Weissman estimator has a

common behavior over the whole Fréchet maximum domain of attraction. First order equiv-

alents of the extrapolation error are then derived and their accuracy is illustrated numerically.

Keywords: Extrapolation error, Extreme quantiles, Extreme-value theory.

AMS 2000 subject classification: 62G32, 62G20.

1 Introduction

The starting point of this work is the study of the asymptotic behavior of the Exponential Tail

(ET) estimator, a nonparametric estimator of the extreme quantiles from an unknown distri-

bution. Theoretical developments can be found in [4] while numerical aspects are investigated

in [10]. Given a n-sample X1, . . . , Xn from a cumulative distribution function F with associated

survival distribution function F̄ , an extreme quantile is a (1−pn)th quantile q(pn) of F essentially

larger than the maximal observation, i.e. such that F̄ (q(pn)) = pn with pn ≤ 1/n. The estima-

tion of extreme quantiles requires specific methods. Among them, the Peaks Over Threshold

(POT) method relies on an approximation of the distribution of excesses over a given thresh-

old [22]. More precisely, let us introduce a deterministic threshold un such that F̄ (un) = αn

or equivalently un = q(αn) with αn → 0 and nαn > 1 as n → ∞. The excesses above un are

defined as Yi = Xi − un for all Xi > un. The survival distribution function of an excess is given
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by F̄un(x) = F̄ (un + x)/F̄ (un). Pickands theorem [12, 21] states that, under mild conditions,

F̄un can be approximated by a Generalized Pareto Distribution (GPD). As a consequence, the

extreme quantile q(pn) can be in turn approximated by the deterministic term

q̃GPD(pn;αn) = q(αn) +
σn
γn

[(
αn
pn

)γn
− 1

]
, (1)

where σn and γn are respectively the scale and shape parameters of the GPD distribution.

Then, the POT method consists in estimating these two unknown parameters. The ET method

corresponds to the important particular case where F belongs to Gumbel Maximum Domain of

Attraction, MDA(Gumbel). In such a situation, γn = 0 and the GPD distribution reduces to an

Exponential distribution with scale parameter σn. Thus, approximation (1) can be rewritten as

q̃ET(pn;αn) = q(αn) + σn log(αn/pn) (2)

and the associated estimator [4] is

q̂ET(pn;αn) = q̂(αn) + σ̂n log(αn/pn)

where q̂(αn) = Xn−kn+1,n with kn = bnαnc and

σ̂n =
1

kn

kn∑
i=1

Xn−i+1,n.

Let us recall that X1,n ≤ . . . ≤ Xn,n denote the order statistics associated with X1, . . . , Xn. The

error (q(pn)− q̂ET(pn;αn)) can be expanded as a sum of two terms:

q(pn)− q̂ET(pn;αn) = (q̃ET(pn;αn)− q̂ET(pn;αn)) + (q(pn)− q̃ET(pn;αn)),

the first one being a random estimation error

q̃ET(pn;αn)− q̂ET(pn;αn) = q(αn)− q̂(αn) + (σn − σ̂n) log(αn/pn) (3)

and the second one being a deterministic extrapolation error

q(pn)− q̃ET(pn;αn) = q(pn)− q(αn)− σn log(αn/pn). (4)

The asymptotic behavior of the estimation error (3) is driven by the asymptotic distributions

of q̂(αn) and σ̂n which can be found for instance in [6], Theorem 2.4.1 and Theorem 3.4.2

respectively.

In this paper, we focus on the asymptotic behavior of the extrapolation error (4). Indeed, in

view of (2), it appears that the ET method extrapolates in the distribution tail from q(αn) to

q(pn) thanks to an additive correction proportional to log(αn/pn). Our goal is thus to quantify to

which extent this extrapolation can be performed in a consistent way. More specifically, we pro-

vide necessary and sufficient conditions on the pair (pn, αn) such that the relative extrapolation

error

εET(pn;αn) := (q(pn)− q̃ET(pn;αn))/q(pn) (5)
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tends to zero as n→∞. These conditions depend on the underlying distribution function F and

they lead to a subdivision of MDA(Gumbel) into three sub-domains depending on the restrictions

they impose on the extrapolation range. Related works include [5, 17] who exhibited penulti-

mate approximations for Fn together with convergence rates for distributions in MDA(Gumbel).

These results were extended to other maximum domains of attraction in [18, 19] while penulti-

mate approximations were established for the distribution of the excesses Fun in [24].

Here, we focus on the approximation of quantiles rather than approximations of distribution

functions. Let us also highlight that these investigations are not limited to the ET method. To

illustrate this, let us introduce xn = log(1/αn), yn = log(1/pn) and ϕ(·) = (F̄ )−1(1/ exp(·)).
The extrapolation error (4) can thus be interpreted as the remainder of a first order Taylor

expansion:

q(pn)− q̃ET(pn;αn) = ϕ(yn)− ϕ(xn)− σn(yn − xn) where σn = ϕ′(xn). (6)

We shall show that Weissman estimator [23] dedicated to MDA(Fréchet) can also enter this

framework thanks to adapted definitions of xn, yn and ϕ. In this case, the necessary and

sufficient conditions on the extrapolation range are automatically fulfilled for most distributions

in MDA(Fréchet) which is a very different situation from MDA(Gumbel).

The paper is organized as follows: The asymptotic behavior of the remainder associated with

the first order Taylor expansion (6) is investigated in Section 2. The applications to ET and

Weissman approximations are detailed in Section 3 and Section 4 respectively. As a conclusion,

some numerical illustrations are presented in Section 5. Proofs are postponed to Section 6 and

auxiliary results can be found in the Appendix.

2 Theoretical framework

Let ϕ be an arbitrary twice differentiable, increasing function. Let (xn) and (yn) be two sequences

such that 0 < xn ≤ yn for all n large enough, xn →∞ as n→∞ and

0 < lim inf xn/yn ≤ lim supxn/yn ≤ 1. (7)

Motivated by (5) and (6), we introduce

∆n =
ϕ(yn)− ϕ(xn)− (yn − xn)ϕ′(xn)

ϕ(yn)
. (8)

The goal of this section is to establish necessary and sufficient conditions on δn := (yn − xn)/yn

so that ∆n → 0 as n → ∞. The following two functions are of the utmost importance in this

study:

K1(x) =
xϕ′(x)

ϕ(x)
, K2(x) =

x2ϕ′′(x)

ϕ(x)
, x ∈ R.

The limits of K1(x) and K2(x) when x → ∞ are denoted by `1 ∈ R̄+ and `2 ∈ R̄, when they

exist. The study of ∆n relies on the assumption that K1 is regularly-varying at infinity with
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index θ1 ≤ 1. This property is denoted for short by K1 ∈ RVθ1 and means that K1 is ultimately

positive such that
K1(tx)

K1(x)
→ tθ1 as x→∞ for all t > 0.

We refer to [3] for a general account on regular variation theory. This assumption is discussed

in Section 3 and Section 4 while applying this general framework to the particular cases of ET

and Weissman estimators.

The first step is to establish the links between δn and ∆n through the functions K1 and K2.

Lemma 1 (Bounds on ∆n)

(i) If K1 ∈ RVθ1 with θ1 ≤ 1 and (7) holds then

∆n = δ2n

∫ 1

0

K2(yn(1− δnu))

(1− δnu)2
exp (K1(yn)Lθ1(1− δnu)(1 + o(1)))udu,

where Lθ1(x) =
∫ x
1 u

θ1−1du for all x ∈ R.

(ii) If, moreover, K2 is ultimately of constant sign and monotone, then

|∆n| ≤ max(|K2(yn)|, |K2(xn)|) δ2n
(1− δn)2

Φ (δnK1(yn)(1 + o(1))) and

|∆n| ≥ min(|K2(yn)|, |K2(xn)|) δ2nΦ
(
δnK1(yn)(1− δn)θ1−1(1 + o(1))

)
,

where Φ(t) =
∫ 1
0 u exp(−ut)du for all t ≥ 0.

Second, as a consequence of the above bounds, a sufficient condition as well as a necessary

condition can be established such that ∆n → 0 as n→∞.

Lemma 2 (Necessary and sufficient conditions for ∆n → 0)

Assume (7) holds, K1 ∈ RVθ1 with θ1 ≤ 1 and K2 is ultimately of constant sign and monotone.

(i) If δ2n max(|K2(yn)|, |K2(xn)|)→ 0 then ∆n → 0 as n→∞.

(ii) If ∆n → 0 then δ2n min(|K2(yn)|, |K2(xn)|)→ 0 as n→∞.

It appears that the asymptotic behavior of ∆n heavily relies on `2. Since `2 can be derived from

`1, see Lemma 4 in the Appendix, we are now in position to state our first main result:

Proposition 1 (Role of `1 for ∆n → 0)

Under the assumptions of Lemma 2,

(i) If `1 ∈ {0, 1} then `2 = 0 and ∆n → 0 as n→∞.

(ii) If `1 ∈ (0,∞) \ {1} then `2 ∈ (0,∞) and ∆n → 0 if and only if δn → 0 as n→∞.

(iii) If `1 =∞ then |`2| =∞ and ∆n → 0 if and only if δ2nK2(yn)→ 0 as n→∞.
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Three cases appear. If `1 ∈ {0, 1} then ∆n → 0 as n → ∞ as soon as (7) holds. If 0 < `1 < ∞
and `1 6= 1 then a necessary and sufficient condition for ∆n → 0 is δn → 0 as n→∞. If `1 =∞
then the necessary and sufficient condition for ∆n → 0 is δ2nK2(yn)→ 0 as n→∞. Clearly, this

condition implies δn → 0 since, in this situation, |`2| =∞.

Finally, first order approximations of ∆n can be provided in each situation.

Proposition 2 (First order approximations of ∆n)

Under the assumptions of Lemma 2,

(i) Assume `1 = 0 (and thus `2 = 0).

(a) If δn → 0 then

1

2
δ2n|K2(yn)|(1 + o(1)) ≤ |∆n| ≤

1

2
δ2n|K2(xn)|(1 + o(1)).

(b) If δn → δ ∈ (0, 1) then

|K2(yn)| δ
2

2
(1 + o(1)) ≤ |∆n| ≤ |K2(xn)| δ2

2(1− δ)2
(1 + o(1)).

(ii) Assume `1 = 1 (and thus `2 = 0).

(a) If δn → 0 then

1

2
δ2n|K2(yn)|(1 + o(1)) ≤ |∆n| ≤

1

2
δ2n|K2(xn)|(1 + o(1)).

(b) If δn → δ ∈ (0, 1) then

|K2(yn)| δ2Φ(δ/(1− δ))(1 + o(1)) ≤ |∆n| ≤ |K2(xn)| δ2

(1− δ)2
Φ(δ)(1 + o(1)).

(iii) Assume 0 < `1 <∞ and `1 6= 1.

(a) If δn → 0 then

∆n =
`1(`1 − 1)

2
δ2n(1 + o(1)) as n→∞.

(b) If δn → δ ∈ (0, 1) then

∆n → c(δ, `1) := `1(`1 − 1)δ2
∫ 1

0
(1− δu)`1−2udu as n→∞.

(iv) Assume `1 =∞.

(a) If δnK1(yn)→ 0 then

∆n =
1

2
δ2nK

2
1 (yn) ∼ 1

2
δ2nK2(yn)(1 + o(1)) as n→∞.

(b) If δnK1(yn)→ a > 0 then

∆n → a2Φ(a) as n→∞.
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(c) If δnK1(yn)→∞ then

∆n → 1 as n→∞.

In situations (i) and (ii) where `1 ∈ {0, 1}, ∆n → 0 in both cases δn → 0 and δn → δ 6= 0, and

the convergence is the fastest in the case δn → 0. In situation (iii) where 0 < `1 <∞ and `1 6= 1,

∆n is asymptotically proportional to δ2n. In situation (iv) where `1 = ∞, ∆n → 0 in the only

case where δnK1(yn)→ 0 and ∆n is asymptotically proportional to (δnK1(yn))2 or equivalently

to δ2nK2(yn).

3 Application to the ET approximation

Recall that yn = log(1/pn), xn = log(1/αn) with 0 < pn ≤ 1/n ≤ αn < 1. Introduce

τn =
log(1/pn)

log(n)
and τ ′n =

log(1/αn)

log(n)

so that pn = n−τn , τn ≥ 1, αn = n−τ
′
n , τ ′n ≤ 1 and δn = 1− τ ′n/τn. In the sequel, F is assumed

to be increasing and twice differentiable and the cumulative hazard rate function is denoted by

H(·) = − log F̄ (·). Following the ideas of Section 1, we let ϕ(·) = (F̄ )−1(1/ exp(·)) = H−1(·) so

that εET(pn;αn) = ∆n. In this context, the assumption K1 ∈ RVθ1 , θ1 ∈ R has been introduced

and discussed by Cees de Valk et. al. in a series of papers [7, 8, 9]. The next result provides a

characterization of the tail behavior of F according to the sign of θ1.

Proposition 3 (Characterizations)

Let x∗ := sup{x : F (x) < 1} be the endpoint of F and assume that the density F ′ is ultimately

monotone.

(i) If H ∈ RVβ, β > 0, then K1 ∈ RV0 and `1 = 1/β.

(ii) K1 ∈ RVθ1, θ1 > 0 (and thus `1 =∞) if and only if x∗ =∞ and H(exp ·) ∈ RV1/θ1 .

(iii) K1 ∈ RVθ1, θ1 < 0 (and thus `1 = 0) if and only if x∗ <∞ and H(x∗(1− 1/·)) ∈ RV−1/θ1.

In the case (i) where H is regularly varying with index β > 0, necessarily θ1 = 0 and F is referred

to as a Weibull tail-distribution, see for instance [2, 13, 16]. Such distributions encompass

Gaussian, Gamma, Exponential and strict Weibull distributions. In the case (ii) where H(exp ·)
is regularly varying, F is called a log-Weibull tail-distribution, see [1, 11, 15], the most popular

example being the lognormal distribution. The case (iii) corresponds to distributions with a

Weibull tail behavior in the neighborhood of a finite endpoint.

Besides, let us highlight that the domain of attraction associated with F depends on the

position of θ1 with respect to 1:
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Proposition 4 (Domains of attraction)

(i) If K1 ∈ RVθ1, θ1 < 1, then F ∈MDA(Gumbel).

(ii) If F ∈ MDA(Fréchet) then K1 ∈ RV1.

(iii) If K1 ∈ RVθ1, θ1 > 1, then F does not belong to any domain of attraction.

These results justify the assumption θ1 ≤ 1 used in Lemma 2 and its consequences. The

situation θ1 > 1 which does not correspond to any domain of attraction is sometimes referred

to as super-heavy tails, see [1] or [3], Section 8.8 for further developments on this topic.

Applying Proposition 1 to the ET framework yields:

Theorem 1 (Necessary and sufficient conditions for εET(pn;αn)→ 0)

Assume 0 < lim inf τ ′n/τn ≤ lim sup τ ′n/τn ≤ 1, K1 ∈ RVθ1 with θ1 ≤ 1 and K2 is ultimately of

constant sign and monotone.

(i) If `1 ∈ {0, 1} then εET(pn;αn)→ 0 as n→∞.

(ii) If `1 ∈ (0,∞) \ {1} then εET(pn;αn)→ 0 if and only if τn → 1 and τ ′n → 1 as n→∞.

(iii) If `1 =∞ then εET(pn;αn)→ 0 if and only if (τn − τ ′n)2K2(log n)→ 0 as n→∞.

It appears that, from the extrapolation error point of view, MDA(Gumbel) can be splitted into

three sub-domains of attraction:

• MDA1(Gumbel) defined by `1 ∈ {0, 1} and where the relative extrapolation error tends to

zero without restriction on the order pn of the extreme quantile. As illustrated by Propo-

sition 3(iii), the case `1 = 0 includes distributions with a finite endpoint. The case `1 = 1

encompasses Weibull tail-distributions with shape parameter β = 1 (Proposition 3(i)), i.e

close to the Exponential distribution (the Gamma distribution for instance) as well as the

class E defined in [5].

• MDA2(Gumbel) defined by `1 ∈ (0,∞) \ {1} and where the relative extrapolation error

tends to zero for extreme quantiles close to the maximal observation in the sense that

log(pn) ∼ log(1/n) as n → ∞. Extreme orders such as pn = n−τ , τ > 1 are thus not

permitted. As illustrated by Proposition 3(i), this situation encompasses Weibull tail-

distributions with shape parameter β 6= 1 i.e far from the Exponential distribution (the

Gaussian distribution for instance).

• MDA3(Gumbel) defined by `1 = ∞ and where the relative extrapolation error tends to

zero under strong restrictions on the order pn of the extreme quantile: log(pn)/ log(1/n) =

1 + o(|K2(log n)|1/2) as n→∞. As illustrated by Proposition 3(ii), this case corresponds

to log-Weibull tail-distributions (including the lognormal distribution for instance).
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We refer to Table 1 for examples of distributions in each sub-domain. To conclude this part,

one may obtain first order approximations of the relative extrapolation error εET(pn;αn) thanks

to Proposition 2. For the sake of simplicity, it is assumed that |K2| is regularly varying. This

assumption is in fact not restrictive. Indeed, in case of Weibull tail-distributions with shape

parameter β 6= 1, Proposition 3(i) shows that `1 6= 1 and Lemma 4(iii) entails |K2| ∈ RV0. In

case of log-Weibull tail-distributions, θ1 > 0 from Proposition 3(ii) and thus K2 ∈ RV2θ1 from

Lemma 4(iv). Finally, for finite endpoint distributions, θ1 < 0 from Proposition 3(iii) and thus

|K2| ∈ RVθ1 from Lemma 4(i).

The results are collected in Theorem 2 below. The following notations have been introduced:

un ∼ vn if and only if un/vn → 1 as n → ∞ and un � vn if and only if 0 < lim inf un/vn ≤
lim supun/vn <∞.

Theorem 2 (First order approximations of εET(pn;αn))

Suppose 0 < lim inf τ ′n/τn ≤ lim sup τ ′n/τn ≤ 1, K1 ∈ RVθ1 with θ1 ≤ 1 and |K2| ∈ RVθ2 with

θ2 ∈ R. Then, as n→∞:

(i) Assume F ∈ MDA1(Gumbel)

(a) If δn → 0 then εET(pn;αn) ∼ 1
2(τn − τ ′n)2K2(log n) ∼ 1

2δ
2
nK2(log n).

(b) If δn → δ ∈ (0, 1) then |εET(pn;αn)| � |K2(log n)|.

(ii) Assume F ∈ MDA2(Gumbel)

(a) If δn → 0 then εET(pn;αn) ∼ `1(`1−1)
2 (τn − τ ′n)2 ∼ `1(`1−1)

2 δ2n.

(b) If δn → δ ∈ (0, 1) then εET(pn;αn)→ c(δ, `1).

(iii) Assume F ∈ MDA3(Gumbel)

(a) If δnK1(log n)→ 0 then εET(pn;αn) ∼ 1
2(τn − τ ′n)2K2

1 (log n) ∼ 1
2δ

2
nK2(log n).

(b) If δnK1(log n)→ a > 0 then εET(pn;αn)→ a2Φ(a).

(c) If δnK1(log n)→∞ then εET(pn;αn)→ 1.

Remark that the only situation where δn → δ 6= 0 and εET(pn;αn) → 0 as n → ∞ occurs for

F ∈ MDA1(Gumbel). In this case, it is possible to choose extreme orders such that pn = n−τ ,

τ > 1, and the relative extrapolation error tends to zero at a logarithmic rate.

As expected, in the three situations (i,ii,iii)-(a) where δn → 0 and εET(pn;αn)→ 0 as n→∞,

the convergence is the fastest in MDA1(Gumbel) and the slowest in MDA3(Gumbel). Let us also

highlight that the rate of convergence is independent from the distribution in MDA2(Gumbel).

To illustrate these results, let us focus on the distributions introduced in Table 1. Clearly, in

all six cases, F ∈ DA(Gumbel), K1 and |K2| are regularly varying so that the assumptions of

Theorem 2 are fulfilled. Let us consider the case where pn = 1/(n log n) and αn = (log n)/n

leading to

τn = 1 +
log logn

log n
, τ ′n = 1− log log n

log n
and δn ∼ 2

log log n

log n
, (9)
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as n→∞. Let us stress that these choices entail δn → 0 and δnK1(log n)→ 0 as n→∞ so that

Theorem 2(i,ii,iii)-(a) can be applied and εET(pn;αn) → 0 as n → ∞ for all six distributions.

The associated first order approximations of εET(pn;αn) are provided in Table 2. It appears

that, in most cases, the convergence of the relative extrapolation error to zero is rather slow.

The log-Weibull(β > 1) distribution corresponds to the worst case, since arbitrary low rates of

convergence can be obtained by letting β
>→ 1. At the opposite, the Finite endpoint(β > 0)

distribution is the most favorable case, letting β
>→ 0 could lead to arbitrary high logarithmic

rates of convergence.

4 Application to Weissman approximation

When F ∈ MDA(Fréchet), γn > 0 and the GPD approximation (1) can be simplified by letting

σn = γnq(αn), see [6], Theorem 1.2.5, leading to

q̃W(pn;αn) = q(αn)

(
αn
pn

)γn
, (10)

which is called Weissman approximation in the sequel. Weissman estimator [23] is then obtained

by replacing the intermediate quantile q(αn) and the tail index γn by appropriate estimators:

q̂W(pn;αn) = q̂(αn)

(
αn
pn

)γ̂n
.

The most common choices are q̂(αn) = Xn−kn+1,n, see Section 1, and Hill estimator [20]:

γ̂n =
1

kn

kn∑
i=1

logXn−i+1,n − logXn−kn+1,n.

Taking the logarithm of (10) yields

log q(pn)− log q̃W(pn;αn) = log q(pn)− log q(αn)− γn log(αn/pn)

and thus, similarly to the ET case (4), the extrapolation error can be interpreted as a first order

Taylor remainder. To this end, recall that yn = log(1/pn), xn = log(1/αn) with 0 < pn ≤ 1/n ≤
αn < 1 and introduce ϕ(·) = log(F̄ )−1(1/ exp(·)) = logU(exp ·) where U is the tail quantile

function, so that

log q(pn)− log q̃W(pn;αn) = ϕ(yn)− ϕ(xn)− γn(yn − xn) where γn = ϕ′(xn).

The quantity of interest is

εW(pn;αn) := (q(pn)− q̃W(pn;αn))/q(pn) = 1− exp(−∆n log q(pn)), (11)

where ∆n is defined in (8). Here, the property K1 ∈ RVθ1 is a direct consequence of the assump-

tion F ∈ MDA(Fréchet). Indeed, from [6], Corollary 1.2.1, F ∈ MDA(Fréchet) is equivalent to

U ∈ RVγ for some γ > 0 which can be rewritten as

U(t) = tγL(t), with L ∈ RV0 and γ > 0. (12)
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The function L is said to be slowly-varying [3]. Classical properties of slowly-varying functions

yield, as t→∞,

ϕ(t) = γt+ logL(exp t) ∼ γt, (13)

ϕ′(t) = γ + η(exp t)→ γ,

where η(t) = tL′(t)/L(t) is called the auxiliary function associated with L. It follows that

K1(t) → 1 as t → ∞ and thus `1 = 1 and K1 ∈ RV0. This means that only the case (i) of

Proposition 1 and the case (ii) of Proposition 2 have to be considered. In particular ∆n → 0 as

n→∞ without further assumption, which is a very different situation from Section 3:

Theorem 3 (First order approximation of εW(pn;αn))

Assume (12) hold and let η(t) = tL′(t)/L(t) be the auxiliary function associated with L. Suppose

η is asymptotically monotone with a constant sign and |η| ∈ RVρ with ρ < 0.

(i) If log(1/αn)/ log(1/pn)→ 1− δ ∈ (0, 1) then εW(pn;αn)→ 0 as n→∞.

(ii) Moreover, for n large enough,

Φ(δ/(1− δ)) ε∞(pn) ≤ εW(pn;αn) ≤ Φ(δ)/(1− δ)3 ε∞(αn)

where ε∞(t) = |ρ|δ2 (log 1/t)2|η(1/t)|(1 + o(1)).

The assumption |η| ∈ RVρ, ρ < 0, is recurrent in extreme-value statistics to control the bias of

estimators, ρ being known as the second-order parameter, see e.g. [14]. This assumption holds

for most heavy-tailed distributions such as Fréchet, Pareto or Student distributions.

Let us also remark that one can choose extreme orders such that pn = n−τ , τ > 1 as in

DA1(Gumbel), see Theorem 2(i)-(b), and still obtain εW(pn;αn)→ 0 as n→∞. However, here,

the relative extrapolation error converges to zero at a polynomial rate, depending on ρ.

5 Numerical illustrations

To conclude, the quality of the first order approximations associated with the ET relative ex-

trapolation error given in Table 2 is assessed graphically. Recall that these results are obtained

by applying Theorem 2 to sequences (τn) and (τ ′n) given in (9) and distributions described in Ta-

ble 1: Finite endpoint(β = 5), Gamma(a = 0.1), Weibull(β = 5), Gaussian, log-Weibull(β = 3)

and lognormal(σ = 0.5). The exact relative extrapolation error εET(pn;αn) as well as the corre-

sponding first order approximation provided by Theorem 2 are computed as functions of log n.

The results are displayed on Figures 1–3. It appears that, for all six distributions, the relative ex-

trapolation error converges towards zero as predicted by Theorem 2, even though the convergence

can be very slow in DA3(Gumbel), see Figure 3. In all cases, the asymptotic sign of εET(pn;αn)

is coherent with the first order equivalent given in Table 2: Positive for Gamma(a < 1), log-

Weibull(β > 1) and lognormal distributions, negative for Finite endpoint(β > 0), Weibull(β > 1)

and Gaussian distributions. Finally, the first order equivalent provides a reasonable approxima-

tion of the error behavior is all situations.
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6 Proofs of main results

Proof of Lemma 1. (i) A second order Taylor expansion with integral remainder yields

∆n =

∫ yn

xn

K2(t)

t2
ϕ(t)

ϕ(yn)
(yn − t)dt

= δ2n

∫ 1

0

K2(yn(1− δnu))

(1− δnu)2
ϕ(yn(1− δnu))

ϕ(yn)
udu,

thanks to the change of variable u = (yn − t)/(yn − xn). Besides,

ϕ(yn(1− δnu))

ϕ(yn)
= exp (logϕ(yn(1− δnu))− logϕ(yn))

= exp

(∫ yn(1−δnu)

yn

(logϕ(t))′dt

)

= exp

(∫ yn(1−δnu)

yn

K1(t)

t
dt

)

= exp

(∫ 1−δnu

1

K1(vyn)

v
dv

)
= exp

(
K1(yn)

∫ 1−δnu

1

K1(vyn)

K1(yn)

dv

v

)
.

Since 1 − δnu ∈ [1 − δn, 1], the regular variation property of K1 yields K1(vyn)/K1(yn) → vθ1

uniformly locally as yn →∞, and condition (7) leads to

ϕ(yn(1− δnu))

ϕ(yn)
= exp (K1(yn)Lθ1(1− δnu)(1 + o(1))) .

It thus follows that

∆n = δ2n

∫ 1

0

K2(yn(1− δnu))

(1− δnu)2
exp (K1(yn)Lθ1(1− δnu)(1 + o(1)))udu

and the first part of the result is proved.

(ii) The sign of K2 is supposed to be ultimately constant so that

|∆n| = δ2n

∫ 1

0

|K2(yn(1− δnu))|
(1− δnu)2

exp (K1(yn)Lθ1(1− δnu)(1 + o(1)))udu.

Let us remark that, for all u ∈ [0, 1] and θ1 ≤ 1, one has 1− δn ≤ 1− δnu ≤ 1 and

−(1− δn)θ1−1δnu ≤ Lθ1(1− δnu) ≤ −δnu.

It is thus clear that

|∆n| ≤
δ2n

(1− δn)2

∫ 1

0
|K2(yn(1− δnu))| exp (−δnK1(yn)u(1 + o(1)))udu and

|∆n| ≥ δ2n

∫ 1

0
|K2(yn(1− δnu))| exp

(
−δnK1(yn)(1− δn)θ1−1u(1 + o(1))

)
udu.
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Since |K2| is assumed to be ultimately monotone, it follows that, for n large enough,

min(|K2(yn)|, |K2(xn)|) ≤ |K2(yn(1− δnu))| ≤ max(|K2(yn)|, |K2(xn)|),

leading to

|∆n| ≤ max(|K2(yn)|, |K2(xn)|) δ2n
(1− δn)2

∫ 1

0
u exp (−δnK1(yn)u(1 + o(1))) du and

|∆n| ≥ min(|K2(yn)|, |K2(xn)|)δ2n
∫ 1

0
u exp

(
−δnK1(yn)(1− δn)θ1−1u(1 + o(1))

)
du.

Introducing for all t ≥ 0, Φ(t) =
∫ 1
0 u exp(−ut)du, the above bounds can be rewritten as

|∆n| ≤ max(|K2(yn)|, |K2(xn)|) δ2n
(1− δn)2

Φ (δnK1(yn)(1 + o(1))) and

|∆n| ≥ min(|K2(yn)|, |K2(xn)|)δ2nΦ
(
δnK1(yn)(1− δn)θ1−1(1 + o(1))

)
,

which concludes the proof.

Proof of Lemma 2. Let us focus on the situation where |K2| is ultimately non decreasing

and introduce An = δnK1(yn).

(i) Assume that δ2n|K2(yn)| → 0. From Lemma 3(i) in the Appendix, 0 ≤ Φ(t) ≤ 1/2 for all

t ≥ 0 and thus Lemma 1(ii) entails

|∆n| ≤
δ2n|K2(yn)|
2(1− δn)2

→ 0 (14)

as n→∞ in view of (7).

(ii) From Lemma 1(ii), one has

|∆n| ≥ |K2(xn)|δ2nΦ
(
An(1− δn)θ1−1(1 + o(1))

)
≥ |K2(xn)|δ2nΦ (cAn)

for n large enough and some c > 0 since Φ is non-increasing, see Lemma 3(i). For all t ≥ 0,

let ψ(t) =
∫ t
0 x exp(−x)dx = t2Φ(t). Consider t0 ≥ c(3 − 2θ1) with θ1 ≤ 1 and remark that

Φ(t) ≥ Φ(t0) for all 0 ≤ t ≤ t0 and ψ(t) ≥ ψ(t0) for all t ≥ t0. As a consequence, for all t > 0,

Φ(t) ≥ ψ(t0)

t20
I{t ≤ t0}+

ψ(t0)

t2
I{t ≥ t0},

and thus

|∆n| ≥
ψ(t0)

t20
|K2(xn)|δ2nI{An ≤ t0/c}+

ψ(t0)

c2
|K2(xn)|
K2

1 (yn)
I{An ≥ t0/c} (15)

≥ ψ(t0)

t20
|K2(xn)|δ2nI{An ≤ t0/c}+

ψ(t0)

c2
|K2(xn)|
K2

1 (xn)

K2
1 (xn)

K2
1 (yn)

I{An ≥ t0/c}.

Since K1 is regularly varying, K1(xn)/K1(yn) ∼ (1− δn)θ1 ≥ c′ > 0 in view of (7) and

|∆n| ≥
ψ(t0)

t20
|K2(xn)|δ2nI{An ≤ t0/c}+ ψ(t0)

(
c′

c

)2 |K2(xn)|
K2

1 (xn)
I{An ≥ t0/c}.
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Remarking that, (18) in the proof of Lemma 4 (see Appendix) implies that, for n large enough,

K2(xn)

K2
1 (xn)

= 1 +
1

K1(xn)

(
xnK

′
1(xn)

K1(xn)
− 1

)
= 1 +

δn
An

(θ1 − 1 + o(1))

which yields when An ≥ t0/c,∣∣∣∣K2(xn)

K2
1 (xn)

− 1

∣∣∣∣ ≤ cδn
t0
|θ1 − 1 + o(1)| ≤ c

t0
(3/2− θ1) ≤

1

2
.

It thus follows that
|K2(xn)|
K2

1 (xn)
I{An ≥ t0/c} ≥

1

2
I{An ≥ t0/c}

and therefore,

|∆n| ≥
ψ(t0)

t20
|K2(xn)|δ2nI{An ≤ t0/c}+

ψ(t0)

2

(
c′

c

)2

I{An ≥ t0/c}.

As a conclusion, |∆n| → 0 implies |K2(xn)|δ2nI{An ≤ t0/c} → 0 and I{An ≥ t0/c} → 0.

Consequently, An ≤ t0/c eventually and δ2nK2(xn)→ 0 as n→∞.

Let us now consider the situation where |K2| is ultimately non increasing.

(i) The proof is similar, the upper bound (14) is replaced by

|∆n| ≤
δ2n|K2(xn)|
2(1− δn)2

. (16)

(ii) The lower bound (15) is replaced by

|∆n| ≥
ψ(t0)

t20
|K2(yn)|δ2nI{An ≤ t0/c}+

ψ(t0)

c2
|K2(yn)|
K2

1 (yn)
I{An ≥ t0/c}

and the end of the proof is similar.

Proof of Proposition 1. (i) If `1 = 0 then Lemma 4(i) in the Appendix shows that `2 = 0.

If `1 = 1 then, from Lemma 4(ii), `2 = 0. Lemma 2(i) concludes the proof.

(ii) If 0 < `1 < ∞ and `1 6= 1 then Lemma 4(iii) entails that `2 is finite and non zero.

Lemma 2(i,ii) concludes the proof.

(iii) If `1 =∞ then K2(x) ∼ K2
1 (x) as x→∞, see Lemma 4(iv). Besides, K2 is regularly varying

of order 2θ1 and K2(xn) � K2(yn). Lemma 2(i,ii) concludes the proof under the assumption (7).

Proof of Proposition 2. (i) Assume `1 = 0 and δn → δ ∈ [0, 1). Then δnK1(yn) → 0 as

n→∞, `2 = 0 from Lemma 4(i) and, since Φ(t)→ 1/2 as t→ 0, Lemma 1(ii) yields

|∆n| ≤ max(|K2(yn)|, |K2(xn)|) δ2n
2(1− δ)2

(1 + o(1)) and

|∆n| ≥ min(|K2(yn)|, |K2(xn)|) δ
2
n

2
(1 + o(1)).
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The conclusion follows by remarking that |K2| cannot be increasing when `2 = 0.

(ii) Assume `1 = 1 and δn → δ ∈ [0, 1). Then θ1 = 0, `2 = 0 from Lemma 4(ii), δnK1(yn) → δ

as n→∞ and, since Φ is continuous from Lemma 3(i), Lemma 1(ii) yields

|∆n| ≤ max(|K2(yn)|, |K2(xn)|) δ2n
(1− δ)2

Φ(δ)(1 + o(1)) and

|∆n| ≥ min(|K2(yn)|, |K2(xn)|) δ2nΦ(δ/(1− δ))(1 + o(1)),

and the conclusion follows similarly to (i).

(iii) Assume 0 < `1 < ∞ and `1 6= 1. Then Lemma 4(iii) entails θ1 = 0, `2 = `1(`1 − 1), and

Lemma 1(i) yields

∆n = δ2n

∫ 1

0
K2(yn(1− δnu))(1− δnu)K1(yn)(1+o(1))−2udu.

When δn → δ ∈ [0, 1), Lebesgue’s dominated convergence theorem entails∫ 1

0
K2(yn(1− δnu))(1− δnu)K1(yn)(1+o(1))−2udu→ `1(`1 − 1)

∫ 1

0
(1− δu)`1−2udu,

and the result is proved.

(iv) Assume `1 = ∞. Then Lemma 4(iv) entails that K2(x) ∼ K2
1 (x) as x → ∞. As a

consequence, Lemma 1(i) and Lebesgue’s dominated convergence theorem yield

∆n = δ2n

∫ 1

0

K2
1 (yn(1− δnu))

(1− δnu)2
exp (K1(yn)Lθ1(1− δnu)(1 + o(1)))udu(1 + o(1)).

The regular variation property entails

∆n = δ2nK
2
1 (yn)

∫ 1

0
(1− δnu)2θ1−2 exp (K1(yn)(Lθ1(1− δnu)(1 + o(1)))udu(1 + o(1)).

Two main situations are considered:

1. If δn → 0, then Lθ1(1− δnu) = −δnu(1 + o(1)). Letting An = δnK1(yn), it follows

∆n = A2
n

∫ 1

0
exp(−Anu(1 + o(1)))udu(1 + o(1)) = Φ(An(1 + o(1)))A2

n(1 + o(1)).

Three sub-cases arise: (a) If An → 0 then Φ(An)→ 1/2 in view of Lemma 3(i) and

∆n ∼
1

2
δ2nK

2
1 (yn).

(b) If An → a > 0 then ∆n → a2Φ(a) in view of the continuity of Φ, see Lemma 3(i).

(c) If An →∞, then Φ(An) ∼ 1/A2
n from Lemma 3(ii) and therefore ∆n → 1.

2. If δn → δ ∈ (0, 1), then An →∞ and we thus are in situation (c). Two successive change

of variables yield

∆n = δ2K2
1 (yn)

∫ 1

0
(1− δu)2θ1−2 exp (K1(yn)Lθ1(1− δu)(1 + o(1)))udu(1 + o(1))

= K2
1 (yn)

∫ 1

1−δ
(1− v)v2θ1−2 exp (K1(yn)Lθ1(v)(1 + o(1))) dv(1 + o(1))

= K2
1 (yn)

∫ 0

Lθ1 (1−δ)

(
L−1θ1 (w)

)θ1−1 (
1− L−1θ1 (w)

)
exp (K1(yn)w(1 + o(1))) dw(1 + o(1)).
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Let us introduce ξ(w) = (L−1θ1 (w))θ1−1(1 − L−1θ1 (w)) for all w ∈ [Lθ1(1 − δ), 0]. Routine

calculations show that ξ(0) = 0 and ξ′(0) = −1. A second order Taylor expansion thus

yields ξ(w) = −w + w2ξ′′(ηw)/2 with ηw ∈ [w, 0] ⊂ [Lθ1(1− δ), 0]. Replacing, we get

∆n = −K2
1 (yn)

∫ 0

Lθ1 (1−δ)
w exp (K1(yn)w(1 + o(1))) dw(1 + o(1)) +Rn

= K2
1 (yn)Ψ1 (K1(yn)(1 + o(1));−Lθ1(1− δ)) +Rn,

where Ψ1 is defined in Lemma 3 and

Rn =
1

2
K2

1 (yn)

∫ 0

Lθ1 (1−δ)
w2ξ′′(ηw) exp (K1(yn)w(1 + o(1))) dw(1 + o(1))

Remarking that |ξ′′| is bounded on compact sets, there exists M > 0 such that

|Rn| ≤MK2
1 (yn)Ψ2 (K1(yn)(1 + o(1));−Lθ1(1− δ)) ,

where Ψ2 is defined in Lemma 3. As a consequence of Lemma 3(ii), Rn = O(1/K1(yn))

and ∆n → 1 as n → ∞. Let us remark that this case is similar to the situation δn → 0

and An →∞.

Proof of Proposition 3. (i) If H ∈ RVβ, β > 0 then the monotone density theorem ([3],

Proposition 1.7.2) yields

H(t) ∼ 1

β
tH ′(t) as t→∞.

Letting x = H(t), we have

x ∼ 1

β

H−1(x)

(H−1)′(x)

or equivalently K1(x)→ 1/β as x→∞. It follows that `1 = 1/β and K1 ∈ RV0.
(ii,⇐=) Let us assume that H(exp ·) ∈ RV1/θ1 , θ1 > 0. Then, logH−1 ∈ RVθ1 and the monotone

density theorem ([3], Proposition 1.7.2) implies (logH−1)′ ∈ RVθ1−1 i.e. K1 ∈ RVθ1 .

(ii, =⇒) Conversely, assume K1 ∈ RVθ1 , θ1 > 0. Then, necessarily `1 = ∞. From [3], Theo-

rem 1.5.8, we have for all x0 sufficiently large,

logH−1(x)− logH−1(x0) =

∫ x

x0

(logH−1(t))′dt =

∫ x

x0

K1(t)

t
dt =

1

θ1
K1(x)(1 + o(1)), (17)

as x→∞. It is thus clear that logH−1 ∈ RVθ1 and therefore H(exp ·) ∈ RV1/θ1 .

(iii, ⇐=) Let us assume that x∗ < ∞ and h(·) := H(x∗(1 − 1/·)) ∈ RV−1/θ1 , θ1 < 0. As

a consequence, H−1(·) = x∗(1 − 1/h−1(·)) where h−1 ∈ RV−θ1 and h−1(x) → ∞ as x → ∞
Straightforward calculations and the monotone density theorem ([3], Proposition 1.7.2) lead to

logH−1(x) = log x∗ + log

(
1− 1

h−1(x)

)
(logH−1)′(x) =

(h−1)′(x)

h−1(x)(h−1(x)− 1)

K1(x) =
x(h−1)′(x)

h−1(x)(h−1(x)− 1)
∼ − θ1

h−1(x)
,
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and therefore K1 ∈ RVθ1 , θ1 < 0.

(iii, =⇒) Conversely, assume K1 ∈ RVθ1 , θ1 < 0. Thus (logH−1)′ ∈ RVθ1−1 and [3], Theo-

rem 1.5.8 yields first, for all x sufficiently large,

log x∗ − logH−1(x) =

∫ ∞
x

(logH−1)′(t)dt <∞

and thus x∗ <∞. Second, one also has

K1(x)∫∞
x (logH−1)′(t)dt

→ −θ1

as x→∞. Combining the two above results yield

K1(x)

log x∗ − logH−1(x)
= −θ1(1 + o(1))

and consequently

H−1(x) = x∗ exp

(
1

θ1
K1(x)(1 + o(1))

)
= x∗

(
1 +

1

θ1
K1(x)(1 + o(1))

)
since K1(x)→ 0 as x→∞. Applying [3], Theorem 1.5.12 yields H(x∗(1− 1/·)) ∈ RV−1/θ1 and

concludes the proof.

Proof of Proposition 4. (i) Assume K1 ∈ RVθ1 , θ1 < 1 and let U(·) = H−1(log ·) be the tail

quantile function. For all x > 0 and t > 0, consider

U ′(tx)

U ′(t)
=

1

x

(
H−1

)′
(log tx)

(H−1)′ (log t)
=

1

x

log t

log tx

H−1(log tx)

H−1(log t)

K1(log tx)

K1(log t)
.

Since K1 ∈ RVθ1 and the logarithm is a slowly-varying function, K1(log ·) ∈ RV0 and thus

U ′(tx)

U ′(t)
=

1

x

H−1(log tx)

H−1(log t)
(1 + o(1))

as t→∞. Besides,

H−1(log tx)

H−1(log t)
= exp(logH−1(log tx)− logH−1(log t))

= exp

(∫ log tx

log t
(logH−1)′(u)du

)
= exp

(∫ log tx

log t

K1(u)

u
du

)
= exp

(
log x

∫ 1

0

K1(log t+ v log x)

log t+ v log x
dv

)
,

and the regular variation property of K1 implies that

K1(log t+ v log x)

log t+ v log x
=
K1(log t)

log t
(1 + o(1))
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as t→∞ uniformly locally on v ∈ [0, 1]. It follows that

H−1(log tx)

H−1(log t)
= exp

(
log x

K1(log t)

log t
(1 + o(1))

)
→ 1

as t → ∞ since K ∈ RVθ1 with θ1 < 1. As a conclusion, U ′(tx)/U ′(t) → 1/x as t → ∞ for all

x > 0 and thus U ′ ∈ RV−1. This implies that F ∈ MDA(Gumbel), see [6], Corollary 1.1.10.

(ii) Assume F ∈ MDA(Fréchet). From [6], Corollary 1.2.10, there exists γ > 0 such that the tail

quantile function U ∈ RVγ . Since H−1(·) = U(exp ·), it follows that

K1(x) = x
exp(x)U ′(expx)

U(expx)
∼ γx

as x→∞ from the monotone density theorem [3], Theorem 1.7.2. It is thus clear that K1 ∈ RV1.
(iii) Assume K1 ∈ RVθ1 , θ1 > 1. First, Proposition 3(ii) implies x∗ = ∞ and thus F /∈
MDA(Weibull). Second, Proposition 4(ii) shows that F ∈ MDA(Fréchet) entails K1 ∈ RV1. It

is thus clear that F /∈ MDA(Fréchet). Finally, it remains to show that F /∈ MDA(Gumbel). To

this end, consider for all x > 0 and t→∞,

U(tx)

U(t)
=
H−1(log tx)

H−1(log t)
= exp

{
1

θ1
(K1(log tx)−K1(log t))(1 + o(1)))

}
from (17) in the proof of Proposition 3(ii, =⇒). A first order Taylor expansion yields

U(tx)

U(t)
= exp

{
log x

θ1
K ′1(log t+ η log x)(1 + o(1))

}
= exp

{
log x

θ1
K ′1(log t)(1 + o(1))

}
where η ∈ (0, 1) since K ′1 ∈ RVθ1−1. Recalling that θ1 > 1, it follows that K ′1(log t) → ∞ as

t → ∞ and therefore U(tx)/U(t) → 0 as t → ∞ if x < 1 and U(tx)/U(t) → ∞ as t → ∞
if x > 1. Finally [6], Lemma 1.2.9 shows that F /∈ MDA(Gumbel) since U(tx)/U(t) does not

converge to 1 as t→∞.

Proof of Theorem 1. The proof relies on the application of Proposition 1. Condition (7) is

fulfilled under the assumption 0 < lim inf τ ′n/τn ≤ lim sup τ ′n/τn ≤ 1.

(i) is a straightforward consequence of Proposition 1(i).

(ii) is based on the remark that δn → 0 if and only if τn → 1 and τ ′n → 1 since, by assumption,

τ ′n ≤ 1 ≤ τn.

(iii) Since `2 = ∞, δ2nK2(τn log n) → 0 implies δn → 0 and thus τn → 1 and τ ′n → 1 in view of

the above remark. Thus, δ2n ∼ (τn − τ ′n)2 as n → ∞. Besides, Lemma 4(iv) in the Appendix

entails that K2 is regularly varying when `2 = ∞. As a consequence, K2(τn log n) ∼ K2(log n)

as n→∞ and the result is proved.

Proof of Theorem 2. The proof relies on the application of Proposition 2.

(i) is a consequence of Proposition 2(i, ii). Let us highlight that, when δn → 0 then xn ∼ yn

and thus |K2(xn)| ∼ |K2(yn)| ∼ |K2(log n)| in view of the assumption |K2| is regularly varying.
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Moreover, δ2n ∼ (τn − τ ′n)2 as already seen in the proof of Theorem 1. Let us also remark that,

since the sign of K2 is ultimately constant, in view of Lemma 1(i), εET(pn;αn) and K2(log n)

have ultimately the same sign. The absolute values can thus be dropped. Similarly, when

δn → δ ∈ (0, 1) then xn � yn and thus |K2(xn)| � |K2(yn)| � |K2(log n)|.
(ii) is a straightforward consequence of Proposition 2(iii).

(iii) is a consequence of Proposition 2(iv). If δnK1(log n)→ a ≥ 0 then necessarily δn → 0 and

thus yn ∼ log n leading to K1(yn) ∼ K1(log n). In the case where δnK1(log n) → ∞, one still

has 1 ≤ lim inf τn ≤ lim sup τn <∞ and thus K1(yn) � K1(log n), the result is proved.

Proof of Theorem 3. The proof relies on the application of Proposition 2. Straightforward

calculations show that ϕ′′(t) = exp(t)η′(exp(t)) and consequently

K2(t) ∼
1

γ
t exp(t)η′(exp(t)) ∼ ρ

γ
tη(exp(t))

as t → ∞. Under the assumption that η is asymptotically monotone with a constant sign, the

assumptions of Proposition 2(ii) are fulfilled with θ1 = 0 and `1 = 1. Remarking that, from (13),

log q(pn) = ϕ(yn) ∼ γyn yields, when δn → δ ∈ (0, 1),

γδ2Φ(δ/(1− δ)) yn|K2(yn)|(1 + o(1)) ≤ γ|∆n|yn ≤ γδ2

(1− δ)2
Φ(δ) yn|K2(xn)|(1 + o(1))

|ρ|δ2Φ(δ/(1− δ))y2n|η(exp(yn))|(1 + o(1)) ≤ γ|∆n|yn ≤ |ρ|δ2

(1− δ)2
Φ(δ) ynxn|η(exp(xn))|(1 + o(1))

≤ |ρ|δ2

(1− δ)3
Φ(δ) x2n|η(exp(xn))|(1 + o(1)).

Consequently, |∆n|yn = O(log2(1/αn)|η(1/αn)|) → 0 as n → ∞ since |η| ∈ RVρ, ρ < 0. It

follows from (11) that εW(pn;αn) ∼ ∆n log q(pn) ∼ γyn∆n → 0 as n→∞, (i) and (ii) are thus

proved.
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Appendix: Auxiliary results

Lemma 3 For all (a, b, t) ∈ R3
+, let

Ψa(t; b) =

∫ b

0
ua exp(−tu)du

and remark that Φ(·) = Ψ1(·; 1).

(i) Ψa(·; b) is continuous, non-increasing on R+, Ψa(0; b) = ba+1/(a+ 1) and Ψa(t; b)→ 0 as

t→∞.

(ii) Ψ1(t, b) ∼ 1/t2 and Ψ2(t, b) ∼ 1/t3 as t→∞.

The proof is straightforward.

Lemma 4 Assume K1 ∈ RVθ1.

(i) If `1 = 0 then θ1 ≤ 0 and `2 = 0. If, moreover, θ1 < 0, then −K2 ∈ RVθ1 and K2(t) ∼
(θ1 − 1)K1(t) as t→∞.

(ii) If `1 = 1 then θ1 = 0 and `2 = 0.

(iii) If 0 < `1 <∞ and `1 6= 1 then θ1 = 0, `2 = `1(`1 − 1) 6= 0 and |K2| ∈ RV0.

(iv) If `1 =∞ then θ1 ≥ 0, `2 =∞, K2 ∈ RV2θ1 and K2(t) ∼ K2
1 (t) as t→∞.

Proof. The proof relies on the following four facts: First, for all x ∈ R,

K2(x) = K2
1 (x) +K1(x)

(
xK ′1(x)

K1(x)
− 1

)
,

or, equivalently,
K2(x)

K2
1 (x)

= 1 +
1

K1(x)

(
xK ′1(x)

K1(x)
− 1

)
. (18)

Second, xK ′1(x)/K1(x) → θ1 as x → ∞. Third, it straightforwardly follows that `2 = `1(`1 +

θ1 − 1). Finally, for all positive function K, K(x)→ c > 0 as x→∞ implies K ∈ RV0.
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F̄ (x) θ1 θ2 K1(x) K2(x) `1

DA1(Gumbel)

Finite endpoint exp
(
−(− log x)−β

)
−1/β −1/β

1

β
x−1/β −1 + β

β2
x−1/β(1 + o(1)) 0

(β > 0) x ∈ (0, 1)

Gamma
1

Γ(a)

∫ ∞
x

ta−1e−tdt 0 −1 1 + o(1)
1− a
x

(1 + o(1)) 1

(a > 0) x ≥ 0

DA2(Gumbel)

Weibull exp(−xβ) 0 0
1

β

1− β
β2

1/β

(β 6= 1) x ≥ 0

Gaussian
1√
2π

∫ ∞
x

exp

(
− t

2

2

)
dt 0 0

1

2
+ o(1) −1

4
+ o(1) 1/2

DA3(Gumbel)

Log-Weibull exp(−(log x)β) 1/β 2/β
1

β
x1/β

1

β2
x2/β(1 + o(1)) +∞

(β > 1) x ≥ 1

Lognormal
1

σ
√

2π

∫ ∞
x

1

t
exp

(
−(log t)2

2σ2

)
dt 1/2 1

σ√
2
x1/2(1 + o(1))

σ2

2
x(1 + o(1)) +∞

(σ > 0) x ≥ 0

Table 1: Examples of distributions in DA(Gumbel).
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Distribution First order approximation of εET(pn;αn)

DA1(Gumbel)

Finite endpoint(β > 0) −2(1 + β)

β2
(log log n)2

(log n)2+1/β

Gamma(a > 0) 2(1− a)
(log log n)2

(log n)3

DA2(Gumbel)

Weibull(β 6= 1)
2(1− β)

β2
(log log n)2

(log n)2

Gaussian −1

2

(log log n)2

(log n)2

DA3(Gumbel)

Log-Weibull(β > 1)
2

β2
(log log n)2

(log n)2−2/β

Lognormal σ2
(log log n)2

log n

Table 2: First order approximations of εET(pn;αn) with pn = 1/(n log n) and αn = (log n)/n

associated with the distributions described in Table 1.
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Figure 1: Extrapolation error in DA1(Gumbel). Vertically: Extrapolation error εET(pn;αn)

(solid line) and its first order approximation 1
2η

2
nK2(log n) (dashed line) provided by The-

orem 2(i)-(a). Horizontally: log n. Top: Finite endpoint(β = 5) distribution, bottom:

Gamma(a = 0.1) distribution.
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Figure 2: Extrapolation error in DA2(Gumbel). Vertically: Extrapolation error εET(pn;αn)

(solid line) and its first order approximation `1(`1−1)
2 η2n (dashed line) provided by Theorem 2(ii)-

(a). Horizontally: log n. Top: Weibull(β = 5) distribution, bottom: Gaussian distribution.
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Figure 3: Extrapolation error in DA3(Gumbel). Vertically: Extrapolation error εET(pn;αn)

(solid line) and its first order approximation 1
2η

2
nK2(log n) (dashed line) provided by The-

orem 2(iii)-(a). Horizontally: log n. Top: log-Weibull(β = 3) distribution, bottom:

lognormal(σ = 0.5) distribution.
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