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Manipulator Motion Planning
in Redundant Robotic System for Fiber
Placement Process

Jiuchun Gao, Anatol Pashkevich and Stéphane Caro

Abstract This paper proposes a new methodology for motion planning in
redundant robotic system for the high-speed fiber placement technology. The
considered system is composed of a 6-axis industrial robot and a one-axis actuated
positioner. Compared to the previous works assuming constant rate, the particu-
larity of this work lies in the time-optimal motion coordination based on the
combinatorial optimization and the polynomial approximation techniques.
Advantages of the developed technique are confirmed by an application example
that deals with a planar robotic system for fiber placement.

Keywords Redundant robotic system ⋅ Motion planning ⋅ Dynamic program-
ming ⋅ Fiber placement

1 Introduction

Composites have been increasingly used in aerospace and automotive industries
because of their good strength-to-weight ratio and durability [1]. For fabricating
complex composite parts, fiber placement is an important technique [2]. The fiber
placement process can be implemented by using either specifically designed
machines or robotic systems, which are redundant in this application. The machines
have no limitations on the component size, but they usually require large work floor
areas and are expensive [3]. Compared to the process-dedicated machines, the
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robotic system (usually includes a 6-axis robot and a one-axis positioner) is rela-
tively cheap and flexible allowing changing the product type easily.

In robotic fiber placement, planning of manipulator motions is an important issue.
The main difficulty here arises due to the redundancy of the robotic system with
respect to the manufacturing task. In literature, there are a number of works that deal
with the redundancy resolution. Relevant techniques are usually based on the pseudo
inverse of the kinematic Jacobian. However, they can be hardly applied to the
considered problem because they do not allow generating optimal trajectories sat-
isfying real-life industrial requirements [4]. There are a few researches dealing with
this problem in particular technological process. For laser-cutting and arc-welding
applications, relevant numerical techniques were proposed in [5], but the main
assumption (constant speed of the tool) is not in agreement with the nature of the
fiber placement. For fiber placement process, the motion planning problem was
studied by Martinec et al. [6] and Mlynek and Martinec [7], who also assumed the
end-effector velocity is constant. For this reason, the problem of optimal manipulator
motion planning for the fiber placement has not been solved completely yet.

This paper proposes a new methodology that aims at obtaining the time-optimal
trajectory taking into account real industrial constraints. The proposed approach is
based on the discretization of the redundant variable and dynamic programming
technique. Further, a smoothing technique is also applied.

2 Robotic Fiber Placement Problem

A typical robotic fiber placement system (a 6-axis robot and a one-axis positioner)
is presented in Fig. 1. The workpiece is mounted on the positioner that is able to
change its orientation in order to improve accessibility of certain desired zones by
the robot end-effector. The latter is attached to the manipulator flange and ensures
placement of the fiber tows in the desired locations.

Fig. 1 Robotic fiber placement system
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To describe the fiber placement task, let us introduce several coordinate systems
attached to the robotic manipulator, the positioner, the workpiece and the robot
end-effector (see Fig. 1). It is assumed that the fiber placement task is defined with
respect to the frame FW attached to the workpiece. The task is presented as a set of
n discrete task locations (position and orientation) sampled on the given placement
path. For each of these locations, it is also defined a frame FTLi, i=1, 2, . . . n, in
such a way that the axis XTLi is directed along the path direction and the axis ZTLi is
normal to the workpiece surface pointing outside of it. Using these notations, the
fiber placement task can be presented as a sequence of homogenous 4 × 4 matrices
describing the mapping from the frame FW to FTLi

WTTLi =
ni si ai pi
0 0 0 1

� �
4× 4

=
RðφiÞ pi
0 0 0 1

� �
; i=1, 2, . . . , n ð1Þ

where pi = ðxi, yi, ziÞT is the position vector of the frame FTLi origin, φi = ðαi, βi, γiÞT
is the orientation vector in accordance with the Z-Y-X Euler angles definition, and
ni, si and ai are the unit vectors giving directions of the axes X, Y, and Z. To
execute the given fiber placement task, the robot end-effector must visit the frames
(1) sequentially and as fast as possible.

3 Robotic System Model

The robotic system started in this paper is composed of two components: an
industrial robot and a positioner. The positioner model describes the mapping from
the positioner base to the positioner flange that depends on the positioner joint
coordinate qp. This transformation can also be presented as a 4 × 4 homogenous
transformation matrix posðqpÞ=RXðqpÞ. Further, the matrix function posðqpÞ will
be referred to as the positioner direct kinematics that depends on the positioner
parameters a and d (see Fig. 1). The robot model describes the mapping from the
robot base to the robot flange. For serial manipulators, it can be obtained using the
D-H technique and presented as the product of the 4 × 4 homogenous matrices

robðqrÞ = RBT1ðq1Þ ⋅ 1T2ðq2Þ ⋅ 2T3ðq3Þ ⋅ 3T4ðq4Þ ⋅ 4T5ðq5Þ ⋅ 5T6ðq6Þ ð2Þ

where the matrix function robðqrÞ is also called the robot direct kinematics; and qr
is the vector of the robot joint coordinates.

To derive the designed model of the robotic system, let us present the task
frames in two ways, using the robot and positioner kinematics as follows

0TTLiðqrÞ= 0TRB ⋅ robðqrÞ ⋅ RFTT ⋅ TTTLi ð3Þ
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0TTLiðqpÞ= 0TPB ⋅ posðqpÞ ⋅ PFTW ⋅WTTLi ð4Þ

where T is the matrix which defines the mapping from the frame referred to the left
superscript to the frame referred to the right subscript.

After equating these two presentations, the robotic model can be expressed as

0TRB ⋅ robðqrÞ ⋅ RFTT ⋅ TTTLi = 0TPB ⋅ posðqpÞ ⋅ PFTW ⋅WTTLi ð5Þ

It should be stressed that this model describes the geometry of a closed kine-
matic loop whose configuration depends on the joint coordinates qr and qp of the
robotic manipulator and the positioner, respectively. Besides, it should be men-
tioned that this model is redundant with respect to the joint variables since it gives
six independent scalar equations for seven unknowns. The latter does not allow the
users to obtain the unique solution for the robot and positioner motions corre-
sponding to the given fiber placement path. On the other hand, it provides some
rooms for the optimization of robot /positioner motions when tracking a specified
curve.

4 Optimization Problem

To utilize the redundancy in the best way, it is reasonable to partition the required
movement between the robot and the positioner ensuring that the end-effector
executes the desired task with smooth motion in the shortest time.

4.1 Motion Generation Problem

To present the above mentioned problem in a more formal way, let us introduce the
functions qrðtÞ and qpðtÞ that describe the robot and positioner motions on the time
interval t∈ ½0, T �. In addition, let us define the time instances t1, t2, . . . tnf g
corresponding to the cases where the robot end-effector visits the task nodes
FTLi i=1, 2, . . . njf g defined by Eq. (1), where t1 = 0, tn =T . Using this notation,

the problem can be presented as minimization of the total travelling time

T→ min
qrðtÞ, qpðtÞ

ð6Þ

over qrðtÞ and qpðtÞ subjected to the equality/inequality constraints, which are
imposed by the prescribed task
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0TRB ⋅ robðqrðtiÞÞ ⋅ RFTT ⋅ TTTLi = 0TPB ⋅ posðqpðtiÞÞ ⋅ PFTW ⋅WTTLi ; i=1, 2, . . . n

ð7Þ

and which describe the capacities of the robot/positioner actuators

qmin
j ≤ qjðtiÞ≤ qmax

j ð8aÞ

q ̇min
j ≤ qj̇ðtiÞ≤ q ̇max

j ð8bÞ

q ̈min
j ≤ qj̈ðtiÞ≤ q ̈max

j ð8cÞ

where j=0, 1, . . . 6 is the common index for the joint variables, and j=0 corre-
sponds to qp. Besides, the collision constraints are defined as follows:

cols ðqpðtÞ, qrðtÞÞ=0; ∀t∈ ½0, T � ð9Þ

must be taken into account, where the binary function cols ð.Þ verifies the inter-
sections between the system components (robot and positioner links, fixture, etc.).

For this optimization problem, which aims at finding continuous functions qrðtÞ
and qpðtÞ, there is no standard technique that can be straightforwardly applied to.
The main difficulty here is related to the equality constraints that are written for the
unknown time instances t1, t2, . . . tn. Besides, this problem is highly nonlinear and
includes redundant variables (for the non-redundant case without the collision
constraints the problem was solved by Bobrow et al. [8]). For these reasons, this
paper proposes a discrete optimization based approach that is able to take into
account both the system redundancy and the collision constraints.

4.2 Search Space Discretization

For the considered robotic system, there is a single redundant variable with respect
to the task. It is convenient here to consider qp as the redundant one. This allows us,
after solving the positioner direct kinematics for any given qp, straightforwardly
apply the manipulator inverse kinematics and find corresponding configurations qr
of the robot. This approach permits us to take into account explicitly the equality
constraint in Eq. (7).

To present the problem in a discrete way, let us sample the allowable domain of
the redundant variable qp ∈ ½qmin

p , qmax
p � with the step Δqp

qðkÞp = qmin
p +Δqp ⋅ k; k=0, 1, . . .m ð10Þ
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where m= ðqmax
p − qmin

p Þ Δ̸qp. Then, applying sequentially the positioner direct
kinematics and the manipulator inverse kinematics in accordance with Eq. (7), one
can get a set of possible configuration states for the robotic system. For the unique
mapping from the task space to joint space, let us define the configuration index
vector μ= ðμ1, μ2, μ3ÞT that corresponds to the manipulator posture, where μ1, μ2
and μ3 specify the shoulder, elbow and wrist indices respectively. Then, the

manipulator configuration corresponding to the given qðkÞp can be obtained as
follows:

qðkÞr ðtiÞ= g− 1
r ðgpðqðkÞp ðtiÞÞ, μÞ; k=0, 1, . . .m; i=1, 2, . . . n ð11Þ

where ti specifies the unknown time instant corresponding to the task point TLi, the
functions gpð.Þ and g− 1

r ð.Þ denote the positioner direct kinematics and the manip-
ulator inverse kinematics, respectively. Therefore, for each task location we can
generate a number of configuration states, i.e. TLi →Lðk, iÞ

c ; ∀k, i, where

Lðk, iÞ
c = ðqðkÞr ðtiÞ, qðkÞp ðtiÞÞ will be further referred to as the location cell.
While considering the task locations are ordered in time, the original sequence of

TLi described by Eq. (1) may be converted into a directed graph presented in Fig. 2.
It should be noted that some of the configurations generated by Eq. (11) should be
excluded from the graph because of violation of the collision constraints (9) or the
actuator joint limits (8a). Besides, from an engineering point of view, it is prudent
to avoid some configurations that are close to the manipulator singular postures.

Fig. 2 Graph-based presentation of the discrete search space
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These cases correspond to the “inadmissible” in Fig. 2, which are not connected to
any neighbor. It is clear that due to time-irreversibility, the allowable connections
between the graph nodes are limited to the subsequent configuration states
Lðki, iÞ
c →Lðki+1, i+1Þ

c , and the edge weights correspond to the minimum travelling
time that are restricted by the actuator capacities expressed by Eq. (8a–8c).

Using the discrete search space, the considered problem can be transformed to
the searching of the shortest path on the above presented graph. In accordance with
the physical sense, the initial and final nodes must belong to the sets Lðk1, 1Þ

c , ∀k1
� �

and Lðkn, nÞ
c , ∀kn

� �
respectively. In the frame of this notation, the desired solution

can be represented as the sequence Lðk1, 1Þ
c

� �
→ Lðk2, 2Þ

c

� �
→ . . . Lðkn, nÞ

c

� �
.

In accordance with the actuator constraints (8b), the distance between subse-
quent nodes can be evaluated as the displacement time for the slowest joint

dist ðLðki , iÞ
c ,Lðki+1, i+1Þ

c Þ= max
j=0, ..6

qðkiÞj, i − qðki+1Þ
j, i+1

��� ��� ̸q ̇max
j

� �
ð12Þ

The latter allows us to present the objective function (travelling time) as follows

T = ∑
n− 1

i=1
dist ðLðki , iÞ

c , Lðki+1, i+1Þ
c Þ ð13Þ

that depends on the indices k1, k2, . . . kn. It should be noted that the applied method
of edge weights computing automatically takes into account the velocity constraints
(8b), but the acceleration constraints (8c) must be examined as follows

2 Δtiðqðki+1Þ
j, i+1 − qðkiÞj, i Þ−Δti+1ðqðkiÞj, i − qðki− 1Þ

j, i− 1Þ
��� ��� ̸Δti+1ΔtiðΔti+1 +ΔtiÞ≤ q ̈max

j ð14Þ

which is based on the second order approximation of the corresponding functions

qrðtÞ and qpðtÞ. Here, Δti+1 = dist ðLðki, iÞc , Lðki+1, i+1Þ
c Þ and Δti = dist ðLðki, iÞc ,

Lðki− 1, i− 1Þ
c Þ.

5 Path Planning Algorithm

After discretization, the original optimization problem (6)–(9) is converted to the
combinatorial one, which can generally be transformed to the classical shortest path
search on the graph (by simply adding virtual nodes at the beginning and the end).
However, this straightforward approach is extremely time-consuming. For instance,
it takes more than 20 h to find desired solution for 100 task locations and the
positioner discretization step 1◦ (Intel

®

i5 2.67 GHz). Besides, standard techniques
are not able to respect acceleration constraints (8c) that are very important here.
For these reasons, a more efficient optimization algorithm was proposed that takes
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into account particularities of the graph describing the search space, which can be
also treated as a multi-layer network (see Fig. 2).

The developed algorithm is based on the dynamic programming principle, which
breaks down the full-size problem into a set of sub-problems [9], aiming at finding
the shortest path from the initial node set Lðk1, 1Þ

c , ∀k1
� �

to the current Lðki , iÞ
c , ∀ki

� �
.

To present the basic idea, let us denote dk, i as the length of the shortest path

connecting one of the initial nodes Lðk1, 1Þ
c , ∀k1

� �
to the current node Lðk′, iÞ

c

n o
.

Then, taking into account the additivity of the objective (13), the shortest path for the
nodes belonging to the next layer Lðk, i+1Þ

c , ∀k
� �

can be found by combining the

optimal solutions for the previous layer Lðk′, iÞ
c , ∀k′

n o
and the distances between the

nodes with the indices i and i+1. The latter corresponds to the formula

dk, i+1 = min
k′

dk′ , i + dist ðLðk, i+1Þ
c ,Lðk′ , iÞ

c Þ
n o

; ð15Þ

that is applied sequentially starting from the second layer, i.e. i=1, 2, . . . n− 1.
Finally, after selection of the minimum length dk, i+1 corresponding to the final
layer and applying the backtracking, one can get the desired optimal path. There-
fore, the desired solution for n sets Lðk1, 1Þ

c

� �
→ Lðk2, 2Þ

c

� �
→ . . . Lðkn , nÞ

c

� �
is

obtained. The desired path is described by the recorded indices k1, k2, . . . knf g.
The developed algorithm is rather time-efficient and perfectly suits industrial

requirements. In particular, it takes about 30 s to find the optimal solution for the
above mentioned problem (100 task locations, discretization step 1◦).

6 Application Example

To show the efficiency of the proposed technique, let us apply it to a fiber placement
system (a two-axis robot and a one-axis positioner). This system possesses a 1-dof
redundancy with respect to the task. The geometrical parameters of the system and
the actuator constraints are given in Fig. 3. The number of task locations is equal to
n=100 and the discretization step is equal to Δqp =0.5◦.

Fig. 3 Fiber placement
system: two-axis robot and
one-axis positioner
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A desired solution was obtained by implementing the developed algorithm
described in Sect. 4. The result is presented in Fig. 4, which contains the dis-
placement and velocity profiles for all three actuators. It should be noted that the
trajectories obtained by direct application of the dynamic programming technique
include oscillations in derivatives, which are undesirable from engineering point of
view. For this reason, a specially developed smoothing technique was applied to
improve locally the velocity and acceleration profiles. This technique is based on
the polynomial approximation of the redundant variable profile and relevant cor-
rection of the displacement intervals, to ensure that the velocities and accelerations
are within their limits. It is clear that this modification slightly increases the trav-
elling time, but it yields important benefits to the actuator working conditions.

7 Conclusions

This paper contributes to a new methodology to optimize the manipulator motion in
redundant robotic system for the fiber placement process. In contrast to the previous
works, the proposed approach generates the time-optimal smooth trajectories and
allows using the full capacities of the robotic system expressed as the velocity,
acceleration and collision constraints. The developed algorithm is based on
dynamic programming technique, and leads to significant computing time reduction
compared to the standard shortest-path algorithms. Advantages of the developed
technique are highlighted with an application example that deals with a planar
robotic system for fiber placement. Future research works will concentrate on its
integration into industrial robot control system software.
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Fig. 4 Optimal trajectories for the robotic fiber placement system

9



References

1. Kaw, A.K.: Mechanics of Composite Materials. CRC Press (2005)
2. Gay, D.: Composite Materials: Design and Applications. CRC Press (2014)
3. Gallet-Hamlyn, C.: Multiple-use robots for composite part manufacturing. JEC Compos. 62,

28–30 (2011)
4. Kazerounian, K., Nedungadi, A.: Redundancy resolution of serial manipulators based on robot

dynamics. Mech. Mach. Theory 23(4), 295–303 (1988)
5. Dolgui, A., Pashkevich, A.: Manipulator motion planning for high-speed robotic laser cutting.

Int. J. Prod. Res. 47(20), 5691–5715 (2009)
6. Martinec, T., Mlýnek, J., Petrů, M.: Calculation of the robot trajectory for the optimum

directional orientation of fibre placement in the manufacture of composite profile frames. Robot.
Computer-Integrated Manuf. 35, 42–54 (2015)

7. Mlynek, J., Martinec, T.: Mathematical model of composite manufacture and calculation of
robot trajectory. In: 2014 16th International Conference on. IEEE Mechatronics-Mechatronika
(ME), (2014)

8. Bobrow, J.E., Dubowsky, S., Gibson, J.: Time-optimal control of robotic manipulators along
specified paths. Int. J. Robot. Res. 4(3), 3–17 (1985)

9. Bertsekas, D.P., et al.: Dynamic Programming and Optimal Control, vol. 1, No. 2. Athena
Scientific, Belmont, MA (1995)

10


	25 Manipulator Motion Planning in Redundant Robotic System for Fiber Placement Process
	Abstract
	1 Introduction
	2 Robotic Fiber Placement Problem
	3 Robotic System Model
	4 Optimization Problem
	4.1 Motion Generation Problem
	4.2 Search Space Discretization

	5 Path Planning Algorithm
	6 Application Example
	7 Conclusions
	Acknowledgments
	References




