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Abstract -  

Domestic healthcare is becoming more and more important as 

the population is growing older. The last technological progresses 

enable numerous possibilities for monitoring and helping users in 

their everyday lives. Robotics and smart home are two distinct 

examples. They both provide great features and possibilities, but 

also limits. This work addresses the combination of robots and 

smart home. In this paper, we present a robotic framework that 

relies on the smart environments strengths. We tackled numerous 

challenges encountered by the robot for perceiving, reasoning and 

acting at home and that are critical for healthcare applications. 

Consequently, multiple solutions are presented and evaluated 

through both simulation and physical tests. 

 

Keywords: service robots, smart home, healthcare, task planner, 

context acquisition, ontology, activity recognition.  

 

I. INTRODUCTION 

    As population is growing older, the need for domestic 

healthcare increases every day.  Elderly people are faced with 

numerous health issues and need to be accompanied. On top of 

that, loneliness and isolation are major problems for them. 

Nowadays, we observe the emergence of both service robotics 

and smart environments towards domestic healthcare. On the 

one hand, robots are becoming both smarter and cheaper. 

Multiple projects, such as Robot-Era [1] or CompanionAble 

[2], are pressing forward and the first affordable personal 

robots, such as Buddy (http://www.bluefrogrobotics.com/) or 

Zenbo (https://zenbo.asus.com/) are currently being released to 

the public.  These robots have three purposes: keep company 

with the user, thus being social towards him/her; monitor the 

user and provide feedbacks to the medical staff; and help the 

user by acting. Robots can efficiently act and interact thanks to 

their actuators, mobility and speech, but their perception is 

limited to their sensors, reducing their ability to monitor. On 

the other hand, smart environments, in particular smart homes, 

are rising alongside the Internet of Thing (IoT). More and more 

devices are now embeded with intelligence and are able to 

interact over the Internet or local networks. The market is rich 

in devices and solutions. Similarly as robots, multiple research 

projects and platforms are studying smart home for domestic 

healthcare, Mobile-Mii (http://fedev.universite-paris-

saclay.fr/platforms/plateforme-dexperimentation-mobile-mii-

du-cea-list) is a good example. These environments aim to 

monitor the user and, if possible, to act through signals or 

actuators. As they can rely on various spread sensors, smart 

environments can efficiently monitor the user. However, such 

systems can only perform simple tasks and has low interaction 

with the user. All in all, both service robots and smart homes 

tackle more or less the same problems, each having their pros 

and cons. By combining both solutions, it seems we can 

improve the overall quality of service: each approach 

overcomes the limitation of the other. For instance, a smart 

environment can efficiently monitor the user while a robot can 

interact with the user, do various tasks or gather information 

unreachable for the environment thanks to its mobility. 

However, such an interaction may not be trivial and some 

issues are to tackle. In this paper, we propose a framework for 

robots operating in smart homes. This framework aims to 

provide tools that are suitable for robots/smart environment 

interactions. Our solution aims to be environment-independent, 

meaning it can work with any, and without, smart 

environments. Moreover, it relies on three steps: perception, 

cognition and action. For each of them, challenges are 

identified, studied and solved from the perspective of the 

robots/smart environment interactions. This paper presents 

those challenges and the proposed solutions. It is structured as 

follows. Section II reviews the related works of robots in smart 

environment. We present our framework and the problematic 

in Section III before describing the solution in Section IV. 

Section V describes our experiments and results. Finally, a 

conclusion ends the paper through Section VI. 

 

II. RELATED WORKS 

We review some general approaches, scenarios and 

technologies combining robotics and smart environments. 

From a robot’s eye, a smart environment is an opportunity; it 

offers new possibilities to observe, most of the time in a 

reliable way, and to act on the world. Be aware that sensing 

and acting are challenging issues in robotics. That’s why such 

an interaction has been successfully tested in museums and 

homes, which are non-friendly robot environment. Shiomi & al 

designed a system based on robots and a smart environment to 

enhance the Museum of Science of Osaka [3], in this case, 

smart devices are mainly used for localization and users 

identification. They are several examples of applications at 

home. Baeg & al [4] added intelligence to furniture, such as 

tables or shelves, in order to enhance robot perception and 
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localization. The PEIS project [5, 6] is with no doubt the 

greatest effort in that direction. In this work, robots are part of 

the smart environment, which not only contains sensors, but 

also multiples actuators. In that case, smart environments and 

robots are one, and help the users in their everyday life. More 

recently, Robot-Era project, which aims to provide personal 

robots for elderly person, also deal with smart environments, 

this is not the main objective of the project and it relies on 

PEIS contributions. Lastly, CompanionAble [2, 11] is a project 

that aims to provide cheap robots to help elders by using a 

smart environment. The smart environment is made from 

multiple kinds of devices. The most common technology in 

this case is RFID (Radio Frequency IDentifier). RFID [3, 4, 9] 

tags are a cheap and efficient way to store data in the 

environment, they are passive (no energy needed) and easy to 

set up. RFID readers allow precision and/or range, according to 

the needs: from tag carpet [9] to beacons, the possibilities are 

broad. Cameras are also important for pervasive environment, 

even if they rely on powerful algorithm; they provide multiple 

information, in particular localization [3, 4, 5]. There are 

multiple types of cameras, infra-red or 3D cameras are great 

example of non classic cameras. Landmarks are also 

sometimes used, QRCode (or similar technology) are very 

convenient to locate precisely. Of course, specific sensors are 

not to exclude, light sensors or thermometer are quite useful at 

home. Actuators are not that frequent, but they do exist. They 

are no specific technology for this, but with the rise of 

connected devices, we can easily foresee a robot controlling a 

heater, a cellphone, a door [8] or even an armed fridge, as 

exposed in PEIS works. Communication is of course an issue, 

in most case, it is transparently handled using various 

technologies such as ZigBee, Wi-Fi, Bluetooth, etc… But 

interaction with other devices does not limit to home or 

museum. With the emergence of the Internet of thing, a new 

dimension has appeared. As Jong-Hwan Kim states [7], the 

next generation robots will be part of the Internet, able to 

virtually move and to use device through the Internet of Thing. 

These exist called ‘ubiquitous robot’, they follows personal 

robots (2nd and current generation) and industrial robot. There 

are already some works on ubiquitous robots. UNR-PF [10] 

(Ubiquitous Network  Robot Platform) is a global system that 

allows to provide help to the user everywhere, from home, to 

the supermarket, by using robots, smartphone, sensor 

networks, etc…  It relies on services and multiples layers. The 

LIREC project (http://lirec.eu/project) is another example 

where a robot is able to switch between physical reality and 

virtual space. Nevertheless, ubiquitous robots are still a 

concept and researchers are currently mostly focusing on 

personal robots. 

Two types of architecture can be encountered: centralized or 

distributed. In a centralized approach [3, 4], the ‘intelligence’ 

and the main processes are located on one dedicated server. It 

can be the robot as well as another device. In this approach, the 

central server gathers all data from sensors and decides what to 

do through actuators and robots. On the other hand, in a 

distributed system [5], data are shared and decisions are taken 

via ‘deliberation’ between devices. Smart resources (sensors 

and actuators) directly communicate with each other, robots 

are also handled as devices (at least in PEIS approach).  Both 

approaches have their pros and cons. Centralization allows to 

have all the data at the same place, simplifying reasoning. 

Also, having a dedicated device may increase the efficiency 

and the response time of the reasoning (more powerful, 

specialized). However, if it falls, all the system follows… This 

is not an issue in distributed approaches. This way offers a 

greater flexibility and robustness (a device can go out of order 

without impacting the whole system), however, setting up is 

harder and data reasoning and management is not as powerful.  

In our work, as we want our solution to be environment 

independent, we opt for a centralized approach. Unlike the 

PEIS project, the main processes will be embedded in the 

robot. Furthermore, most of other approaches rely on a limited 

number of sensors or focus on a few particular types. This is a 

strong limitation; in consequence, we want our framework to 

be generic and environment independent. 

 

III. FRAMEWORK ARCHITECTURE AND CHALLENGES  

In this section, we describe the global structure of our 

framework. As previously explained, it relies on three steps: 

perception, cognition and action: 

 Perception: the robot gathers the current context data 

through various sources. 

 Cognition: the robot analyzes the context data and 

reasons to understand what is happening in the 

environment and takes a decision. 

 Action: the robot acts on the environment to achieve 

some goals determined by a previous decision. 

 
Figure 1. Framework architecture 

The global process is described in Figure 1. For each step, we 

provide one or multiple tools that solve particular challenges. 

We will now identify the challenges for each step. 

 

A. Perception 

The first step on any robotic process is to perceive the 

environment through sensors. In our case, it consists of 

acquiring context data from various sensors, from the robot or 

the smart environment. The objective is to gather all the data 

and maintain a context knowledge that will later be used by the 

cognition layer.  

In everyday life environment, including smart homes, 

uncertainty is a serious issue. In fact, we should expect that 

sensors will provide non-perfect data. For instance, a 

thermometer may not be accurate or a motion sensor may be 

intempestively triggered. In such cases, uncertainty can lead to 

the production of uncertain context data. Subsequently, this 

may cause problems or miscomputations in the cognition layer. 

For instance, if a sensor implies that the user is in room A 

http://lirec.eu/project


 

while he is in room B, a wrong activity may be recognized. As 

expressed by Ye el al. [12], there are multiple dimension of 

uncertainty. In a context of a robot operating in a smart home 

we identified four essential dimensions (depicted in Figure 2): 

 Freshness: data is outdated. For example, if a sensor 

sends an event asserting the user is in room while he 

has just left for room B.  

 Precision: data is correct yet inexact. For instance, a 

motion sensor only detects a motion, it is imprecise 

compared to a camera that detects motion and 

identifies a user. 

 Accuracy: data is wrong or partially wrong. When the 

user is perceived in a room while being in another for 

example. 

 Contradiction: two pieces of data provide 

contradictory information. For example, when the 

user is between two rooms and detected by sensors of 

both rooms. 

 

   
Figure 2. Example of causes of uncertain data. Respectively: freshness, 

accuracy, precision and contradiction 

Thus, we need a tool that is able to tackle these uncertainty 

dimension and model context data accordingly in order to be 

compliant with the cognition layer. The proposed solution is 

described in Section IV-A. 

 

B. Cognition 

Once the context is acquired, the cognition step comes into 

play. It aims to analyze the context to understand what is 

happening and take a decision accordingly. Let us have the 

example of a user fall, in that case, from the acquired context 

data, the robot understands that the user has fallen and takes 

the decision to go to assist the user and/or alert the medical 

staff. We propose two processes for cognition: activity 

recognition and decision making. 

Activity recognition aims to identify what the user is doing, 

willingly or not. ‘Cooking’, ‘Sleeping’ and ‘Falling’ are 

possible activities. The robot is able to recognize what the user 

is doing from vision [13, 14]. However, these image based 

techniques can be a bit inaccurate and require a lot of training. 

In fact, the main limitation is the confusion between activities: 

some activities imply doing similar gesture and it is sometimes 

hard to distinguish. Figure 3 shows such an example. But in 

our context, the robot’s camera is obviously not the only sensor 

and various context data can help the activity recognition 

process. We propose an enhancement to a vision based activity 

recognition process that adjusts the recognition’s result 

according to the context knowledge. 

 
Figure 3. Video sample acquired by the robot. Confusion example: is the user 

drinking or phoning ? 

Furthermore, non-vision based activity recognition techniques 

do exist. However a few of them are able to take into account 

the uncertainty (modeled in the perception layer in our case). 

An uncertainty friendly activity recognizer could provide more 

accurate results than standard approaches [15]. However, as 

our framework is robot-oriented, we will focus on a vision 

based solution in this work. 

The decision-making process, as its name implies, aims to have 

the robot taking a decision. The idea is to identify situations 

that require the robot intervention, a user fall for instance. Such 

a tool uses the context knowledge as well as the detected 

activities.  

Proposed tools for cognition are presented in Section IV-B. 

 

C. Action   

The action layer aims to intervene on the environment in order 

to reach a goal that was determined by the cognition layer. This 

step relies on a task planner. A task planner is a tool that 

generates a sequence of action (or task) to reach a given goal in 

a given context. Automated planning is a broad topic that goes 

beyond robotics. Among famous planner we can cite STRIPS 

(STanford Research Institute Problem Solver) [16] or HTN 

(Hierarchical Task Network) [17, 18, 31], these two are 

pioneers and leaded to numerous variations. Task planning is 

essential for robots, in particular in non dedicated 

environments such as homes. Indeed, it allows to figure out 

how to achieve a goal in a particular context. A classical task 

planner uses an input the context and a goal, and outputs a 

sequence of actions, in other words the plan. The planner only 

focuses on generating the plan and does not manage the plan 

execution. The plan does not change during execution. In case 

of a failure of an action, the planner is called again with an 

updated context. Failure is to be prevented, as it is time 

consuming due to the further actions required to reach the goal. 

In our context, the robot is not the only one acting on the 

environment: as the user is living his/her life, he/she 

continuously changes the context. This variability is a problem 

for plan execution. In fact, for a robot, executing a plan is a 

matter of numerous minutes, and a lot of changes can occur 

within this time. And some changes can lead the plan to be 

outdated. For example, if the robot is asked to fetch some 

medications and the user moves them while it is reaching their 

location, it won’t be able to find them, thus failing to achieve 

its goal. Another problem is the availability of data: in such 

environments, we can’t ensure the robot has access to the 

whole context when planning. Let us have the example of 

fetching again; the robot knows medications can be in the 

kitchen on the table or in the drawer, but not their exact 

position, thus it doesn’t know what option to select in its plan. 



 

However, it could get the information when it reaches the 

kitchen, by using its cameras or reaching a sensor with a 

limited range for instance. By planning while not having all the 

required data, the robot may be running an incorrect plan.  

Both context variability and missing data at planning may lead 

to failure situations that would drastically slow down the robot. 

This is not acceptable as the user health can be in the balance. 

For instance in the case of a fall of the user, the robot shall not 

waste time trying possible options to reach him/her. 

To solve these two challenges, we propose an upgrade of the 

HTN planner that combines planning and execution to enable 

flexibility and reactivity to the robot’s plan. It is addressed in 

section IV-C. 

 

IV. CONTRIBUTIONS 

As expressed in the previous section, each step has specific 

challenges for our context of a robot operating in a smart 

home. Consequently, specific solutions must be proposed to 

each of these challenges in order to provide an efficient 

framework.  

 

A. Perception 

As expressed in Section III-A, context acquisition is facing 

four types of uncertain data: freshness, accuracy, imprecision 

and contradiction. We propose a tool that combines Complex 

Event Processing (CEP), semantic knowledge and fuzzy logic. 

Our solution is a three step process as depicted in figure 4. 

 
Figure 4. Context acquisition process 

1. Event Processing: raw events acquisition from 

sensors, batching and filtering. Relies on a CEP. 

2. Semantization: enhancing events with semantic 

knowledge and format. 

3. Fuzzification: computation of fuzzy values by 

analyzing batches of events and generation of one 

Fuzzy Semantic Complex Event (FSCE). 

The resulted FSCE are sent to the cognition layer tools that 

will store and use them. We will now explain each step of the 

context acquisition process and how they tackle the 

uncertainty. For a more detailed explanation, please refer to 

[19]. 

 
1) Event Processing 

The aim of the event processing step is to gather events from 

various sources filter them on given criteria and batch the event 

in time-window. It relies on a classical CEP system, such as 

Coral8 [21] or, in our case, ESPER [20]. A CEP is a tool that 

gathers event and generate higher level one. In our work, we 

use it for collecting data while the computation of higher level 

event (FSCE) is done by the two next steps. In order to gather, 

filter and batch, the CEP relies on designer-defined query. Let 

us have an example with the following rule:  Select events of 

type=”location” in time_batch(1min) where source = 

“motionSensor1” or source=”camera3”. This query gathers 

the event of type ‘location’, filters by their sources and batch 

them in 1 minute time-windows. The filtering allows doing a 

first basic handling on events. The time batching is the key 

feature to overcome the freshness issue. In fact, by considering 

only the events in a given time window, we prevent using 

outdated event. Of course, the shorter is the time-window the 

lower outdated events there is, but oppositely, having too short 

one can lead to have nearly empty batches, limiting the 

fuzzification process. Determining the time windows size is the 

matter of the nature of events and the choice is left to the 

designer. This step outputs a batch a filtered events and is 

provided to the semantization process. 

 
2) Semantization 

Based on a background knowledge represented as an ontology, 

the semantization phase enriches and formats the events 

provided in the batch. 

The enrichment has two purposes. First, it enriches event data 

that may be weak by itself. The idea is to directly tackle the 

imprecision issue. In fact, as events’ precision can be 

enhanced through further information stored in the expert-

provided background. For example, a motion sensor can be 

linked to a given room and a particular user. Based on this 

knowledge, the semantization phase will enrich this sensor’s 

events so that they can carry the information of the user 

location. The second purpose of the enrichment is to add 

confidence values on the event based on their parent sensor. In 

the background knowledge, each sensor is associated with a 

confidence value (provided by an expert) that will be attached 

to the events they generate. This confidence value aims to 

represent and tackle the accuracy of sensor. 

In order to carry these further data, the events are formatted 

into RDF (Resource Description Framework) graphs. In other 

words there are formatted in an ontological format. The 

resulting events carry enriched information presented as object 

linked to their properties, as depicted in Figure 5. 

 
Figure 5. Example of events formatted as RDF graphs 

The structure of these graphs is computed from the background 

knowledge. By formatting the event as RDF graph, the data are 

interoperable and can be easily integrated to other system, in 

particular cognition’s tools in our case.  



 

The semantization outputs a batch of semantic events that are 

passed to the fuzzification phase 

. 
3) Fuzzyfication 

The fuzzification phase analyses a batch of semantic events to 

generate one Fuzzy Semantic Complex Event (FSCE).  It 

actually aggregates all possible events with trust weights 

associated to each possible value. For example, as for location, 

the fuzzification can generate such an event: FSCElocation = 

{[livingroom; 0.33] , [office; 0.67] }.  By doing so, our system 

overcomes the problem of contradiction: it provides a trust 

value for each value and it doesn’t exclude any possible value, 

meaning all possibilities will be taken into account in the 

cognition layer. 

In order to compute these trust weights, the process uses a 

dedicated membership function on all events of the provided 

batch. This function uses the semantic information carried by 

event and computes a weigh accordingly. In our case, we use a 

weighted mean on confidence value, but other functions are 

possible for the designer. 

The process then generates one single FSCE as a RDF graph 

with the computed trust weights modeled as annotation, as 

depicted in Figure 6. 

 

 
 

Figure 6. Example of FSCE 

The generated FSCE is then provided to the cognition layer. Be 

aware that the context acquisition can be instantiated multiple 

times, each with its own query. Thus, the cognition layer is fed 

from various FSCE. 

 

B. Cognition 

Once the context is acquired and provided as multiple FSCE, 

the cognition step comes in play. It is divided in two tools: an 

enhanced vision based activity recognition system, and a 

decision maker.  

 
1)  Activity recognition 

The robot has the ability to recognize the activities of the user. 

But, as expressed in Section III, it encounters difficulties. We 

enhance the vision process described presented in [13, 14]. In 

brief, it works following four steps that rely on several 

supervised learning algorithm: 

1. DenseTrack is an algorithm that analyses an image 

steam to provide pixel trajectories (tracking); 

2. K-Means algorithm is used to group trajectories into 

a fixed set of prototypes or clusters. 

3. Bag of words algorithm is used to compute the 

frequency of ‘visual words’ thanks to the clusters 

generated by K-means 

4. Support Vector Machine (SVM), the bags are 

classified using a trained SVM. 

It outputs a list of activities associated with a probability. For 

example: {(eating, 0.05),(phoning,0.1),(walking,0.01,…)}. This 

approach was proven efficient on benchmarks, but is yet to be 

improved in realistic configuration, such as ours. 

To improve this process, we complete it with the available 

context knowledge. First, the context knowledge is stored and 

maintained in an ontology that is fed from the perception layer 

output. In other word, it carries data from the FSCE, including 

the trust weights. Whenever the robot applies its vision 

algorithm for activity recognition, it checks the context 

knowledge and enhances its results based on simple rules. Let 

us have some example: 

 If the phone’s inertial unit exceeds a given threshold-

increase “phoning” probability, 

  If a movement was detected through a motion sensor 

located in a room with a TV – increase “remote 

controlling” probability, 

  If the opening door sensor was triggered – increase 

“opening door” probability. 

The probability increase takes into account the trust weights of 

data, but how the activity’s probability is increased is defined 

by the designer. With such adjustments, the activity 

recognition is more accurate. 

But the background knowledge can also refine the result of the 

vision algorithm. In fact, it is possible to detect more precise 

activities by combining the vision results and the context data. 

For example, if the user is ‘sitting’ in the kitchen around noon, 

the robot can infer he/she is eating. To do so, we apply 

reasoning rules. Here is an example written using Jena: (?act 

is-a Activity) (?act a label ”sitting”) (?act a proba ?prob) 

(?anyact a proba ?anyprob) greaterThan(?prob ?anyprob) 

(?usr located-in ?room) (?room is-a RoommMeal) (?meal time 

meal ?time) equal(”cur time” ?time) → (?newAct is-a Activity) 

(?newAct a label ”eating”). 

By enhancing the vision based activity recognition with 

semantic background knowledge, we improve the accuracy of 

the results as well as their precisions. We conducted multiple 

experiments that are addressed in Section V. The output is the 

same as the vision process, namely a list of activity associated 

with refined probabilities. These activity are then use for 

decision making. 

 
2) Decision making 

The decision making process aims to determine if the robot 

should intervene and what it is supposed to do. It uses the 

results of both perception and activity recognition. 

In order to decide, the robot relies on rules. The rules are 

provided by the designer and define the reaction the robot shall 

have when detecting particular context data (including 

activities).  For example, if the user is sleeping while a window 

is open, the robot should decide to close the window: (?act is-a 

Activity) (?act a label ”sleeping”)(?win is-a Window) (?win 

status Open) (?win is-located-in ?room) (?usr located-in 

?room) → set(?win status Close). These rules have the feature 



 

of taking into account the trust weights of data and probability 

of activity by computing a confidence value for the implicated 

decision. This confidence value is computed by doing the mean 

of all trust weights, and probabilities for activities, of context 

data represented in the rule. After evaluation, multiple rules 

may be valid, in such case, the decision with the highest 

confidence value is selected. 

We plan to use a more efficient and adaptable solution that is 

able to detect anomalies that are not necessarily statically given 

by the user. Such a work is however out of the scope of this 

paper, but is presented in this [22].  

In any case, this layer selects a goal to achieve in order to serve 

the user and provide it to the action step. 

 

C. Action 

Once it has taken its decision, the robot has a goal to achieve. 

It now has to determine how to achieve this. To do so it relies 

on a task planner. In our work we selected and improved HTN 

(Hierarchical Task Network). We will first discuss HTN before 

presenting our contribution. 

 
1) HTN 

HTN is a common planning technique that relies on 

decomposing tasks into subtasks and on the knowledge of a 

hierarchy of tasks. It has various implementation [23, 24, 25, 

26] and as widely in robotics for various applications [27, 28, 

29, 30]. We will now present a brief description of HTN. 

HTN aims to find a solution to a planning problem by 

decomposing tasks into subtasks. HTN relies on two types of 

tasks: primitive tasks and compound tasks. Compound tasks 

are realized by subtasks, while primitive tasks are ’ready-to-

run’ non-decomposable tasks. The result of the planning 

process is called solution, and is a totally ordered set of 

primitive tasks. A planning problem is defined as a 3-tuples (g, 

s, D), where g is a sequence of tasks to achieve, i.e. a ’goal’, s 

is the initial state of the environment as predicates, and D is the 

domain. The domain D is a pair D = (O, M), where O is a set 

of operators and M a set of methods. An operator is a concrete 

executable action and it solves a primitive task. A method 

indicates how to decompose a compound task into a partially 

ordered set of subtasks, primitive or compound. It is defined 

by: its name, the task it ’realizes’, preconditions as predicates 

describing when it is applicable, and a sequence of primitive or 

compound tasks, i.e. the subtasks. To represent the world state 

and preconditions, HTN relies on predicates. A predicate 

represents a property of the current context (see definition 

below) and respects the following pattern: property (id1, id2 

...). To generate a solution, HTN applies methods from the 

domain D to compound tasks depth-firstly, starting by goal 

tasks from g. For a more detailed overview of HTN please 

refer to dedicated works [31]. 

Figure 7 provides a very simple example of a HTN for a robot 

to go to its recharge station. In reality, HTN are obviously 

much more complex. 

  
Figure 7. Simple example of a HTN 

 
2) Dynamic HTN (DHTN) 

Although HTN has several advantages and is consequently 

common in robotics, it is subjected to the same challenges as 

any task planner: in our case, the dynamism of the environment 

and the unavailability of some data when planning. To tackle 

these problems, we propose an extension of HTN, Dynamic 

HTN (DHTN), featuring a combination of planning and 

execution: instead of generating the whole plan at once, DHTN 

incrementally build the plan while executing it. By doing so, 

DHTN is able to take into account fresh context data and 

proposes up-to-date plans. 

DHTN mainly uses the same formalism as HTN. But as DHTN 

also handles the execution of the plan, the notion of status was 

added to the tasks, operators and methods. There are three 

states: SUCCESS, FAILURE and RUNNING. An operator is 

RUNNING when the robot is doing the action, and its status is 

set to SUCCESS or FAILURE according to the actual 

execution results. For instance, if the robot falls while grabbing 

an object, the operator it was running fails. Consequently, the 

other elements of HTN are impacted. A primitive task succeed 

when one of its operator succeed and fails if not. A method 

fails if at least one of its subtasks has a FAILURE status and 

succeeds when all of its subtasks have SUCCESS status. A 

compound task fails if all its methods failed and succeed if at 

least one method did. These statuses allow DHTN to monitor 

the plan execution and to use this information for planning. 

With these features, DHTN can efficiently find an alternative 

plan in case of a task failure. 

We proposed a novel algorithm for DHTN. Starting from an 

initial task, DHTN operates has follows: 

 If the current task is a primitive task: DHTN selects a 

matching operator and the robot executes it. It waits 

for the operation’s result. If the operator succeeds, the 

task is a SUCCESS and DHTN moves to the next one 

and reapply the algorithm. If the operation fails, the 

task is a FAILURE, thus its parent method and 

compound task also fail. DHTN then backtracks to the 

parent compound task and try to find another method. 

If there is no parent task, DHTN fails to achieve the 

goal. 



 

 If the current task is a compound task: DHTN 

compares the current task’s methods’ preconditions to 

the current context and selects a compatible method. 

By doing so, DHTN takes into account the last 

changes in the environment and selects an up-to-date 

sub-plan. Furthermore, by selecting a method when 

required, the robot can access data it could have 

missed if it would have planned beforehand. DHTN 

then moves to the first subtask of the selected method 

and reapply the algorithm. 

By combining execution and planning, DHTN is able to 

manage a reactive and flexible plan. It limits the number of 

failures and, in case it couldn’t be prevented, finds alternative 

solution without launching the whole process again. 

Experiments underlining this strength are presented in the next 

Section. For a more complete work about DHTN, please refer 

to [30]. 

V. EXPERIMENTS AND EVALUATIONS 

Our framework was implemented and tested through both 

simulation and physical tests. 

For simulation, we rely on Freedomotic 

(http://www.freedomotic.com/), an open source development 

framework to manage smart spaces, in particular smart homes. 

Freedomotic allows todefine data sources, actuators and carries 

a simple event processing system. The represented devices can 

be linked with real one or simulated one: by doing so, it is easy 

to implement in real life a system tested in the framework. One 

of Freedomotic main feature is its compliance with plug-in: we 

can easily find any plug-in we might need thanks to a play-

store like tool and we can create our own upgrades. Figure 8 

displays a screenshot of Freedomotic interface.  

 
Figure 8. Freedomotic interface 

Furthermore, we also tested our contributions with a robot and 

a smart environment. We used a Nao H25 robot [32], it is a 

popular humanoid robot that has a lot of abilities, such as 

locomotion or speech. As for the smart environment, we relied 

on the Hadaptic (http://hadaptic.telecom-

sudparis.eu/fr/introduction/) platform. The platform is 

composed by a modular room, furniture and various sensors, 

such as motion sensors, opening sensors, thermometers and 

beacons. 

 
Figure 9. The Nao robot and the Hadaptic platform 

Each of our contributions was tested and evaluated using 

Freedomotic or the Hadaptic platform. We will now review our 

results.  

 

A. Perception 

We tested our context acquisition tools through simulation. We 

sat up a simulation environment based on Freedomotic that 

enables uncertain data generation. Our experiments aimed to 

show that our system was able to improve an activity 

recognition process such as [15] by tackling and modeling the 

uncertainty. We implemented and simulated a scenario and 

compared the correctness of an activity recognition system 

with and without our solution. Results can be found in Figure 

10. 

 
Figure 10. Activity recognition rate improvement 

In Figure 10, the blue column represents the activity 

recognition rate with a basic context acquisition while the red 

one shows the results with our uncertainty aware solution. 

With our solution, we improved the rate of successful 

recognition by 10%, which is a significant gain, in particular 

for healthcare applications. This proves our contribution to be 

pertinent.  

 

B. Cognition 

In order to evaluate the interest of combining a vision based 

activity recognition process with further context data, we 

conducted experiments on several test subjects for three 

scenarios. We selected three activities (scenarios) to test: 

remote controlling a TV, opening a door, and phoning. A test 

run consists in a person doing a gesture in front of a Nao robot 

as showed in Figure 11. The robot acquires a video sample and 

applies the vision algorithm to identify the activity. It then 

adjusts the results based on a context knowledge provided by 

the smart environment through sensors including smart phones 

and opening sensor. We conducted our tests on 12 subjects. 



 

Each one was asked to repeat 10 times each gesture: each 

scenario had 120 runs. We then compared the result of the 

vision only recognition and the enhanced one. 

 
Figure 11. Example of an activity recognition test run 

Results are displayed in Figure 12. The blue column shows the 

vision only correct recognition rate will the red one shows the 

improved results. The vision only process was fully confronted 

to the issue of confusion.  Indeed, the activity probability 

distribution outputted was very narrow. In other word, the 

vision recognition process was not far from the result, yet 

couldn’t allow clearly identifying an activity. In consequences, 

even a small adjustment with context data allows to clarify the 

recognition. This explains the huge difference between the two 

techniques. Nevertheless, it proves that such a combination is 

pertinent and efficient. You can find more detailed results in 

[33]. 

 
Figure 12. Correct activity recognition rate vision only (blue) and with context 

data enhancement (red) 

C. Action 

DHTN was implemented and tested through both simulation 

and a physical robot. Some proof of concept tests were 

conducted with Nao, as displayed in Figure 13 that depicts the 

reactivity of DHTN. Videos are also available online: 

http://nara.wp.tem-tsp.eu/what-is-my-work-about/dynamic-

hierarchical-task-network-dhtn/. 

 
Figure 13. Action layer tests with a Nao robot 

In order to evaluate it, we again used Freedomotic and 

designed a simulation environment that simulates a dynamic 

environment. We measured the number of tasks required to 

reach an objective for various level of dynamism and 

compared DHTN to HTN. Results are displayed in Figure 14. 

 
Figure 14. Number of actions required to reach a goal for various change rates 

As we can see in Figure 14, DHTN needs fewer actions to 

reach the goal than HTN. As HTN plan is generated before 

running it and is not reactive, the plan often fails, leading to 

numerous replanning and a lot wasted task executions. DHTN 

on the other hand, is successfully able to take into account the 

last changes in the context thus preventing doing action that are 

meant to fails.  

 

 

VI. CONCLUSION AND PERSPECTIVES 

    In this paper, we presented a framework for robots operating 

in smart homes for healthcare domestic applications. We 

tackled multiple challenges including uncertainty of data and 

dynamism of the environment to provide and accurate and 

efficient robotic system. All our tools were tested and validated 

using both simulation and real case experiments. 

In future works, we aim to improve the decision making 

process to handle efficiently uncertainty and priorities. We also 

want to test our whole framework in a real case application 

using the Evident platform (https://evident.telecom-

sudparis.eu/).   
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