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On use of the thick level set method in 3D quasi-static crack
simulation of quasi-brittle material

Alexis Salzman · Nicolas Moës · Nicolas Chevaugeon

Abstract This work demonstrates the 3D capabil-
ity of the thick level set (TLS) method, first intro-
duced by Moës et al. (Int J Numer Methods Eng
86:358–380, 2011. doi:10.1002/nme.3069) and later
in Stolz and Moës (Int J Fract 174(1):49–60, 2012.
doi:10.1007/s10704-012-9693-3). The thick level set
approach is a non-local damage method embedding
fracture mechanics discontinuity. Enhanced numer-
ical implementation for elastic quasi-brittle materi-
als in 2D under quasi-static loading conditions was
presented in Bernard et al. (Comput Methods Appl
Mech Eng 233–236:11–27, 2012. doi:10.1016/j.cma.
2012.02.020). The present work focuses on using this
enhanced numerical implementation in a 3D context.
This work adds a new way to construct the crack faces
by use of a “double cut algorithm”. The regulariza-
tion computation, part of the non-local feature of the
model, is also reviewed to improve its accuracy. As
3D models are computationally intensive, CPU aspects
are discussed. Five test cases are presented. The first
one illustrates the capability of the method to deal with
crack coalescence, which is quite unique for this kind
of simulation. Three other cases point out a comparison
with literature examples (numerical and experimental)
and good agreement is observed. One is a more com-
plex example, which deals with an engineering oriented
application. This work confirms good performance of
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the thick level set method in 3D context. The use of the
new “double cut” algorithm is giving well discretized
crack path and allows for discontinuous displacement.
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1 Introduction

The thick level set (TLS) method was first introduced
by Moës et al. (2011) and further studied in Stolz and
Moës (2012). The work of Bernard et al. (2012) is the
basis for the implementation used here. More recently
Moës et al. (2014) have generalized the TLS method to
mix local and non-local damage procedure in the same
framework. The present work focuses on 3D simulation
usage.

The ingredients in the TLS method regarding the
material are twofold. The first is given by the local
damage constitutive law and the second by the damage
profile imposed in the localization zone. In this sense,
there is not, per se, a fracture criteria in the model.
This information results in the TLS of a combination
between the local material strength and the necessity
for localization to spread over some length with a given
profile.

Compared to pure fracture mechanic propagation
methods such as X-FEM or remeshing techniques, the
TLS method offers the ability to create crack via dam-
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age initiation without ad hoc crack insertion. Crack
coalescence and branching are also automatically taken
into account by the TLS. This is not easy or even possi-
ble with pure fracture mechanic propagation technique.
This opens simulation to a broader range of problems.

Now other non-local approaches exist to model
quasi-brittle failure and avoid spurious localization. In
this paper, the goal is not to discuss in detail all these
methods. We, however, point out how the TLS relate
or not to existing techniques. The TLS shares similar-
ities with the so-called non-local integral approach of
(Pijaudier-Cabot and Bažant 1987; Bažant and Jirasek
2002) in which weighted averages are performed over
segments (1D), disks (2D), and spheres (3D) of fixed
sizes. In the TLS, however, weighted averages are
always performed on segments whatever the dimen-
sion of the body and over a length that is not fixed
in time, but evolves from zero to a maximum length lc.
Also, the segment orientation is always aligned with the
damage gradient. The TLS is a discontinuous approach
and by no means turns the crack into a diffuse zone as
in the phase-field approach (Karma et al. 2001; Miehe
et al. 2010; Spatschek et al. 2011) or the variational
approach to fracture (Francfort and Marigo 1998; Bour-
din et al. 2008). Finally, readers interested by a compar-
ison between phase-field and TLS may look at Cazes
and Moës (2015).

Key TLS features (level set, averaging damage along
segments, automatic introduction of crack discontinu-
ity, …) naturally extend to 3D. The only effort imposed
by problem dimension is related to discretization, in
particular for the crack and the computation cost. The
latter is mainly treated by parallel computational tech-
nique. The former is treated with a new method called
the “double cut algorithm,” which provides adapted
finer 3D discretization for the TLS framework.

Five 3D examples are presented in this work to illus-
trate the TLS framework versatility (in particular, coa-
lescence and initiation) and are compared with other
numerical methods or tests.

In this paper, we consider a local stress-strain curve
with abrupt softening for most cases. This is not a
limitation of the TLS, and for quantitative compari-
son example we choose, like in Parrilla Gómez et al.
(2015), to consider smoother softening regime.

In Sect. 2, the TLS method main theoretical and
algorithmic aspects are presented. Then in Sect. 3, the
proposed “double cut algorithm” is explained and its
introduction in the TLS framework is discussed. In

Sect. 4, we will describe some improvement to the aver-
aging techniques used to compute the energy release
rate. Simulation time consumption aspects are pre-
sented in 5. Numerical tests are then exposed in Sect. 6.
Finally, Sect. 7 concludes and gives some perspectives.

2 TLS method

2.1 Review

In the TLS framework, the domain Ω of interest is
decomposed into three zones (possibly empty): a zone
Ω− in which damage d evolves in a local manner, a
localizing zone Ω+ in which the evolution is non-local,
and, finally, a zone Ωc, in which the material is com-
pletely damaged (d = 1). This is detailed in (Moës
et al. 2014). In this paper, as in Bernard et al. (2012), we
consider damage constitutive models without harden-
ing, leading to damage localization as soon as damage
starts. Thus, damage is always zero in Ω−.

The interface between Ω+ and Ω− is denoted Γ0,
and it is located by the iso-zero level set of a signed dis-
tance function φ (counted negative in Ω−). The “dis-
tance function” characteristic is achieved by:

‖∇φ(x)‖ = 1 (1)

Damage is then expressed in terms of φ by a scalar
function.

d = d(φ(x)) (2)

The function d(φ) is material data that must satisfy
a set of requirements, including that damage reaches 1
only beyond a distance lc. The interface between Ω+
and Ωc is thus the iso-lc1 and is denoted Γc.

The use of a level set is a powerful aspect of the
method, offering support for complicated Γ0, with
potential branching and coalescence, as will be seen
in Sect. 6.1. Another powerful aspect is the introduc-
tion in the model of this characteristic length lc, which
achieves two goals:

– it introduces in an automatic manner a crack, con-
sidering iso-lc values of the level set, as the crack
front. In this work a more precise discretization of
Γc is proposed in Sect. 3 and its introduction in the
TLS framework discussed in Sect. 3.5.

1 The iso-lc is determined by a −lc offset of φ iso-zero.
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Fig. 1 Model parameters. a Domain and interface definitions:
in blue Γ0, in red Γc, b damage function d(φ) used in four cases
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– it introduces a maximum length over which an aver-
aging of damage is performed.

Figure 1a shows the above defined ingredients. It
represents different situations, using a planar cross sec-
tion to see inside Γc, where:

– A is a damage initializing zone where all points are
at a distance less than lc from Γ0 (in blue), and for
which d < 1.

– B is a simple crack represented by Γc (in red). In this
case one crack tip is situated at a distance greater or
equal to lc from Γ0 tip. This illustrates a complex
damage growth pattern in front of a crack tip.

– C illustrates a branching situation where the crack
first develop “horizontally” and then “vertically”
after a change in loading (in figure perspective).

The damage shape function d() must be

– increasing
– continuous
– bounded to [0, 1]

– null outside the damage zone in Ω− (when φ(x) �
0)

– equal to 1 in the fully damaged zone Ωc (when
φ(x) � lc)

Specific choices of d() have permitted comparison with
the phase-field method in Cazes and Moës (2015) or
with the cohesive zone model in Parrilla Gómez et al.
2015. The chosen d() function taken for four cases in
this paper is given in Fig. 1b.

2.2 Governing equations

As in previous work, we use an asymmetric constitutive
law. This asymmetric behavior is mandatory to avoid
damage growing in the compression direction. In this
paper, however, we do not deal with contact on crack
faces.

In Ω , equilibrium and kinematics equations are:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇.σ = 0 on Ω

σ.n = f on ∂ΩN

ε = 1
2

(∇u + (∇u)t
)

on Ω

u = ū on ∂ΩD

(3)

where σ is the Cauchy stress tensor, ε the strain tensor,
f the external loading on part ∂ΩN of Ω boundary, n
the outgoing normal vector of the domain, ū the pre-
scribed displacements on part ∂ΩD of Ω boundary
and u the displacement field. Here small strains and
displacements are assumed.

Stress and energy release rate Y are derived from the
free energy as follows:

{
σ = ∂ϕ

∂ε

Y = − ∂ϕ
∂d

(4)

with

ϕ(ε, d) = λ

2
(1 − αd) tr(ε)2 +μ

3∑
i=1

(1−αi d)Λi
2 (5)

where:

– λ and μ are the Lamé elasticity coefficients
– Λi are the eigenvalues of the strain tensor
– αi and α are coefficients introduced to take into

account an asymmetric behavior in traction/compre-
ssion:
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– αi = β i f Λi < 0
– αi = 1 i f Λi � 0
– α = β i f tr(ε) < 0
– α = 1 i f tr(ε) � 0

– β is a parameter, bounded to [0, 1], to drive the
asymmetry.

When β is equal to 1, αi and α terms are always
equal to 1 and the free energy is then a linear elastic
damage potential that can be rewritten using Hooke’s
tensor E as follows:

ϕ(ε, d) = 1

2
(1 − d)ε : E : ε (6)

When β < 1 the potential becomes non-quadratic.
Damage participation to free energy becomes negligi-
ble in compression when β tends to 0. When β is null,
no damage growth is obtained in compression because
in this caseY = 0. Intermediate β values are allowed to
fit to material properties where irreversible degradation
modify slightly the stiffness in compression.

For the damage evolution law, detailed in Bernard
et al. (2012), the local damage growth model:

Y � Yc, ḋ � 0, (Y − Yc) ḋ = 0 (7)

is regularized into its non-local counterpart:

Ȳ � Ȳc (8a)

ḋ � 0 (8b)(
Ȳ − Ȳc

)
ḋ = 0 (8c)

where Ȳ and Ȳc are the regularized energy release rate
and the regularized critical energy release rate respec-
tively.

An averaging operator is introduced to fulfill non-
local estimation of the energy (critical energy) release
rate on the damage front. By construction, (1) with (2)
impose damage along φ gradient segment in Ω+ (see
Fig. 2). Thus, any point of Ω+ may not have their
damage value modified without changing damage val-
ues of all gradient segment points it belongs to. This
introduces a natural averaging process along all points
related by condition (1). Ȳ (Ȳc) regularizes Y (Yc) by
using ∇φ to drive operation and a weighting function
to smooth the computed values (more details are given
in Sect. 4).

The quantity Yc may be a constant (as in Fig. 3) or
may depend on damage, in which case it is expressed
as Y 0

c h(d) where Y 0
c is a constant and h(d) a softening

function.

Γc

Γ0

lc

Fig. 2 Ȳ graphical representation (in 2D for visualization, but
the same principle holds in 3D): In small dashed line φ skeleton.
In large dashed line some intermediate iso-value of φ. In blue
Γ0. In red Γc. Cyan segments are aligned with the gradient of
φ. Over these segments, Ȳ is uniform and is the average of the
underlying Y field

σc

0
√

2×Yc
E

ε

σ

Fig. 3 Abrupt stress/strain local response considered in test
cases 6.1, 6.2, 6.3, and 6.4

2.3 Staggered algorithm

The TLS solver used for this work is given by Algo-
rithm 1 where μi is the load factor corresponding to
load step i .

The g operator is related to the damage growth
model (8). The K and F operators are related to the
structural equilibrium. Finally, fk operators are related
to the damage criteria (8a).
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Algorithm 1 Schematic staggered algorithm scheme.

Starting from ui , di , and μi

repeat
Find di+1 such that di+1 = g

(
μi , ui

)
(I)

Find (ui+1, μi+1) such that{
K

(
di+1, ui+1

)
ui+1 = F

(
μi+1

)
(I I )

max
k

(
fk

(
μi+1, ui+1

)) = 0 (I I I )

until Complete failure or user given load level

In Algorithm 1, (I) (corresponding to (29) in Bernard
et al. 2012) uses an explicit resolution. In (II), the ui+1

solution is obtained with a Newton–Raphson algorithm
due to the non-linear nature of K . Condition (III) is
solved with an explicit resolution. Solving (III) is eased
by the fact that ui+1 has a linear relationship with
respect to μi+1 (as long as it does not change sign).

The displacement field ui is discretized in space
using a classical finite element approximation plus a
ramped Heaviside enrichment (Bernard et al. 2012) to
represent the existing cracks. The determination of Γc

is greatly improved compared to Bernard et al. (2012)
by the use of the so-called double cut algorithm detailed
in Sect. 3.

The solution (ui , di , μi ) at any load step is thus in
equilibrium (in the finite element sense) and satisfies
fully (8a) and (8b). Equation (8c) is, however, slightly
violated (see Bernard et al. 2012 for discussion).

The load step is not given by the user. It is part of
the solution process. What is provided is the maximum
damage (or φ to be more precise) increase load step. It
enters in the definition of g. The g operator is needed
both to grow the existing damage zone and initiate new
ones.

Note that in Algorithm 1, we have made clear an
explicit dependence of K on ui+1. Indeed, the asym-
metric damage model, introduced in (5), yields a non-
linear elastic problem. This dependence of K on ui+1

is in fact very limited in space since it affects only Ω+.
Thus, the tangent matrix used to solve structural equi-
librium is implemented to spare CPU time as a fixed
part, assembled once per load step and a varying part,
reassembled at each Newton–Raphson iteration. The
same strategy is used also for the Newton–Raphson
residual vector where the linear part of the internal
forces is simply obtained by multiplication of the fixed
tangent matrix part by the u associated part.

Regarding the initialization of the staggered scheme,
we find first the elastic loading for which damage

occurs. This gives (u0, d0 = 0, μ0). If needed, a non-
zero initial damage field may be prescribed.

Regarding the finite element mesh, it can either be
given at the start (and fine enough in zones that will be
affected by damage, where element size should be at
most a quarter of lc) or evolving during the simulation.
In particular, octree adaptive grids are quite efficient.
All numerical examples dealt with in this paper used a
constant grid during the simulation.

To be precise, the definition of g follows the paper of
Bernard et al. (2012) except for one improvement, the
computation of Ȳ . This change is detailed in Sect. 4.

3 Crack lips definition improvement

3.1 Crack representation

Usual treatment of level set in the context of X-FEM
starts by determining the iso-zero location. This defi-
nition is then used to generate integration cells (called
sub-elements hereafter) embedded in elements crossed
by iso-zero. Depending on problem type, some or all
sub-elements are used to integrate the problem using
approximation of elements crossed by iso-zero. Some
extra enrichment aspects may also be added and depend
on this initial treatment. In the TLS framework this
scheme is followed for both Γ0 and Γc. In this work
we focus on iso-lc improvement, which represents the
crack discontinuity.

From a numerical point of view, if no enrichment is
introduced around iso-lc, crack lips will move apart
until an element is fully in the damage zone (see
Fig. 4a). This permits obtaining the expected discon-
tinuous displacement by having a fully damaged ele-
ment in between the lips of the crack. But depending
on the element size, this may dissipate more energy
than wanted, as the fully damaged zone depends then
on mesh definition.

To avoid this, ramped Heaviside enrichment, explai-
ned in Bernard et al. (2012) and Sect. 3.5.1, offers a
numerical mechanism to introduce displacement dis-
continuity by adding extra degrees of freedom. These
are added along the iso-lc on entities having their sup-
port divided into at least two parts by the fully damaged
zone. This condition is directly related to the definition
of Γc, which depends on the level set representation.

Since the level set is defined by algebraic values at
mesh nodes with linear interpolation between them, an
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Ω c

Γc

(a)

(b)

(c)

Fig. 4 Location of Ωc (orange) depending on the technique
used to construct Γc and enrichment scheme. a Single cut with-
out discontinuous enrichment, b single cut with discontinuous
enrichment: crack lip can only appear if there is at least one node
between them, c double cut with discontinuous enrichment

edge may only be cut once by the iso-lc. This restriction
implies that elements may not be cut into two parts
by the fully damaged zone. Consequently, enrichment
will only occur if at least two elements are cut by the
fully damaged zone (one element per crack lip). This
imposes that the crack zone grows (or shifts) enough
to have discontinuous displacement. This may again
dissipate more energy than in reality (or may lead to
a wrong crack path) if the mesh size is too big (see
Fig. 4b).

A new approach permits passing over the restric-
tion imposed by the level set. First, a versatile tool, the
vector distance function, from the work of Gomes and
Faugeras (2003), is reused and presented in Sect. 3.2. In

this work a signed form of this tool is proposed, which
leads to the signed vector distance function concept.
It introduces extra information compared to the clas-
sical level set tool. Secondly, adapted to signed vector
distance function concept, a new algorithm permits cut-
ting an edge twice (the “double cut” algorithm), which
allows a fully damaged zone to cut a single element
(see Fig. 4c). This double cut algorithm first cuts all
edges and then splits all elements. This is explained in
Sects. 3.3 and 3.4.

3.2 Signed vector distance function

Given a manifold, a vector distance function (VDF)
gives at each surrounding point a vector pointing to
the closest point on the manifold (Gomes and Faugeras
2003). The manifold is also denoted as the VDF iso-
zero in what follows. The manifold of interest in this
section is Γc.

To keep domain partitioning available, a sign has
to be associated with vectors (so we use the concept of
signed vector distance function (SVDF) and not simply
VDF). This means a node is in the negative or positive
domain delimited by SVDF iso-zero.

In the TLS framework, the SVDF replaces the offset
level set for the definition of the iso-lc. Indeed, offset
level set technology is not able to find multiple cuts
within the same element, as in Fig. 4c.

In this context no intrinsic evolution of the SVDF
is taken into account as it could be (see Gomes and
Faugeras 2003). It is only used as an enhanced tool
to represent the Γc manifold, reset at every load step
by using a new φ definition. It follows the same sign
convention as the level set it replaces (i.e. positive for
the fully damaged zone and negative for all other parts
of the domain). It is constructed for each mesh node,
from the level set defining the front, by the following
steps illustrated in Fig. 5:

– Find the closest point (CP) on Γ0 from node (N).
– Compute the vector

−→
Vcp from N to CP.

– From this vector, construct the vector
−→
Vlc =

sign lc
−→
Vcp∣∣∣

∣∣∣−→Vcp

∣∣∣
∣∣∣

starting from CP where sign is 1 if level

set sign for N is “−” and −1 if level set sign for N
is “+”.

– Signed vector distance function vector
−−→
Vsvdf for N

is then
−→
Vcp + −→

Vlc starting from N ending in point
call L.
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Γc and SVDF iso-zero

φ iso-zero (i.e. Γ0)

+

+

−

−−→
Vsvd f

−→
Vcp

−→
Vlc

+

−

−

N

N

N

CP

CP

CP
L

L

L

Fig. 5 Signed vector distance function construction from iso-
zero front. Vector are in fact all superposed, but to distinguish
them on this figure they are drawn shifted if needed. Here, rep-
resentation is in a plane, but it has to be understood in 3D space

Table 1 Possible cut cases for an edge AB

Position of
A and B

+

-

A

B

-

+

+

-

A

B

A

B

-

-

+

-

+

A

B

A

B

A and B are
in positive do-
main (++)

A and B are in
separate domain
(+-/-+)

A and B are in
negative domain
(- -)

Number of cuts 0 1 0 or 2
Illustration of
figure 6

6h 6b,6c,6d 6e,6f,6g

– Signed vector distance function sign for N is “+”

if level set sign for N is “+” and
∣∣∣
∣∣∣−→Vcp

∣∣∣
∣∣∣ > lc.

Otherwise, it is “−”.

3.3 Double cut algorithm first step: cutting edges

From SVDF information, one must first compute Γc

cutting point for all mesh edges. Conditions to have an
edge AB cut, given in Table 1, are from logical consid-
eration of the placement of edge relatively to domain
parts.

The algorithm uses then the following general geo-
metrical predicate:

– Geometrical SVDF iso-zero passes through ending
point L.

– Geometrical SVDF iso-zero tangent plane at L
point is orthogonal to

−−→
Vsvdf .

– Geometrical SVDF iso-zero tangent plane on L
points corresponding to each node A and B of an
edge may cut it.

The algorithm to obtain discrete SVDF iso-zero
points on edges (i.e. Γc points) is based on these geo-
metrical predicates. Tangential plane intersection(s)
is(are) considered under the following conditions illus-
trated in Fig. 6 (and logical consideration of Table 1)
as SVDF iso-zero point(s):

– one cut case (+−/−+)

– Cut is searched first with negative SVDF infor-
mation (Fig. 6b). This follows the assertion that
negative SVDF information is potentially of
better quality then positive SVDF information,
which is closer to hard tracked skeleton location.

– If the above failed, cut is searched with positive
SVDF information (Fig. 6c).

– If the above failed, a linear interpolation of mag-
nitude of SVDF vector taken as level set values
is done (Fig. 6d).

– zero or two cut case (− −)

– If tangent planes do not cut the segment, then
there is no cut (Fig. 6e)

– If tangent planes cut the segment twice, but the
order of cut point is not “A, cut from point A, cut
from point B, B,” then there is no cut (Fig. 6f).
This condition avoids topological inconsistency
(unwanted intersection) when following SVDF
iso-zero.

– If tangent planes cut the segment twice in correct
order (see above) there are two SVDF iso-zero
points (Fig. 6g).

An important aspect to consider in this process is
what should be done when an identified cut point lies
close to A or B. First, a definition of “close” must be
given. A cut point is close to anedge node when its
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−−→
Vsvd f

Geometrical SVDF iso-zero

cutting point location

A B
AB edge

Tangent plane passing by L and ⊥ to
−−→
Vsvd f

level set interpretation of SVDF

− +

− + − +

− − − −

− −

+ +

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6 Edge cut construction illustrating cut point determina-
tion. Representation is planar, but it generalizes to 3D. a Legend,
b preferred one cut solution, c one cut first alternative, d one cut

using level set value as last resort, e no cut by construction, f
no cut by wrong order of cutting points, g two cuts, h no cut by
Table 1 rule

abscissa2 s in the edge coordinate system is such that
s ∈ [0, εmetric[ or s ∈]1 − εmetric, 1] where εmetric is an
arbitrary small number (we choose 10−5 in this work).

2 s is dimensionless and vary from 0 (edge node origin location)
to 1 (other edge node location).

With single cut algorithm, usually, a simple treat-
ment that modifies the level set is enough so that its iso-
zero surface passes through the node. But it is no longer
possible to do the same with double cut algorithm as
there is no way to identify crack lips if we merge infor-
mation on nodes. Thus, the cut node is placed on an
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edge node if close to it, but it still belongs to the edge
from a topological point of view.

Regarding double cut position on an edge, a similar
proximity consideration must be taken into account.
Are two cutting nodes on an edge close enough to be
considered coincident? Again, the same εmetric is used
to compare abscissa (in the edge coordinate system) s1

and s2: if |s1 − s2| � εmetric then both cut points are
considered metrically at the same location ( s1+s2

2 ) and
topologically distinct.

Another case is also considered when looking for
coincident node treatment. Independently of what the
above plane cut algorithm might give, if the SVDF mag-
nitude at a node divided by the length of the emanating
edge is small (less then εmetric) then the cut is con-
sidered to exist and is located at the node. To avoid
dissimilar treatment around a node due to edge length
fluctuation, we first compute the mean length of edges
connected to a node. This gives a consistent metric
reference across edges to evaluate the magnitude of
a SVDF.

All these overlapping position identifications are
then used when constructing sub-elements for integra-
tion and identifying enrichment (see “Element cutting”
section of “Appendix 1” and Sect. 3.5.1 for further
details).

3.4 Double cut algorithm second step: cutting
elements

Having edge cut positions and topologies, one is then
able to construct the geometric domain using the fol-
lowing assertions (also available in 2D):

– The convex hull generated by the set of cut points
and positive nodes corresponds to + domain (Ωc

in TLS framework). It is a polytope3 (polyhedron
or polygon, depending on the case).

– The subtractions (geometric operation sense) of this
+ domain to the original element give the − domain
polytope (Ω+ in TLS framework).

– The common boundary of the + and − domains
gives the SVDF iso-zero (Γc in the TLS frame-
work).

By using elementary topological rotations and sym-
metries, element cut pattern cases may be reduced to a
small set of unique cases. Depending on the way one

3 See Coxeter (1973, p. 118) for a general definition.

Γc

K
K

K

Fig. 7 Selection of nodes to be enriched by the ramped Heavi-
side. Star nodes are enriched once and the “sun” node is enriched
twice. Note that K nodes are not enriched because both cracks
lips run on the boundary of their support

chooses to implement the cutting algorithm, genera-
tion of null volume parts (from cut point merged with
other nodes) may be eliminated from integration or not.
This leads to an increased number of element cut pat-
tern cases or not. All these cases are depicted as 3D
in “Appendix 1”. You will find also in this Appendix
a pure geometric illustration of the performance of the
double cut algorithm with SVDF compared to the sin-
gle level set cutting algorithm.

3.5 Discussion on new Γc definition

The impact of using the “double cut” algorithm for
discretization of Γc in the TLS framework is twofold:

1. the way ramped Heaviside enrichment is computed.
This will be discussed in Sect. 3.5.1

2. the way φ values are evaluated in Γc vicinity. Sec-
tion 3.5.2 briefly comments on this aspect.

3.5.1 Enrichment impact

The fact that an element may be cut twice by the same
iso-lc has little influence on the process of finding dof4

to enrich describe in Bernard et al. (2012). The general
guidance is still to consider for a given dof its support5

and count how many unconnected parts from Ω+ are
created by splitting it by Ωc (see Fig. 7).

As soon as there is more than one Ω+ part, enrich-
ment must be used to allow crack opening.

4 Degrees of freedom.
5 The support of a dof is the set of elements over which the
approximation function associated with the dof is non-zero.
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A Ωc

Γc

Ω+part2
Ω+part1

Ω+part3

(a) (b)

(c) (d)

(e) (f)

Fig. 8 Decomposition of the support of a node A (a) into sound
Ω+ parts. Two sound Ω+ parts appear in (c) and (d), whereas
three sound Ω+ parts appear in (e) and (f). In (d), Γc runs through
node A while cutting edges above. In (e), Γc runs through node
A while cutting edges below. a Mesh, b legend, c A ∈ Ω+, d
A ∈ Ω+ and A close Γc, e A ∈ Ωc and A close Γc, f A ∈ Ωc

The “double cut algorithm” presented in this work
carefully handles cases where the crack runs close to
nodes (see Sect. 3.3 and Appendix 1). This has an
impact on the way Ω+ parts are identified and counted.
In Fig. 7 the zoom shows a basic example of Γc pass-
ing on a mesh node. In this case a topological Ω+ part
exists, but is of zero measure. Those parts do not count
for enrichment decision. Subtle impact on Ω+ parts
identification is illustrated in Fig. 8. Consider the mesh
given in Fig. 8a around node A. In Fig. 8c, f, where
Γc does not run through node A, we have either two
sound (undamaged) parts (Fig. 8c) or three sound parts
(Fig. 8f), depending on whether node A lies outside
Ωc or not. In Fig. 8d, Γc runs through node A (from
the above), there are two sound parts (as in Fig. 8c).
In Fig. 8e, Γc runs through node A (from below) and
there are three sound parts (as in Fig. 8f). Recall (see
Sect. 3.3) that even though Γc runs through a node, we

0.49

Γc
iso-lc
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G

sub element for integration

G
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0.48
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0.45

0.46
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0.46
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0.469
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0.5

0.5
0.5

0.48

0.46
0.474

0.483

0.471
0.478

Fig. 9 Reshaping φ(x) around Γc. In bold, new values used to
compute φ(x) on Gauss points G. lc = 0.5, 2D

keep the information of which edges are cut around the
node by Γc (enabling tracking of Ω+ part definition).

3.5.2 Γc new definition: impact on φ(x)

The “double cut algorithm” uses a signed vector dis-
tance function instead of an offset level set for Γc con-
struction. As exposed in Sect. 3, “Appendix 1” and in
the following test cases, this gives good results for Γc

discretization.
But it introduces some differences in the vicinity of

Γc, between the φ level set value and the crack front
location. Figure 9 shows the issue on a 2D example
(with lc = 0.5). In this example a little mesh (upper
right) supports a level set (values attached to nodes).
Using standard linear interpolation, an offset iso-lc
curve is plotted in green. Using the new double cut
algorithm, the Γc curve is in bold black. From this sit-
uation three elements are zoomed to provide insight on
φ(xG) computation. Here, G is the Gauss point of the
integration sub-element depicted by Γc cutting those
elements. Now there are two ways to interpolate φ(x)
on G:

– geometric linear interpolation of the element level
set values

– geometric linear interpolation of the sub-element
level set values

Clearly, in either case if we use level set values we
won’t have a value in accordance with the presence of
Γc. For example, the crack tip element (upper right ele-
ment of the mesh) has following level set values: 0.46,
0.46, 0.48. φ(x) on Γc edge node location is 0.469 and

10



0.475 from geometric linear interpolation of element
level set values (bottom right zoom).

To be always consistent with SVDF construction, the
idea is to consider that level set values on Γc nodes are
set to a value of lc. Then, computation of φ(xG) using
geometric linear interpolation of sub-element modified
level set values will be in accordance with the presence
of Γc.

Doing so, φ(x) is no longer a distance function in the
vicinity of Γc. And somehow the response of function
d() is no longer what we want in this region (It is locally
another d() function), but damage is now 1 on Γc.

4 New averaging computation

This paper modifies the computation of Ȳ (illustrated in
Fig. 2), the regularized damage energy release rate. The
following variational formulation is used to compute Ȳ :

Find Y ∈ Y , λ1 ∈ Y , λ2 ∈ Z such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

Ω+
Ȳ d

′
(φ) ˆ̄Y + h2

lc
∇Ȳ · ∇ ˆ̄YdΩ

+
∫

Ω+
lc∇λ1 · ∇φ ∇ ˆ̄Y · ∇φ dΩ

=
∫

Ω+
Yd

′
(φ) ˆ̄YdΩ ∀ ˆ̄Y ∈ Y (9a)

∫

Ω+
lc∇λ̂1 · ∇φ ∇Ȳ · ∇φ dΩ

+
∫

Γ0

lcλ2 · λ̂1dΓ = 0 ∀λ̂1 ∈ Y (9b)

∫

Γ0

lcλ̂2λ1dΓ = 0 ∀λ̂2 ∈ Z (9c)

where:

– Y and Z represent the following:

Y = {
y “regular ′′ on Ω+

}
Z = {

z “regular ′′ on Γ0
}

– d (φ) is defined by Eq. (2).
– d

′
(φ) = ∂d(φ)

∂φ

– h is the mean size of element in Ω+.

Equation (9a) is dedicated to averaging process. The
right hand side term corresponds to Y weighting sum-
mation on Ω+ where d

′
(φ) is the weighting function.

The term h2

lc
∇Ȳ .∇ ˆ̄Y is diffusion added to the smooth

averaging process.

Equation (9b) imposes Ȳ to have its gradient ∇Ȳ
orthogonal to ∇φ. This imposes an averaging process
along “flow” lines of the level set (see Fig. 2). In fact, (1)
implies that φ “flow” lines are segments connecting Γc

to Γ0 (independently of the problem dimension). Equa-
tion (9c) imposes that λ1 is zero on Γ0. If this condi-
tion was not imposed, the remaining Eqs. (9a) and (9b)
would form a singular system (λ1 would be defined up
to a constant on each segment aligned with a gradient
of φ). Equation (9c) is the main difference with the sys-
tem given in Bernard et al. (2012) where condition (9c)
was a priori imposed in space as a Dirichlet condition.

5 CPU time reduction

In damage mechanics, in the wake of the crack tip, no
evolution of damage is expected. Unless boundary con-
ditions impose drastic modifications or another crack
joins from elsewhere, the damage and crack lips defin-
ition won’t change. From this observation, one can try
to isolate those crack tips to focus computation effort
on these zones.

These regions, called active zones, or AZ hereafter,
are illustrated in Fig. 10 with an artificial TLS on a 2D
coarse mesh. In this figure two crack tips have been
identified using enrichment information, and a generic
envelope (circles) is constructed (see “Appendix 2” for
the envelope creation algorithm). Using this envelope,
elements are separated in two groups:

– the AZ group (colored elements in Fig. 10, which
are cut or inside the AZ envelope)

– the fixed group (white elements in Fig. 10)

Γc

Γ0

element in AZ

node enriched

node not enriched

identified element on tip crack

AZ envelope

elementary center of gravity

Fig. 10 Tracking crack tip by use of enrichment information:
order 1 example in 2D
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The idea is to construct an AZ group for a certain
amount of load steps so that the TLS front may progress
into it. As soon as the moving part of Γ0 reaches the
AZ boundary, a new active zone has to be considered.
But during this progression, information about the fixed
zone (φ, d, . . .) is considered constant, and the com-
putational cost may be optimized.

The bigger the AZ group, the more load steps that
benefit from optimization of the fixed group (but the
smaller this group is, the bigger is the computation for
the AZ).

In this work the matrix associated with fixed group
elements is condensed on the boundary of the AZ. Dur-
ing an AZ’s lifetime, the fixed group is viewed only by
its condensed stiffness on the frontier. The non-linear
K operator of Algorithm 1 related to a fixed group is
linearized at construction of the AZ. The Schur com-
plement resulting from this condensation needs parallel
distribution technique to handle memory consumption
related to this dense matrix. Use of direct parallel sparse
solver MUMPS6 offers a good solution both to reduce
overall linear solving time consumption and to reduce
Schur complement creation time by doing incomplete
block factorization. Following a domain decomposition
approach, the AZ group itself is also condensed on its
frontier with the fixed group. Then at each Newtown-
Raphson iteration (Algorithm 1, (II)) a dense problem
representing global system is created (by adding the
fixed group Shur complement to the current AZ con-
densed problem) and solved. In this work it is solved
with a parallel dense solver Scalapack7 (but an iterative
solver may also be considered).

One extra feature tested in this work is the use of
mixed shape function approximation order. By setting
a high order in the AZ and an order 1 outside, one
may gain computational time. For that, the size of the
common frontier between the AZ group and the fixed
group has to be kept on the order of 1 (i.e. order transi-
tion must be done in the AZ boundary element) to get
the least dense problem size possible.

Use of parallelism induces load balancing strategy.
In this work a rather specific partitioning evoked in
“Appendix 4” has been tested to stick to the AZ con-
cept. AZ performance in the context of the following
numerical example is discussed in “Appendix 5”.

6 4.10 version.
7 1.8 version.
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Fig. 11 Spherical holes test case: dimensions in mm

6 Numerical example

All material characteristics and simulation settings are
given in “Appendix 6”.

6.1 A cube with spherical holes

This test case illustrates crack merging and “search for
damage initiation” capability of the TLS framework. A
cube with four embedded spherical holes (see Fig. 11)
is under tension with a uniform loading condition on
two faces (perpendicular to y axes).

Simulation starts with an undamaged model. The
initial step searches for the maximum damage crite-
rion location. A spherical iso-zero level set is placed
at this location introducing a small damaged zone. It is
added around point A (see Fig. 11). Then, at each step,
a search is made for extra locations violating locally
the damage criterion (Y � Yc) outside the damaged
zone that has already started. As the load factor is still
slightly increasing during this part of the simulation,
extra local zones are discovered almost at every load
step (see Fig. 12 at step 4) while propagation enlarges
the initial damaged zone.

The material section between the spherical hole and
the cube face is so thin that its local degradation does not
affect the overall stiffness too much. After five steps,
the load starts decreasing, and at step 10 a crack appears

12



Fig. 12 Spherical holes test case: damage initiation locations at
step 4

(i.e. Γc). From this point almost no extra locations are
found during the simulation that violate the damage
criterion.

As given in Appendix 6, we consider for the cube
example a damage law without hardening (correspond-
ing to Fig. 3). It is clear that hardening would yield first
a diffuse damage in the cube before localization. Hard-
ening was considered in the TLS framework by Van
Der Meer and Sluys (2015) and Moës et al. (2014).

During propagation, one observes merging capabili-
ties of TLS. Figure 13 shows the behavior of the Γ0 and
Γc when, after turning around the first spherical hole,
fronts join together. First, the iso-zero of both sides of
the front merge (upper right view). As distance from
hole is less than lc, propagation continues with rather
steady Γc location (lower left view). Propagation con-
tinues and the front is sufficiently far from the hole
(more than lc), which generates a quick coalescence of
Γc front (lower right view). Here, fronts collide in a
rather simple manner as both sides are more or less at
the same y position (vertical of picture). Note that the
merging of Γ0 fronts does not imply automatic merging
of Γc fronts. Figure 14 illustrates this scenario.

Final crack location is given in Fig. 15 after 386 load
steps. The cube is split into two components.

6.2 Chalk under torsion

This test case was studied in Bordas et al. (2008) with
a mesh-free method. A cylindrical chalk bar is twisted
with two opposite torques at its extremities. Geometry
and loading are presented in Fig. 16.

Fig. 13 Spherical holes test case: merging (inside view with only skin mesh)
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Fig. 14 Undocumented test case (one crack diving under the
other) presenting correct partial merging of Γ0 fronts, but not Γc
fronts

Fig. 15 Spherical holes test case: iso-surface after 336 load
steps, Γ0 in blue, Γc in red

θ

‖→
F ‖ = ‖→

F max‖.sin θ
2

)

L= 200mm

2L
15

L
20

Fig. 16 Chalk test case

Loading is applied in a tangential direction to the
chalk surface. To stick to Bordas et al. (2008), loading
magnitude depends on the angle θ defined in Fig. 16.

Fig. 17 Chalk comparison of the final state between simula-
tion and experiment presented in Bordas et al. (2008) (Reprinted
from Bordas et al. (2008) Copyright (2007) with permission from
Elsevier)

As the object is axisymmetric, a defect must be intro-
duced to start at a defined location. In this work a simple
initial damage is set by a Γ0 small sphere with a center
at L/2 along cylindrical axes on the chalk surface. This
gives the opportunity to reduce time consumption by
using a mesh with a refined slice where a crack will
start and is expected to develop. Figure 17 presents the
result of the simulation after 103 load steps, when the
chalk is completely separated into two parts.

One observes a good agreement of crack shape
between the experiment and the simulation: the devel-
opment of a helicoid (bottom left and middle view) is
followed by a blunt finish (bottom right view) where
the crack front shape is more straight.

6.3 L shape: mode I+ III

Lorentz and Godard (2011) modified the standard L
Shape–mode I test case by introducing a supplemen-
tary lateral imposed displacement. This way mode III
is activated and the crack path is slightly modified.
Geometry and loading are presented in Fig. 18. Mesh
is refined around corner A up to extremity B.

Two types of computations have been conducted.
One with automatic damage initiation and the other
with forced damage initiation (along the corner by
setting an initial cylindrical φ of radius 1.05 × lc).
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Fig. 18 L shape: geometry and boundary conditions, dimensions
in mm, D face with displacements fixed to 0 in all directions, N
face with displacements imposed along y and z directions
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Fig. 19 L shape: force–displacement curves (along Y an Z ) with
automatic (a) or forced (b) damage initiation

This second case is to compare better with results
of Lorentz and Godard (2011), who obtained in the
corner a rather straight damage distribution. Force–
displacement curves are given in Fig. 19, and final sit-
uations are presented in Fig. 20.

Fig. 20 L shape: TLS results (a, b): iso-surface at the end of
computation, Γ0 in blue, Γc in red. Gradient method results (c).
a TLS with automatic damage initiation, b TLS with forced dam-
age initiation, c results reprinted from Lorentz and Godard (2011)
Copyright (2010) with permission from Elsevier. Damage distri-
bution with lateral z effort inverted compared to this paper

Looking at Fig. 19b, one can see that forced damage
initiation removes the initial steep snap back. Load-
displacement curves are comparable in shape to those
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Fig. 21 L shape: displacement field (scaled) at load step 120
(with automatic damage initiation)

found in Lorentz and Godard (2011). A less brutal soft-
ening mechanism like in Parrilla Gómez et al. (2015)
where Yc is a function of d (or the inclusion of a hard-
ening part), will most likely remove the steep initial
snap back even with automatic damage initiation.

Comparison in Fig. 20 shows that there is little dif-
ference between final crack shapes with respect to dam-
age initiation strategy except in the vicinity of corners.
Compared to Lorentz and Godard (2011), the crack
twists the same way, but simulation was conducted fur-
ther in this work as compression is taken into account in
the free energy (5) in Ω+. This test illustrates interest in
automatic damage initiation, which permits obtaining
a more complex crack path in vicinity of a corner.

Displacement field at load step 120 in Fig. 21 illus-
trates correct enrichment and representation of Γc. The
opening of the crack faces is very clear.

Finally, this simulation shows that the TLS model
gives equivalent results compared to another numerical
tool which uses a damage gradient method.

6.4 A spiral bevel gear

This test case mimics an industrial study on a spiral
bevel pinion gear of a helicopter transmission system
first appearing in a report by NASA Spievak et al.
(2000) and published in Spievak et al. (2001). Later

Fig. 22 Spiral bevel pinion gear: mesh, boundary condition
and loading. a Mesh general view, b central tooth mesh view,
c applied loading zone (yellow), d boundary condition (red)

Ural et al. (2005) looked again at this problem with a
new computational technique. Those studies were con-
ducted to help pinion gear designers by giving them a
crack path with use of a simulation. The purpose of this
test case is to show that the TLS method, with complex
geometry, gives good crack shape information without
specific mesh refinement and without any initial crack
placement.

From Ural et al. (2005), Spievak et al. (2001) an
approximate geometry has been rebuilt from scratch
with only three teeth. In this work no fatigue study with
varying complex loading is done as testing implemen-
tation only deals with quasi-static loading. The load
location corresponds to the highest point of single tooth
contact (HPSTC see Spievak et al. 2000). An ellipse
E on an arbitrary CAD plane P8 is projected onto
the tooth to follow Hertz contact shape. In Fig. 22c

8 Not shown here, but roughly located in front of studied tooth,
locally parallel to its face.
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it appears as a yellow zone where mesh on the surface
follows its boundary. Loading magnitude F in this zone
is computed with the following expression:

F = Hc.F0

where:

– F0 is the maximum load in this zone
– Hc coefficient is

Hc =
√

1 −
( x
a

)2 −
( y

b

)2

where x,y are the projected coordinates of a point
in this zone on plane P, with Cartesian coordinates
corresponding to center and axes of ellipse E. a
and b correspond, respectively, to major and minor
radius of ellipse E.

Figure 22d shows, in red, the clamped face (ring
at the end of the long shaft) and the connection slid-
ing pivot (cylinder on the surface of the smaller shaft).
Figure 22a, b shows a general and focused view of the
mesh. As seen, the mesh is overall much finer on the
central tooth. Element size in the refined zone is at least
lc
4 . The mesh contains 453,824 nodes.

This simulation produces the following results:

– Damage initiation (automatic) is found in the fil-
let concave part at almost mid-distance (8 % shift)
from toe and heel sides (see Fig. 22d for sides loca-
tion). This is where Ural et al. (2005) places a crack.
Only a small damaged zone is placed at this loca-
tion, which does not make any assumption on future
crack path.

– The first loading step extends this zone, and at the
9th load step a crack (Γc) is automatically placed. It
emanates from the damage initiation location (see
Fig. 23).

– Crack shape is consistent with experimental results
given in Ural et al. (2005) and reported in Fig. 24.

The general situation after 246 and 380 load steps
is depicted with iso-surfaces in Fig. 25 and with a dis-
placement field in Fig. 26.

Note that in the simulation performed, the chosen
lc length is rather large with respect to actual mate-
rial process zone size. However, the chosen material
strength and length lc do combine (Yc × lc) to produce

Fig. 23 Spiral bevel pinion gear at load step 9: in blue Γ0 and
the little red spot is the initial crack location

Fig. 24 Spiral bevel pinion gear at load step 385: comparison
with Ural et al. (2005). a TLS: lateral view (toe on right), b
TLS: cut view passing at initiation location, c results reprinted
from Ural et al. (2005) Copyright (2004) with permission from
Elsevier

Fig. 25 Spiral bevel pinion gear at load step 246: Iso-surfaces
Γ0 (blue) and Γc (red)
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Fig. 26 Spiral bevel pinion gear at load step 380: displacement
field

the proper order of magnitude for the toughness of the
material.

6.5 A quantitative comparison: three-point bending
test of a notched beam

In this section, we try to provide some insight of the
TLS method quantitative quality by doing a comparison
with a test. We chose the work by (Hoover et al. 2013),
which provides data for a size effect study on a concrete
beam under three-point bending conditions. General
beam geometry and loading are depicted in Fig. 27. Two
(out of 18) size combinations are chosen from Hoover
et al. (2013): the Bc and Cb cases (see dimensions given
by Table 2).

Force displacement curves given in Fig. 28 presents
the experimental response. CMOD (crack mouth open-
ing displacement) is measured at the bottom of the
beam between two points located symmetrically with
respect to the notch (and separated by 137 mm and 59
mm in test cases Bc and Cb, respectively).

Cohesive zone model (CZM) simulations corre-
sponding to the test case are given in Hoover and Bažant
(2014) and are reproduced in Fig. 28.

Table 2 Three-point bending test of a notched beam: dimensions
(in mm)

Label L D a S n T

Bc 516 215 16.125 467.84 1.5 40

Cb 223.2 93 13.95 202.37 1.5 40

F F

L

D

a

S

nT
Loading block

Fig. 27 Three-point bending test of a notched beam: generic
geometry and boundary conditions
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Fig. 28 Load displacement curves for notched beam cases Bc
and Cb

The idea is to compare TLS simulations with this set
of results (experiment and CZM). To model properly
behavior of concrete, the brutal softening regime of
Fig. 3 may not be used. To adopt a different softening
regime, we consider the work of Parrilla Gómez et al.
(2015) where Yc now depends on d:

Yc(d) = Y 0
c h(d) (10)

where Y 0
c is a constant.

Using Parrilla Gómez et al. (2015), the CZM
(Hoover and Bažant 2014) parameter are transformed
into TLS parameters ( h(d) and Y 0

c ).
Results given in Fig. 28 show that TLS simulations

are rather close to the test and CZM simulations. The
test peak load is obtained with an error of 2.5 and 4.5 %,
for the Bc (top) case and Cb (bottom) case, respectively
(Note that the CZM simulations do give errors of 1 %
(Bc) and 4.1 %(Cb) with respect to the test peak load).
There is a discrepancy between the last part of the post-
peak and the test. In Parrilla Gómez et al. (2015) load-
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Fig. 29 Notched beam case
Bc (a, c, e) and Cb (b, d, f):
iso surface at point A (a,b),
B (c,d), and C (e,f) of
Fig. 28, Γ0 in blue, Γc in red

CMOD curves on another test case show more accu-
rately this post-peak region. In ongoing work, Parrilla
Gomez et al. do a full comparison with Hoover et al.
(2013) in 2D and will investigate this aspect.

In Fig. 29, Γ0 and Γc are presented for points A, B,
and C. Those points, shown in Fig. 28, correspond to
curve peak (A), first appearance of Γc (B), and simula-
tion end (C). One observes that point B for both cases
arrives quite late in the process. Damage develops first
in the very long process zone. In Fig. 29e, we see that
Γc appears in a non-uniform manner. This is related

to the long process zone where, on the skeleton of φ,
damage is almost 1. Transition to damage equal to 1
with automatic introduction of Γc discontinuity is then
hard to achieve softly as the long part of the skeleton
may vary abruptly. In those simulations we chose to
slow down the damage front advance (which gives this
non-uniform intermediate state), but one other possi-
ble solution is to smooth more the transition to Γc cre-
ation by using a specific intermediate enrichment. This
might also have some effect in the last part of post-peak
curves.
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7 Conclusions and perspectives

The numerical examples presented did show the capa-
bility of the TLS to model 3D quasi-static failure of
quasi-brittle material. Although based on a damage
model, the approach exhibits displacement discontinu-
ities and crack growth. Initiation and crack coalescence
are taken into account.

The extra effort required by non-locality is restricted
to a narrow zone close to cracks (Ω+). This is in con-
trast with other non-local approaches requiring compu-
tations over the whole domain. Also, the damage update
is explicit and does not require an iterative scheme.

On the implementation side, a couple of new ideas
have been proposed. Crack extraction is based on a dou-
ble cut algorithm using a signed vector distance func-
tion. The width of the fully damaged zone is now quite
insensitive to the mesh size. The active zone concept
allows drastically reducing the computational time by
focusing only on zones where damage growth is active.

We now discuss perspectives.
Certainly, the type of damage model considered

in this paper has some limitations. The dissymmetric
behavior in tension and compression is well modeled,
but damage is only given by a scalar quantity. Dam-
age anisotropy effect would need a better description
of damage in the local model. Also, test cases were cho-
sen so that the generated cracks do not suffer contact.
The introduction of contact and more complex dam-
age representation at the local level are currently being
investigated.

As shown in this paper, the only matrix that needs to
be built and solved for damage evolution is in the eval-
uation of the average energy release rate. This matrix
assembly and solution may in fact be replaced by an
averaging technique along modes built on the damage
front and extended into the localization zones with a
fast marching technique (in Moreau et al. 2015).

Techniques using fast marching instead of the signed
vector distance function to extract the crack are also
interesting alternatives. Two-dimensional experiments
(in Chevaugeon et al. 2014) indicate that this allows
for a good precision of the crack tip location, thus φ

reshaping (Sect. 3.5.2) will no longer be needed.
The capability of the TLS to exhibit cracks and their

extraction with the double cut algorithm also allows
considering important unrefinements in the wake of
the crack and the use of classical X-FEM strategy in
these zones. Current investigations indicate that this

could reduce dramatically the number of degrees of
freedom.
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Appendix 1: Double cut algorithm details

Element cutting

Following the scheme given in Sect. 3.4, in 3D using
Hert and Schirra (2013) for convex hull computation
and Hachenberger and Kettner (2013) for subtractions,
one obtains 17 reference element cut patterns for a tetra-
hedron element as shown in Fig. 31. A cut pattern corre-
sponds to a set of edge cut points and tetrahedron node
signs that lead to a unique topological element cut. The
17 patterns do not take into account the specific metric
(single cuts are placed at the edge middle and double
cuts at one third and two thirds of the edge).

We may group some of the 17 patterns into four
different categories:

– Patterns 1 to 3 correspond to the simple cut that one
can obtain with a classical scalar level set.

– Patterns 3, 5, 6, and 9 have a potentially Γc warped
surface (four points surface) where the choice of
diagonal is arbitrary.

– Patterns 11 to 14 give non-convex negative domain
polytope (Ω+), which have to be subdivided into
convex polytopes to correctly generate sub-element
tetrahedrons. This is what appears as extra blue
edges on some element faces. It describes the sub-
cut used to split polytopes into convex ones. See
Fig. 30a for illustration of pattern 13 where a neg-
ative domain polytope was split into three convex
ones.

– Patterns 15 to 17 are termination patterns. Γc is
only present on tetrahedron boundary and no posi-
tive domain is present. For example pattern 17 may
terminate positive zone of pattern 6 (bottom face).
Those choices are arbitrary.

In Table 3, the number of possible permutations from
each pattern is given. Without close node treatment, a
total of 111 permutations have to be handled. With close
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Fig. 30 Convexity and close node treatment illustrations. a
Tetrahedron negative domain polytope splitting: out of the ini-
tial domain, three convex polytopes are created for pattern 13 of
Fig. 31, b pattern 5 of Fig. 31 with two cut nodes from the same
edge collapsing, and one cut node for two edges collapsing on
one node of the tetrahedron

node treatment, some polytopes change and no longer
give null sub-elements for integration. See Fig. 30b for
an illustration where one of the negative domain parts
reduces to a single tetrahedron producing one instead
of three tetrahedrons for integration. This is interesting
when some specific extra computation is made with
those sub-elements (for example, some fluid flow in
the crack) and null volume is an issue. For this work
we could have used those null sub-elements. But, in
creating a tool to handle a double cut algorithm, we
chose to be a bit more general from the start, and elim-
inated null volume sub-elements. This leads to close

Table 3 Number of possible topological permutations obtained
by using elemental topological rotation and symmetry

Patterns Number of possible permutations with or
without close node treatment

Without With

1 4 108

2 4 108

3 6 486

4 4 208

5 3 336

6 12 1056

7 6 294

8 4 740

9 6 1488

10 1 545

11 12 1368

12 12 624

13 12 504

14 3 72

15 4 180

16 6 42

17 12 240

Total 111 8399

node treatment handling 8399 permutations. From an
implementation point of view, a natural choice is to use
a database to hold all those patterns. The cutting proce-
dure reduces then to cut edges and query the database
with edge cut pattern as a search key. The database
gives then integration cells and topological relations
for enrichment identification (number of independent
support parts).

Comparison between single and double cut algorithms

To illustrate how single and double cut algorithms per-
form, we consider the surface of a hammerhead shark
(from Lutz Kettner’s home page at the Max Planck
Institute: https://people.mpi-inf.mpg.de/~kettner/proj/
obj3d/ discretized with triangles) plunged into unstruc-
tured meshes of an increasing number of elements (see
Fig. 32). For each mesh a level set and a signed vec-
tor distance function are computed from the shark’s
surface. Associated cutting algorithms are then used.
Fins appear sooner with the double cut algorithm, as
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Fig. 31 Tetrahedron
topological cut patterns: red
zone corresponds to positive
domain. On each edge, the
red segments are in the
positive domain, the blue
segments are in the negative
domain, and the grey
segments are in the iso-lc
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expected since this algorithm detects layers even if they
are embedded inside an element. Less expected is that
even in rather simple zones such as the shark’s body
the use of a signed vector distance function gives bet-
ter accuracy. Two reasons may be pointed out, more
accurate cut locations with the SVDF and the possibil-
ity of a warped iso-contour inside elements (patterns 3,
5, 6, and 9).

Appendix 2: Active zone envelope creation

In this work the AZ was constructed by using enrich-
ment information around Γc. In Fig. 10 all nodes of
elements topologically cut by Γc have been analyzed.
Blue circle nodes correspond to non-enriched nodes
and green stars to enriched ones. The idea is to con-
sider that at crack tips, there always exists at least
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Fig. 32 Iso-contours
obtained with a single (left)
or double (right) cut
algorithm for a hammerhead
shark reference shape (top).
Meshes used are more and
more refined from top to
bottom
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Fig. 33 Chalk test case: in orange the AZ envelope embedding
crack tip, in blue Γ0 and in red Γc. a Simulation start, b middle
of the simulation, c end of the simulation

one element made only of non-enriched nodes. This
is not possible in the wake of the crack as Γc is always
splitting into two (or more) parts, support of nodes. In
Fig. 10 identified elements (in cyan) are both used to
compute (elementary center of gravity) centers of cir-
cle (sphere in 3D) used to localize AZ. The union of
those circles is what we call the AZ envelope. Follow-
ing the above explanation, a proposed method is given
in Algorithm 2. It uses RAZ , a chosen radius, to con-
struct a sphere corresponding to the AZ envelope.

Figure 33 illustrates crack tip tracking by AZ enve-
lope (in orange) at some stages in simulation of the
chalk test case.

When searching for damage initiation outside the
damaged zone and a small damaged sphere is added, a
new AZ must be created to encapsulate this extra zone.

Algorithm 2 provides a good to moderate AZ enve-
lope. It is in default when the RAZ is too small and
Γ0 moves more rapidly than Γc. Another problem,
observed in tests, is the presence of a zone of crack
where lips are not fully detached or a crack region

Algorithm 2 Algorithm used to create AZ envelop.
for a given RAZ radius
for each element e topologically cut by �c do

a = 0
for each node n of e do

compute the number k of distinct parts of n support
if k = 1 then

a = a + 1
end if

end for
if a equals the number of nodes of e then

store e gravity center point in table T
end if

end for
if extra spheres are added by damage initiation search then

store or delete their center points in table T if sphere is
isolated or absorbed by a front

end if
if T �= 	 then

create AZ envelope by taking union of spheres with points
of T for center and RAZ for radius

else
use a shifted iso-zero location for AZ envelope

end if

including a full element, which induces the presence
of points in T for unnecessary reasons.

Appendix 3: Modification in stagger algorithm

Use of AZ modifies stagger Algorithm 1 and give new
Algorithm 3. The ˜ represent condensed operator. G is
the expansion operator from condensed to full domain.

Algorithm 3 Modified staggered algorithm scheme.

Starting from ui , di , and μi

repeat
Find di+1 such that di+1 = g

(
μi , ui

)
Eliminate fixed zone from problem for any new AZ
Find (ui+1, μi+1) such that⎧⎪⎪⎨

⎪⎪⎩

K̃
(
di+1, ũi+1

)
ũi+1 = F̃

(
μi+1

)

ui+1 = Gũi+1

max
k

(
fk

(
μi+1, ui+1

)) = 0

until Complete failure or user given load level

In Algorithm 3 application of the g operator must be
analyzed to check that Γ0 evolution is only observed in
the AZ envelope. Otherwise, a new AZ must be con-
structed. This is because the nonlinear material law of
damaged elements in the fixed zone is assumed to be
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Fig. 34 Partitioning: a four-process example in 2D, each color
represents a set of elements treated by a process

linearized at the creation of the AZ, and the associated
condensed tangent matrix is kept constant during all
load steps until the next AZ creation.

Appendix 4: Load balancing

With Algorithm 3 four assemblies appear. AZ groups
are separated into linear (in Ω−) and nonlinear (in Ω+)
element groups. Fixed groups are also separated into
linear (in Ω−) and nonlinear (in Ω+) element groups.
Those four groups of elements are then partitioned to
obtain a good load balancing for assembly computa-
tion.

Partitioning zones are treated with ParaMetis9 in this
work. Figure 34 depicts in a 2D example those four
partitioning zones. On the right, the fixed zone is cre-
ated only when a new AZ is computed and linear and
nonlinear assemblies are created independently. On the
left, the AZ, here made of two circles around the tips
of an oblique crack, is also split for linear and nonlin-
ear independent assembly. During load steps those two
partitioning sets are kept unchanged. A mix of them
is used, depending on Γ0 location. This is expected to
offer a good load balancing during all load steps until
the next AZ creation.

A more ad hoc partitioning would be to start from a
partitioned Γ0 and by some coloring algorithm expand
this initial partitioning to AZ and fixed zone. This
would give a priori a more equilibrated partitioning
with less frontiers. This would open up the possible

9 3.1.1 version.

Table 4 Test elapsed time in hours (h) or days (d) with four
cluster nodes made of four AMD Opteron 6328 at 3.192 GHz
(eight cores) and InfiniBand network 4× DDR

Test case Elapse time Number of
processes

L shape (6.3) 6.17 h 16

Chalk (6.2) 5.43 h 24

Spherical Holes (6.1) 9.25 h 24

Spiral bevel gear (6.4) 1.6 d (up to step 246) 48

strategy of splitting the AZ (which grow in 3D) to do
a kind of oriented domain decomposition.

Appendix 5: Computation time performance

In terms of computation time performance, state-of-
the-art elapsed time for all test cases is given in Table 4
except for Sect. 6.5 test case.10 Elapsed time is a rather
blunt measure as it takes into account network bottle-
neck, un-optimized parts, and operating system load-
ing. But it gives a general idea of time consumption on
a modest cluster with the in-house code implemented
in C++. Note that the older spherical holes test case was
not re-computed with the AZ. The elapsed time given
in the table corresponds to a pre-AZ version without
condensation.

The AZ was very helpful for the spiral bevel pin-
ion gear test case where the model is large (453,824
nodes) from the start. The gain is especially high for
the first load step, thanks to a small AZ envelope. As
mentioned in “Appendix 2”, AZ determination is in
default in some cases, as in this simulation. Instead of
a decreasing envelope size at the end of the computation
as the damage front reaches part of the boundary (as in
Fig. 33, for example), the AZ increases due to spurious
detection. Times given in Table 4 correspond to com-
putations up to load step 246 (see Fig. 25) where the
AZ envelope is almost what we expect. To reach load
step 385, an extra 4.4 days were used. Again, here the
AZ is not ideal during those last load steps, and future
work will hopefully reduce the time consumption.

10 For these notched beam tests, element size (lc/20) is too small
for current in-house code implementation and performance is
irrelevant (parts not treated by the method exposed in this paper
are too expensive).
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Table 5 Spiral bevel pinion gear computation times in hours
(the 246 first load steps)

Item Elapsed time % of total

Total 37.93 100

Mechanical problem
resolution Algorithm 1 II

23.68 62.42

TLS update Algorithm 1 I+III 13.12 34.59

AZ creation 0.32 0.84

Other 0.82 2.16

Table 6 Spiral bevel pinion gear detailed computation times for
mechanical problem resolution in hours (the 246 first load steps)

Item Elapsed
time

% of total % of task

Mechanical problem
resolution Algorithm 1 II

23.68 62.42 100

System creation
(Integration + assemble)

0.63 1.66 2.65

Algebraic system resolution 18.68 49.25 78.91

Dof update and results
output

2.21 5.82 9.33

Matrix structure creation,
parallel task, nonlinear
resolution, …

2.16 5.69 9.11

Table 7 Spiral bevel pinion gear detailed computation times for
TLS update in hours (the 246 first load steps)

Item Elapsed
time

% of
total

% of
task

TLS update Algorithm 1 I+III 13.12 34.59 100

Ȳ computation Sect. 3.5 5.24 13.8 39.9

Update domain (Γ0 and Γc creation) 2.72 7.17 20.74

Update φ and other 5.16 13.61 39.35

For insight into which part of the computation con-
sumes CPU time in a rather intensive simulation, the
spiral bevel pinion gear test case was profiled. Results
for the first 246 load steps are given in Tables 5, 6, and
7. The first table presents global dispatching of com-
putation time.

First, regarding the TLS update task detailed in
Table 7, it participates for 34.59 % of the total simu-
lation elapsed time, which is not negligible. The main
consumers are Ȳ and φ update computation. Neither
task is well parallelized. As mentioned in the conclu-
sion, fast marching techniques will replace those com-

Table 8 Computation times in hours for the L shape test case
with different order strategies and 16 processes

Order Elapse time

1 1.75

2 21.8

Mixed 1/2 6.17

putations and, in particular, the algebraic system reso-
lution attached to them.

Note that the new double cut algorithm proposed in
this paper is not a high computation time consumer. It is
embedded in the update domain item, which represents
only 7.17 % of the total simulation elapsed time without
being parallelized.

Secondly, regarding global dispatching, effort put
into reducing mechanical problem resolution with the
use of parallelism, AZ techniques, and mixed order are
well justified as this task remains the most important
consumer. Detailed in Table 6 it is mostly (78.91 %),
penalized by algebraic resolution (factorization, con-
densation, solving, …). Matrix creation (elementary
creation and assembly), despite use of sub-elements
for integration (X-FEM technique), are not greedy in
terms of time consumption. Parallelism and good load
balancing (see “Appendix 4”) keeps consumption low.
Remaining sequential computation like dof updates
will have to be treated in parallel in the future.

Mixed order extra features have been tested on the
L shape test case. With the same mesh, 16 processes in
all cases, elapsed time given in Table 8 shows big gain
(divided by 3.5) of mixed order compared to full order
2, mainly by having a smaller dense problem to create
and solve. From a numerical point of view, results are
the same as shown by the force-displacement curve
presented in Fig. 35. This mixed order strategy will
make more sense when used with coarser mesh.

Finally, AZ performances are illustrated again with
the spiral bevel pinion gear test case intensive sim-
ulation. In Table 9 elapsed times after 80 load steps
are given in different configurations. Upper left results
correspond to sequential computations with no AZ or
condensation. It is more or less the implementation
of Bernard et al. (2012) in terms of mechanical prob-
lem resolution. It is somehow the starting point of this
work. On one hand, introduction of AZ and condensa-
tion (upper right) reduces time consumption by 6.35.
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Fig. 35 Mixed order comparison: force displacement curves, Y
component, L shape test case (abscissa is the imposed displace-
ment, ordinate is the resultant force on clamped face)

This by itself validates interest in this technique. On the
other hand, applying parallel computation on hot points
(lower left) reduces time consumption by 8.56. Then,
applying parallel computation on AZ technique (lower
right) decreases time consumption by 3.25. If CPU
times for mechanical problem computation is extracted
from the global time, it is a ratio of 8.08, which is in fact
encountered. This illustrates the good choice of paral-
lel technique with condensed resolution. We can add
that memory consumption becomes an issue with con-
densation if no parallel distribution of the dense system

Table 9 Elapsed time computations for spiral bevel pinion gears
(Sect. 6.4) in hours up to the 80th load step. Comparison between
sequential and parallel versions with or without AZ. Ratio cor-
responds to comparison per column, line, and diagonal

Without AZ With AZ ratio

1 process 113.18 17.82 6.35

48 processes 13.22 5.48 2.41

Ratio 8.56 3.25 20.64

is done. In parallel, use of AZ technique reduces time
consumption by 2.41, which is less than in sequential,
but still interesting. Compared to the non-AZ sequen-
tial version, adding both strategies, as proposed in this
work, reduces time consumption by 20.64. This last
result somehow relativizes the remark above about non-
corrected AZ in the last load step of this simulation.

Appendix 6: Material characteristics and simula-
tion parameters

Material characteristics and parameters of the model
used in this article are in Table 10.

For the test case in Sect. 6.5, the critical energy
release rate is a function of the damage. This function
is constructed by use of an equivalence with a bilinear
cohesive zone model has stated in Parrilla Gómez et al.

Table 10 Simulation parameter set

Test case L shape (6.3) Chalk (6.2) Spherical Holes (6.1) Spiral bevel gear (6.4) Tree point bending (6.5)

material PMMA Chalk PMMA Steel AISI9310 Concrete

Elastic Parameter:

Young Modulus (N/mm2) 25850 2000 2800 206844 41240

Poison Ration 0.18 0.18 0.38 0.3 0.174

Numerical approximation:

Order 1 mixed 1/2 1 1 1

Number of nodes 20 809 12 934 92 746 453 824 452 598 (Bc) 171 240(Cb)

Local damage model Parameter:

Yc (N/mm2) 0.00095 0.0125 0.06 54.83 Y 0
c .h(d)

Traction/compression parameter β 0 0 1 0 0

TLS Parameter:

lc (mm) 100 4 10 0.7 20

d(φ)

⎧⎪⎨
⎪⎩

0 for φ < 0(
φ
lc

)2 (
3 − 2 φ

lc

)
for 0 � φ � lc

1 for lc < φ

⎧⎪⎨
⎪⎩

0 for φ < 0
φ
lc

(
2 − φ

lc

)
for 0 � φ � lc

1 for lc < φ
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Fig. 36 Bilinear cohesive zone softening law in terms of stress
versus opening displacement

Table 11 Bilinear cohesive zone softening law coefficients from
Hoover and Bažant (2014)

Values

σ f 3.92 MPa

σk 0.588 MPa

w1 25.3µm

w f 94.8µm

(2015). The four extra details mandatory to describe
Y 0

c h(d) are from a description of the bilinear soften-
ing law given in terms of stress versus opening dis-
placement (see Fig. 36). Table 11 gives value fitted by
Hoover and Bažant (2014) and used in this paper.
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