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Introduction

Self-distributive (SD) structures sporadically appeared in mathematics since the late 19th century, but became a subject of systematic study only in the 1980's, when it was realized that they give powerful and easily computable invariants of braids, knots, and their higher-dimensional analogues. Around the same time they emerged in the large cardinal theory. In these two contexts, self-distributivity can be seen as the algebraic distillation of • Reidemeister move III;

• the properties of iterations of elementary embeddings. A combination of these viewpoints lead to an unexpected total order on the braid groups B n . Later SD reappeared in the classification of Hopf algebras and in the integration problem for Leibniz algebras. Its role in the study of the Yang-Baxter equation (YBE) was unveiled even more recently. This last application is the subject of the present survey. Our aim is to assemble relevant constructions and results scattered in different papers, and outline the state-of-the-art of the subject.

We will start with a classical introduction of SD from the knot-theoretic viewpoint (Section 2). It is based on diagram colorings, of which Fox 3-colorings are the simplest example. Besides being the most intuitive, this approach allows us to develop a braid-based graphical calculus, useful in subsequent sections. Another reason for including this standard material in our survey is to prepare the ground for analogous constructions based on the YBE. In Section 3 we will describe a cohomology theory for SD structures, still sticking to the knottheoretic perspective. The content of these sections is essentially classical, so we omit most references and historical remarks for brevity; cf. the excellent surveys [Deh00, Car12, EN15, Prz15, Kam16, Nos17] for more detail.

In Section 4, after a reminder on the Yang-Baxter equation (YBE), we will see how to construct its solutions out of SD structures; this is fairly classical. Far less known is the opposite direction: to a wide class of YBE solutions we will associate SD structures capturing their key properties. In particular, the canonical actions of the B n on the powers of a YBE solution and on the powers of its associated SD structure are isomorphic. For knot theory this is bad news: compared to SD structures, YBE solutions yield no new braid or knot invariants. However, this might change if one enriches the coloring counting invariants by Boltzmann weights, given by 2-cocycles (or n-cocycles if one considers (n -1)-dimensional knottings in R n+1 ). In the YBE case, these cocycles can be taken either from braided or from birack cohomology, recalled in Section 5. These cohomologies appeared in different contexts, and both generalize SD cohomology. Reusing algebraic and graphical tools from Section 4, we will provide an explicit equivalence of the two theories in the cases where both are defined. Even though this is not a genuine application of SD to the YBE, the connecting map between the two cochain complexes would have been difficult to come up with if it has not been available from the associated SD structure study.

In spite of substantial research activity in the field, YBE solutions still retain a lot of open questions. Thus, their classification is for the moment out of reach. Also, computation techniques for the cohomology of YBE solutions are scarce, and the cohomological behaviour remains mysterious even for the most basic families of solutions. SD structures might shed new light onto these questions. For instance, it would be helpful to establish relations between the cohomology of a YBE solution and that of its associated SD structure, given that our conceptual and computational mastery of the SD cohomology is much more advanced; see the latest works [FRS07, PY15, Nos15, Szy16, GIV17] and references therein. The existence of such relations is suggested by the explicit connecting map between the cohomologies of a YBE solution and its associated monoid; cf. Section 5 for more details. The associated monoids are also at the heart of the two-step classification strategy for YBE solutions [START_REF] Cedó | Involutive Yang-Baxter groups[END_REF], according to which one first classifies possible associated monoids, and then for each of them the corresponding solutions. It is natural to ask if a similar strategy with associated SD structures instead of monoids could be successful, bearing in mind the recent progress on classification of important classes of SD structures [START_REF] Vendramin | On the classification of quandles of low order[END_REF][START_REF] Hulpke | Connected quandles and transitive groups[END_REF]. The associated SD structure and monoid constructions can be seen as projection functors from the category of YBE solutions to the categories of SD structures and monoids respectively. Their sections are the corresponding inclusion functors. The "kernel" of the first projection is well understood: the associated SD structure is trivial precisely for involutive solutions (particularly well studied by algebraists). The "kernel" of the second one is still a mystery. A projection to the category of involutive solutions is also missing. To prove something about YBE solutions, it is often helpful to first look at (some of) these three particular families, summarized in Fig. 1 (here the intersection of the three families consists of the trivial 1-element solution). A better understanding of the interactions between these "three axes" of the variety of YBE solutions, and in particular of the place of self-distributivity in the picture, would lead to essential progress in the area. See [START_REF] Lebed | Homology of left non-degenerate set-theoretic solutions to the Yang-Baxter equation[END_REF][START_REF] Lebed | On structure groups of set-theoretic solutions to the Yang-Baxter equation[END_REF] for details and examples.

SD structures

Self-distributivity from a knot-theoretic viewpoint

Consider a set S endowed with a binary operation ⊳. A group with the conjugation operation a ⊳ b = b -1 ab will be our motivating example. Taking inspiration from the Wirtinger presentation of the knot group, which is read off any of the knot's diagrams, let us consider S-colorings of a braid or knot diagram D. Concretely, we call the arcs of D its parts delimited by the crossing points, denote by A(D) the set of all such arcs, and define an S-coloring of D to be any map A(D) → S satisfying around each crossing the rules from Fig. 2. To extract invariants from such colorings, we need each relevant Reidemeister move to change colorings only locally, i.e., inside the ball where the R-move took place. As can be seen from Fig. 3, for the RIII move this is equivalent to the self-distributivity (SD) of ⊳:

(1) (a ⊳ b) ⊳ c = (a ⊳ c) ⊳ (b ⊳ c).
Note that on each side of Fig. 3, the colors of the three leftmost arcs uniquely determine all the colors in the diagram. In particular, this means that color propagation from left to right using coloring rules, as depicted in Fig. 4, defines an action of the positive braid monoids B + n on the cartesian powers S n of an SD structure (S, ⊳). To extend this action to an action of the whole braid groups B n , we should check the effect of the RII move on colorings. Finally, to work with knots (as usual, by knots we mean knots and links in this paper), we should add the RI move in the picture. Algebraic counterparts of these moves are summarized in Table 1. Note that the idempotence axiom can be topologically interpreted in two ways:

(1) as the RI move;

(2) as the triviality of the B n -action on the diagonal part of S n , that is, on the image of the map S → S n , a → (a, . . . , a). Note also that the terminology presented in the table is "accumulative". Thus, to be called a quandle, the data (S, ⊳) should satisfy the axioms from the corresponding row and all the rows above. 1. A correspondence between braid actions, R-moves, and algebraic axioms Self-distributivity unifies diverse braid and knot theory gadgets in a convenient combinatorial framework. For braids, some of them are assembled in Table 2. The corresponding B (+) n -actions yield the indicated representations or other braid group properties in a more or less straightforward way. Observe that for the Burau representation, modding out the diagonal part (mentioned in Table 1) yields reduced Burau. For a discussion of potential braid-theoretic applications of Laver tables, see [START_REF] Dehornoy | Two-and three-cocycles for Laver tables[END_REF][START_REF] Dehornoy | Laver's results and low-dimensional topology[END_REF]. The last row is the author's work in progress.

B + n → End(S n ) RIII (a ⊳ b) ⊳ c = (a ⊳ c) ⊳ (b ⊳ c) shelf B n → Aut(S n ) RII ∀b, a → a ⊳ b is invertible rack S ֒→ (S n ) Bn RI a ⊳ a = a quandle Table

S

a ⊳ b name in braid theory group b -1 ab conjugation quandle Artin: 1 implies that, given a quandle (S, ⊳) and two knot diagrams D, D ′ related by an R-move, there is an explicit bijection (2)

B n ֒→ Aut(F n ) Z[t ±1 ] -mod. ta + (1 -t)b Alexander quandle Burau: B n → GL n (Z[t ± ]) Z a +
Col S (D)

1:1 ←→ Col S (D ′ )
between their S-coloring sets. In particular, the number of S-colorings yields a knot invariant. These invariants are interesting for several reasons: they are • easy to evaluate, especially by a computer;

• many, as small quandles are numerous;

• powerful, since related to the fundamental quandle Q(K) of a knot K, which is a weak universal knot invariant. More precisely, the number of S-colorings can be computed in three different ways:

(3) #Col S (D) = # Hom Qu (Q(K), S) = Tr(ρ S (β)).
Here

• D is any diagram of the knot K;

• Hom Qu is the set of quandle homomorphisms between two quandles;

• β ∈ B n (for some n) is any braid with closure(β) = K; • ρ S : B n → Aut(S n
) is the coloring action discussed above;

• Tr is the trace (i.e., the number of fixed points) of an endomorphism of S n . In particular, if two quandles yield isomorphic braid group actions, then they yield the same knot invariants.

Table 3 contains basic examples of SD-interpreted knot invariants.

quandle in knot theory conjugation representations of the knot group Alexander

Alexander polynomial Table 3. Examples of quandles and corresponding knot invariants Self-distributive techniques can also be adapted to other topological objects: virtual and welded braids and knots; knotted surfaces and, more generally, (n -1)dimensional knottings in R n+1 [START_REF] Józef | Cocycle invariants of codimension 2 embeddings of manifolds[END_REF]; knotted graphs and foams [CLY18] etc.

Self-distributive cohomology

Take a quandle (S, ⊳) and two knot diagrams D, D ′ related by an R-move. So far, the only invariant we have extracted from the explicit bijection (2) between the S-coloring sets of the two diagrams is the cardinality of these sets. We will now show how to get much more information out of it.

Let us start with very general data: a shelf (S, ⊳) and a map φ : S × S → Z n (or any abelian group instead of Z n ), called the weight map. The φ-weight of a braid or knot diagram D endowed with an S-coloring C is defined as

(4) ω φ (D, C) = b a ±φ(a, b).
Here the sum is taken over all crossings of D, and ± is the crossing sign. We want the coloring bijection (2) (valid for braids as well as knots) to induce the equality of the multi-sets of φ-weights:

(5) { φ(D, C) | C ∈ Col S (D) } = { φ(D ′ , C) | C ∈ Col S (D ′ ) }.
For braids, one can restrict the colorings considered to those with prescribed values on the leftmost and rightmost ends. Instead of multi-sets, one could also work with polynomials

C∈Col S (D) t ω φ (D,C) ∈ Z[t ±1 ]/(t n -1).
The desired equality holds if the relevant R-moves do not change ω φ (D, C), which imposes algebraic conditions on φ summarized in Table 4. Note that a quandle 2cocycle should satisfy both conditions from the table. Also, the RII move is taken Also, contrary to coloring invariants, quandle cocycle invariants detect knot chirality. See [START_REF] Clark | Quandle colorings of knots and applications[END_REF] for computational aspects of these invariants, which suggest that quandle cocycle invariants for finite quandles (and in fact for only a small number of those) might distinguish all knots. See [START_REF] Inoue | Quandle homology and complex volume[END_REF] for an interpretation of fairly involved knot invariants, such as the complex volume and the Chern-Simons invariant, in terms of quandle cocycles. The word "cocycle" above is certainly not accidental. It refers to the rack cohomology H k R (S, Z n ) of a shelf (S, ⊳), computed using the following cochain complex:

RIII φ(a, b) + φ(a ⊳ b, c) = φ(a, c) + φ(a ⊳ c, b ⊳ c) rack 2-cocycle RII automatic RI φ(a, a) = 0 quandle 2-cocycle Table 4. R-
C k R (S, Z n ) = Map(S k , Z n ), (d k R f )(a 1 , . . . , a k+1 ) = k+1 i=1 (-1) i-1 (f (a 1 , . . . , a i , . . . , a k+1 ) -f (a 1 ⊳ a i , . . . , a i-1 ⊳ a i , a i+1 , . . . , a k+1 )).
Here a i means that the entry a i is omitted. To get the quandle cohomology

H k Q (S, Z n ) of a quandle (S, ⊳), simply restrict this complex to C k Q (S, Z n ) = { f : S k → Z n | f (. . . , a, a, . . .) = 0 }.
Generalizing the above procedure, one gets invariants of (n -1)-dimensional knottings in R n+1 out of rack/quandle n-cocycles [START_REF] Józef | Cocycle invariants of codimension 2 embeddings of manifolds[END_REF]. Rack cohomology has several other, purely algebraic applications:

• pointed Hopf algebra classification [START_REF] Andruskiewitsch | From racks to pointed Hopf algebras[END_REF];

• extension and deformation theories for SD structures [START_REF] Carter | Diagrammatic computations for quandles and cocycle knot invariants[END_REF][START_REF] Jackson | Extensions of racks and quandles[END_REF].

4. From self-distributivity to the Yang-Baxter equation, and back

In the coloring rules from Fig. 2, we were somewhat discriminating the upper strands: contrary to the lower strands, they were not allowed to change color. One could define S-colorings by the more symmetric rules from Fig. 7 The SD setting is recovered by taking

(6) σ SD (a, b) = σ ⊳ (a, b) = (b, a ⊳ b).
Again, every R-move corresponds to a condition on σ, as indicated in Table 5. 5. R-moves translated as conditions on the map σ As usual, the terminology on the right of the table is accumulative. Algebraists often talk about invertible non-degenerate solutions instead of biracks. The birack axioms can be interpreted in terms of S-colorings as follows: any two neighboring colors around a crossing uniquely determine the two remaining colors.

RIII set-theoretic YBE: σ 1 σ 2 σ 1 = σ 2 σ 1 σ 2 braided set RII σ invertible & ∀b,
The most interesting move is RIII, translated by the set-theoretic Yang-Baxter equation (YBE):

(7) σ 1 σ 2 σ 1 = σ 2 σ 1 σ 2 : S 3 → S 3 , where σ 1 = σ × Id S , σ 2 = Id S ×σ.
The more traditional linear YBE appears when S is a vector space, all cartesian products are replaced with tensor products, and σ is a linear map. Originating from physics, this equation is now present in purely mathematical domains as well. Quantum groups, for example, were specifically designed to produce YBE solutions. The classification of YBE solutions is at present out of reach. It has been obtained only for S of dimension 2, using computer-aided Gröbner basis methods [START_REF] Hietarinta | Solving the two-dimensional constant quantum Yang-Baxter equation[END_REF]. But it is still unclear how this variety of 96 solutions (up to certain transformations) is organized. A reasonable first step, as suggested by Drinfel ′ d, could be the classification of all set-theoretic solutions, followed by an analysis of linear solutions obtained by the following procedure: set-theoretic solutions linearize deform linear solutions.

For instance, this procedure transforms the flip solution into the linear solutions originating from quantum groups:

σ(a, b) = (b, a) R-matrices.
The flip also yields a more exotic solution family [Cra04, CCES08, Leb13]:

σ(a, b) = (b, a) σ Lie (a ⊗ b) = b ⊗ a + 1 ⊗ [a, b],
where [ ] is a bilinear product, is an invertible scalar, and 1 is a central element ([1, a] = [a, 1] = 0), which can be adjoined to S if needed. For this map, the YBE has a particularly nice interpretation:

YBE for σ Lie ⇐⇒ Leibniz relation for [ ].
Here the Leibniz relation is taken in the form

[a, [b, c]] = [[a, b], c] -[[a, c], b].
Another exotic example is the set-theoretic solution

σ Ass (a, b) = (a * b, 1),
where * is a binary operation on S, and 1 is a left unit (1 * a = a). Here again the YBE has a remarkable interpretation:

YBE for σ Ass ⇐⇒ associativity for * .

Finally, recalling the map σ SD from (6), one has YBE for σ SD ⇐⇒ SD for ⊳ . This is not surprising: both conditions are dictated by the RIII move. Thus, YBE solutions encapsulate such important algebraic structures as monoids, Lie (and even Leibniz) algebras, and SD structures; see Table 6, and also Fig. 1 and the preceding discussion. For consequences of this unification, see [START_REF] Lebed | Homologies of algebraic structures via braidings and quantum shuffles[END_REF].

algebraic structure YBE solution shelf σ SD (a, b) = (b, a ⊳ b) monoid σ Ass (a, b) = (a * b, 1) Lie algebra σ Lie (a ⊗ b) = b ⊗ a + 1 ⊗ [a, b] Table 6.

YBE solutions constructed out of basic algebraic structures

Let us now return to low-dimensional topology. Its relations with the YBE are twofold. On the one hand, Table 5 implies that

• for a birack (S, ⊳), S-colorings define a B n -action on S n ;

• a biquandle (S, ⊳) yields coloring counting invariants of knots. In the opposite direction, braids provide a graphical calculus which is instrumental in exploring YBE solutions, as we will see in this and the next sections. In particular, we will now use it to explain why, in spite of the seemingly greater generality, birack/biquandle colorings give nothing new compared to SD structures.

To do this, we will complete the category inclusion Rack ֒→ Birack given by (6) with a retraction going in the opposite direction, following [Sol00, LYZ00, LV17]. This can be done for more general left non-degenerate braided sets (i.e., having the maps b → b a invertible for all a), but for our purposes biracks are sufficient. The construction and its properties can be summarized as follows: • given a birack (S, σ), define a binary operation ⊳ σ on S by the diagram in Fig. 8; there the colors a and b uniquely determine the colors of all other arcs, and a ⊳ σ b is taken to be the rightmost bottom color; • the resulting structure (S, ⊳ σ ) is a rack, called the structure rack or the associated rack of (S, σ); • this defines a functor Birack ։ Rack, which can be seen as a projection along involutive biracks, in the sense that: -⊳ σ⊳ =⊳, i.e., the composition Rack ֒→ Birack ։ Rack is the identity functor (in words, the structure rack of a birack constructed out of a rack is the original rack);

-⊳ σ is trivial (a ⊳ σ b = a)
⇐⇒ σ 2 = Id; • the structure rack remembers a lot about the birack:

-(S, ⊳ σ ) is a quandle ⇐⇒ (S, σ) is a biquandle; -σ and ⊳ σ induce isomorphic B n -actions on S n . These properties imply that rack and birack colorings yield the same braid invariants. Recalling (3), one concludes that quandle and biquandle colorings yield the same knot invariants.

Probably the most enlightening proofs of the properties of ⊳ σ use diagrammatic arguments. Here we will give two of them. First, the self-distributivity of ⊳ σ can be established by following through the upper one, and determine the colors of the arcs created on the way. In the end, the upper color can be determined in two ways-from the final diagram (where one recognizes the situation from the definition of ⊳ σ ), or carried from the preceding one. The equality of the two expressions is the desired SD property.

Second, to compare the B n -actions induced by σ & ⊳ σ , consider the guitar map J : S n -→ S n , (a 1 , . . . , a n ) -→ (a 1 , (a 2 ) a1 , (a 3 ) a2a1 , . . .).

We used simplified notations (a 3 ) a2a1 = ((a 3 ) a2 ) a1 etc. Fig. 10 presents J graphically: when the colors a n , . . . , a 1 are propagated along the left diagram, the n rightmost colors yield J(a 1 , . . . , a n ), as shown in the right diagram. The guitar map appeared under different names and at different levels of generality in [ESS99, Sol00, LYZ00, LV17]. We will meet it again in the next section. Note that it is well defined for any braided set. ; this is the remarkable map from [START_REF] Józef | Distributivity versus associativity in the homology theory of algebraic structures[END_REF]; note that we are using here the mirror version of the YB operator σ SD from (6);

(3) σ 2 = Id the map Ω from the right-cyclic calculus [START_REF] Dehornoy | Set-theoretic solutions of the Yang-Baxter equation, RC-calculus, and Garside germs[END_REF]. Among the remarkable properties of the guitar map for a birack (S, σ), the two that are relevant to us are:

• J is invertible;

• Jσ i = σ ′ i J, where σ ′ = σ ⊳ σ : (a, b) → (b, a ⊳ σ b)
is the YB operator built from the structure rack of (S, σ), and

σ i = Id i-1 S ×σ × Id n-i-1 S ,
and similarly for σ ′ i . These properties imply that σ and ⊳ σ yield isomorphic B n -actions on S n , without the biracks (S, σ) and (S, σ ′ ) being isomorphic in general.

As usual, the relation Jσ i = σ ′ i J can be proved graphically. In Fig. 11, the colors of the rightmost arcs in the bottom diagram are calculated in two ways: from the upper left (blue labels) and the upper right diagrams (red labels). In both cases, the lower colors a 1 , . . . , a n are propagated throughout the diagrams. 

i = σ ′ i J (here n = 4, i = 2)

Braided cohomology vs. birack cohomology

We have seen that, as far as coloring invariants are concerned, general biracks and biquandles are no better than racks and quandles. Things might change if weights are brought into the picture. Even if these upgraded invariants are not well studied yet, the cohomology theory of YBE solutions, which controls the weights, is of interest in its own right. In this section we will review its two forms, and establish their isomorphism using the guitar map from the previous section.

The braided cohomology H k Br (S, Z n ) of a braided set (S, σ) is defined as the cohomology of the following complex [START_REF] Carter | Homology theory for the set-theoretic Yang-Baxter equation and knot invariants from generalizations of quandles[END_REF][START_REF] Lebed | Homologies of algebraic structures via braidings and quantum shuffles[END_REF]:

C k Br (S, Z n ) = Map(S k , Z n ), (d k Br f )(a 1 , . . . , a k+1 ) = k+1 i=1 (-1) i-1 (f (a 1 , . . . , a i-1 , (a i+1 , . . . , a k+1 ) ai ) -f ((a 1 , . . . , a i-1 ) ai , a i+1 , . . . , a k+1 )).
Here we used the inductive definition (a, b, . . . , v) w = (a w , (b, . . . , v) w a ), (a, . . . , u, v) w = ((a, . . . , u) wv , v w ).

The formula for the differential is best understood graphically, see Fig. 12. Here as usual colors are propagated from left to right, and an f -labeled box stands for the evaluation of f on the entries given by the colors of the incoming arcs, read from bottom to top. The result is an alternating sum of these evaluations. The verification of the differential property d k+1 For different purposes, alternative definitions of the braided complex might be more adequate. They are based on:

(1) a cubical classifying space [CES04];

(2) the quantum shuffle coproduct [START_REF] Lebed | Homologies of algebraic structures via braidings and quantum shuffles[END_REF];

(3) a differential graded bialgebra encoding the complex [START_REF] Farinati | A differential bialgebra associated to a set theoretical solution of the Yang-Baxter equation[END_REF].

To get the braided biquandle cohomology of a biquandle (S, σ), one restricts this complex to a certain subcomplex [START_REF] Lebed | Homology of left non-degenerate set-theoretic solutions to the Yang-Baxter equation[END_REF]. In degree 2, it is defined as

{ f : S 2 → Z n | f (t(a), a) = 0 }.

Imitating rack and quandle cocycle invariants, one extracts invariants of

• braids out of a birack and its braided 2-cocycle;

• knots out of a biquandle and its braided biquandle 2-cocycle. They refine the coloring invariants based on the same birack/biquandle. This refinement is trivial if it uses a 2-coboundary. As usual, braided (biquandle) n-cocycles yield invariants of (n-1)-dimensional knottings in R n+1 . Thus braided cohomology offers powerful tools for braid and knot classification.

Again, one can go the other way around and apply the braid-based graphical calculus developed above to unveiling the structure of braided cohomology. For instance, this calculus renders the cup product completely intuitive:

⌣ : C k Br ⊗ C n Br → C k+n Br , g f a k+n a 1 • • • f ⌣ g(a 1 , . . . , a k+n ) = splittings (-1) #
Simple diagram manipulations yield the properties of this product:

• (C * Br , ⌣) is a differential graded associative algebra, graded commutative up to an explicit homotopy (which can be defined graphically);

• (H * Br , ⌣) is a graded commutative associative algebra; here we abusively denote by ⌣ the induced product on cohomology. This cup product was discovered in different forms and at different levels of generality in [START_REF] Clauwens | The algebra of rack and quandle cohomology[END_REF][START_REF] Covez | On the conjectural Leibniz cohomology for groups[END_REF][START_REF] Farinati | A differential bialgebra associated to a set theoretical solution of the Yang-Baxter equation[END_REF][START_REF] Lebed | Cohomology of idempotent braidings with applications to factorizable monoids[END_REF]. When σ = σ ⊳ comes from an SD operation on S, the commutative cup product in cohomology can be refined into a Zinbiel structure [START_REF] Covez | Rack homology and conjectural Leibniz homology[END_REF].

Also, the diagrammatic interpretation of braided cohomology makes obvious • its generalization to YBE solutions in any preadditive monoidal category (which includes set-theoretic and linear solutions); • its dual, homological version; • its functoriality;

• its enhancement by introducing coefficients (used to color the regions of a diagram together with the arcs; this is called shadow coloring in SD theory). Braid and knot invariants are far from being the only application of braided cohomology. We will now outline several others.

First, braided cohomology in degree 2 controls diagonal deformations of a braided set (S, σ). Namely, the map

σ q (a, b) = q φ(a,b) σ(a, b),
where q lies in the base field k and q n = 1, is a YB operator on kS if and only if φ is a 2-cocycle [START_REF] Freyd | Braided compact closed categories with applications to low-dimensional topology[END_REF]. Moreover, if φ is a 2-coboundary, then this YBE solution is isomorphic to (the linearization of) the original one. It is much more challenging to describe general deformations of braided sets. A cohomology theory for that was proposed in [START_REF] Eisermann | Yang-Baxter deformations of quandles and racks[END_REF]. It contains braided cohomology. Because of its generality, its computation is out of reach at the moment. A better understanding of that theory would be a breakthrough in the classification of YBE solutions.

Second, we know how to construct a YBE solution (set-theoretic or linear) out of a monoid, Lie algebra, or shelf; cf. Table 6. The braided cohomology of these solutions turns out to contain the classical cohomologies of the original structures [START_REF] Lebed | Homologies of algebraic structures via braidings and quantum shuffles[END_REF]. This unification allows the transport of constructions and results from wellstudied settings to less explored ones. For instance, historically the development of SD cohomology was motivated by topological and Hopf-algebraic applications, but relied heavily on tools borrowed from the already classical cohomology theory for associative structures. However, as pointed out in [START_REF] Józef | Distributivity versus associativity in the homology theory of algebraic structures[END_REF], there was no conceptual explanation of the success of this borrowing. The unifying braided cohomology setting offered such an explanation. It also guided the development of cohomology theories for new structures, such as cycle-sets and braces [START_REF] Lebed | Cohomology and extensions of braces[END_REF]. The latter were designed in [START_REF] Rump | A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation[END_REF][START_REF] Rump | Braces, radical rings, and the quantum Yang-Baxter equation[END_REF] to study involutive YB operators.

Finally, for a braided set (S, σ) with σ involutive or idempotent, braided cohomology computes the cohomology of its structure, or associated, monoid [START_REF] Lebed | Cohomology of idempotent braidings with applications to factorizable monoids[END_REF]. We used our usual notation σ(a, b) = (b a , a b ). That is, if one manages to represent a monoid of interest as the structure monoid of a nice braided set, then one gets information about the cohomology of this monoid. This was applied to the cohomology of factorized monoids [START_REF] Lebed | Cohomology of idempotent braidings with applications to factorizable monoids[END_REF] and plactic monoids [START_REF] Lebed | Plactic monoids: a braided approach[END_REF]. Note that for general σ, one still has a map from the cohomology of Mon(S, σ) to that of (S, σ). It is called the quantum symmetrizer, and can be defined graphically. Describing its kernel and image, and more generally understanding the relations between the two cohomologies, is an open question, raised in [START_REF] Farinati | A differential bialgebra associated to a set theoretical solution of the Yang-Baxter equation[END_REF][START_REF] Yang | The interplay between k-graphs and the Yang-Baxter equation[END_REF].

Mon(S, σ) = S | a • b = b a • a b for all a, b ∈ S [FGG16,
Structure monoids are interesting for several reasons. On the one hand, they introduce group-theoretic methods into the study of the YBE, just as structure racks bring SD methods. On the other hand, especially for involutive σ, these monoids and the corresponding groups Grp(S, σ) and algebras k Mon(S, σ) boast interesting algebraic and geometric properties, and have already served as remarkable examples and counter-examples in different situations. In our favorite situations,

(1) for a monoid S, Mon(S, σ) ∼ = S;

(2) for a rack S, Grp(S, σ SD ) = S | a ⊳ b = b -1 ab is the associated group of the rack, which is a classical construction in the SD theory. Note that Grp(S, σ)-modules serve as coefficients for an enhanced version of braided cohomology. Also, structure racks turn out to be useful in the study of structure groups and monoids [START_REF] Lebed | On structure groups of set-theoretic solutions to the Yang-Baxter equation[END_REF].

We will next describe another cohomology theory for biracks. Its advantages are • more manageable formulas;

• a natural subcomplex capturing the additional quandle axiom. On the flip side, this theory does not generalize to other types of YBE solutions.

Recall that for birack colorings, any two neighboring colors around a crossing uniquely determine the two remaining colors. This justifies the existence of the sideways operations • and •, defined in Fig. 13. (-1) i-1 (f (a 1 , . . . , a i , . . . , a k+1 )

-f (a i • a 1 , . . . , a i • a i-1 , a i • a i+1 , . . . , a i • a k+1 )).

The biquandle cohomology H k Biq (S, Z n ) of a biquandle is the cohomology of the subcomplex Braided and birack cohomology theories were developed in parallel for some time, until it was realized that the guitar map induces an isomorphism between their defining cochain complexes [START_REF] Lebed | Homology of left non-degenerate set-theoretic solutions to the Yang-Baxter equation[END_REF]:

C k Biq (S, Z n ) = { f : S k → Z n | f (. . .
J * : (C • Bir (S, Z n ), d • Bir ) ∼ = (C • Br (S, Z n ), d • Br )
. For a biquandle, J * restricts to an isomorphism between biquandle and braided biquandle cochain complexes. Hence the two cohomology theories are completely identical, and yield the same topological invariants. The proof is once again graphical. Its core is the "flying saucer" interpretation of d k Bir f . It works as follows. Consider piled circles colored by a 1 , . . . , a k+1 . Make the ith circle inflate or shrink and then disappear, and keep track of the induced color changes; see Fig. 14 for the inflation situation in the case n = 4, i = 2. Then evaluate f at the colors of the k remaining circles, and take an alternating sum of these evaluations. (2) the fact that a rack (S, ⊳) and its dual (S, ⊳) have the same cohomology. For involutive biracks, on the contrary, new results are obtained.
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 6 Figure 5. RIII move and the rack 2-cocycle condition
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 7 Figure 7. Symmetric coloring rules work with a set S endowed with a map σ : S 2 -→ S 2 , (a, b) -→ (b a , a b ).
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 99 Figure 9. A self-distributivity proof for the induced rack operation ⊳ σ
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  Figure 11. A proof of the entwining relation Jσi = σ ′ i J (here n = 4, i = 2)
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 12 Figure 12. A diagrammatic formula for (d kBr f )(a 1 , . . . , a k+1 )

Figure 13 .

 13 Figure 13. Sideways operations for a birack

  , a, a, . . .) = 0 }. In fact, there is an explicit splitting of the cochain complex [LV17]C • Bir ∼ = C • Biq ⊕ C • D, that generalizes the splitting for the rack cohomology of quandles[START_REF] Litherland | The Betti numbers of some finite racks[END_REF]. It would be interesting to know if the biquandle cohomology part H • Biq completely determines the degenerate part H • D , as is the case for quandles[START_REF] Józef | The degenerate distributive complex is degenerate[END_REF]. Now, changing the definition of φ-weights from (4) toω * φ (D, C) = b a ±φ(a, b),and keeping the recipe given in Section 3 for quandle cocycles, one gets braid/knot invariants out of birack/biquandle 2-cocycles.

Figure 14 .

 14 Figure 14. A graphical version of birack cohomology
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 2 Examples of SD structures, with constructions in braid theory extracted from the corresponding B

	1	free rack	lg(w), lk i,j
	free shelf		Dehornoy: order on B n
	Laver table		???
	twisted Alexander quandle	Lawrence-Krammer-Bigelow
			(+) n -actions
	Let us now turn to knots. Table