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Abstract
This paper establishes a bridge between linear logic and mainstream graph theory, building
previous work by Retoré (2003). We show that the problem of correctness for MLL+Mix proof
nets is equivalent to the problem of uniqueness of a perfect matching. By applying matching
theory, we obtain new results for MLL+Mix proof nets: a linear-time correctness criterion, a
quasi-linear sequentialization algorithm, and a characterization of the sub-polynomial complexity
of the correctness problem. We also use graph algorithms to compute the dependency relation
of Bagnol et al. (2015) and the kingdom ordering of Bellin (1997), and relate them to the notion
of blossom which is central to combinatorial maximum matching algorithms.
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1 Introduction

One of the major novelties introduced at the birth of linear logic [13] was a representation of
proofs as graphs, instead of trees as in natural deduction or sequent calculus. A distinctive
property of these proof nets is that checking that a proof is correct cannot be done merely
by a local verification of inference steps: among the graphs which locally look like proof nets,
called proof structures, some are invalid proofs. Hence the problem of correctness: given a
proof structure, is it a real proof net?

A lot of work has been devoted to this decision problem, and in the case of the multi-
plicative fragment of linear logic (MLL), whose proof nets are the most satisfactory, it can be
considered solved from an algorithmic point of view. Indeed, Guerrini [14] and Murawski and
Ong [22] have found linear-time tests for MLL correctness; the problem has also been shown
to be NL-complete by Jacobé de Naurois and Mogbil [17]. Both the linear-time algorithms

1 Partially supported by the ANR project Elica (ANR-14-CE25-0005).
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25:2 Unique perfect matchings and proof nets

we mentioned also solve the corresponding search problem: computing a sequentialization of
a MLL proof net, i.e. a translation into sequent calculus.

However, for MLL extended with the Mix rule [10] (MLL+Mix), the precise complexity
of deciding correctness has remained unknown (though a polynomial-time algorithm was
given by Danos [7]). Thus, one of our goals in this paper is to study the following problems:

I Problem (MixCorr). Given a proof structure π, is it an MLL+Mix proof net?

I Problem (MixSeq). Reconstruct a sequent calculus proof for an MLL+Mix proof net.

It turns out that a linear-time algorithm for MixCorr follows immediately from already
known results. The key is to use a construction by Retoré [26, 27] to reduce it to the problem
of uniqueness of a given perfect matching, which can be solved in linear time [11]:

I Problem (UniquenessPM). Given a graph G, together with a perfect matching M of G,
is M the only perfect matching of G? Equivalently, is there no alternating cycle for M?

This brings us to the central idea of this paper: from the point of view of algorithmics,
MLL+Mix proof nets and unique perfect matchings are essentially the same thing. This allows
us to apply matching theory to the study of proof nets, leading to several new results. Indeed,
one would expect graph algorithms to be of use in solving problems on proof structures,
since they are graphs! But for this purpose, a bridge between the theory of proof nets and
mainstream graph theory is needed, whereas previous work on the former mostly made use
of “homemade” objects such as paired graphs (an exception being Murawski and Ong’s use of
dominator trees). By building on Retoré’s discovery of a connection with perfect matchings,
this paper proposes such a bridge.

Plan of the paper and contributions. First, we establish our equivalence by giving a
translation from proof structures to graphs equipped with perfect matchings and vice versa
(§3). In the first direction, instead of reusing Retoré’s construction, we propose an alternative
having better properties with respect to sequentialization.

As already mentioned, we give the first linear-time algorithm for MixCorr (§4.1). As
for its sub-polynomial complexity (§4.2), we show that MixCorr is in randomized NC and
in quasi-NC (informally, NC is the class of problems with efficient parallel algorithms). On
the other hand, we have a sort of hardness result: if MixCorr were in NC – in particular,
if it were in NL, as for MLL without Mix – this would imply a solution to a long-standing
conjecture concerning the related unique perfect matching problem:

I Problem (UniquePM [19, 11, 15]). Given a graph G, determine whether it admits exactly
one perfect matching and, if so, find this matching.

We then turn to the sequentialization problem, for which we provide a graph-theoretic
reformulation, and an algorithm for this reformulation. This gives us a quasi-linear time2
solution to MixSeq (§5); to our knowledge, this beats previous algorithms for MixSeq.

As a demonstration of our matching-theoretic toolbox, we also show how to compute
some information on the set of all sequentializations, namely Bellin’s kingdom ordering [4] of
the links of a MLL+Mix proof net (rediscovered by Bagnol et al. [1] under the name of order

2 More precisely, O(n(logn)2(log logn)2) time. Both this and our quasi-NC algorithms rely on very recent
advances, respectively on dynamic bridge-finding data structures [16] and on the perfect matching
existence problem [28]. Any further progress on these problems would lead to an improvement of our
complexity bounds.
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(a) Two perfect matchings of the same graph. (b) A graph with a unique perfect matching.

Figure 1 Examples of perfect matchings. The edges in the matchings are thick and blue.

of introduction). We give a polynomial time and a quasi-NC algorithm (§6.1), both relying
on an effective characterization of this ordering. By rephrasing this characterization (§6.2),
we get a purely graph-theoretic new theorem of independent interest about objects which
play a major role in matching algorithms, namely blossoms [9].

2 Preliminaries

Graph-theoretic terminology. By default, “graph” refers to an undirected graph. Our paths
and cycles are not allowed to contain repeated vertices3; we will sometimes identify them
with their sets of edges (which characterize them) and apply set operations on them. A
bridge of a graph is an edge whose removal increases the number of connected components.

For directed graphs, the notion of connectedness we consider is weak connectedness, i.e.
connectedness of the graph obtained by forgetting the edge directions. A predecessor (resp.
successor) of a vertex is the source (resp. target) of some incoming (resp. outgoing) edge.

Complexity classes. We refer to [17, §1.4] for the logarithmic space classes L and NL and
to [6] for the class AC0 of constant-depth circuits. The class NCk (resp. quasi-NCk [3])
consists of the problems which can be solved by a uniform family of circuits of depth
O(logk n) and polynomial (resp. quasi-polynomial, i.e. 2O(logc n)) size; NC =

⋃
k NCk and

quasi-NC =
⋃
k quasi-NC

k. It is well-known that AC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ NC2 ⊆ NC ⊆ P.

2.1 Perfect matchings, alternating cycles and sequentialization
I Definition 2.1. Let G = (V,E) be a graph. A matching (resp. perfect matching) M in G
is a subset of E such that every vertex in V is incident to at most one (resp. exactly one)
edge in M . An alternating path (resp. cycle) for M is a path (resp. cycle) where, for every
pair of consecutive edges, one of them is in the matching and the other one is not.

Testing the existence of a perfect matching in a graph – or, more generally, finding a
maximum cardinality matching – is one of the central computational problems in graph
theory. Combinatorial maximum matching algorithms, starting4 with Edmonds’s blossom
algorithm [9]5, use alternating paths to iteratively increase the size of the matching; similarly,
alternating cycles are important for the problems UniquenessPM and UniquePM because
they witness the non-uniqueness of perfect matchings.

3 This choice of terminology is common, see e.g. [2, §1.4].
4 Note that the problem was solved long before in the special case of bipartite graphs. In fact, a solution

for this case was found in Jacobi’s posthumous papers.
5 This paper is one of the first to propose defining efficient algorithms as polynomial-time algorithms; it
also contributed to the birth of the field of polyhedral combinatorics.
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25:4 Unique perfect matchings and proof nets

I Lemma 2.2 (Berge). Let G be a graph and M be a perfect matching of G. Then if M ′ 6= M

is a perfect matching, the symmetric difference M4M ′ is a vertex-disjoint union of cycles,
which are alternating for both M and M ′. Conversely, if C is an alternating cycle for M ,
then M4C is another perfect matching.

As an example, consider Figure 1a. The matching on the left admits an alternating cycle,
the outer square; by taking the symmetric difference between this matching and the set of
edges of the cycle, one gets the matching on the right. Conversely, the symmetric difference
between both matchings (which, in this case, is their union) is the square. Note also that in
Figure 1b, there is no alternating cycle because vertex repetitions are disallowed.

Another approach to finding perfect matchings, using linear algebra, was initiated by
Lovász [20] and leads to a randomized NC algorithm by Mulmuley et al. [21]. Recently,
Svensson and Tarnawski have shown that this algorithm can be derandomized to run in
deterministic quasi-NC [28].

There is also a considerable body of purely mathematical work on matchings, starting
from the 19th century. Let us mention for our purposes a result dating from 1959.

I Theorem 2.3 (Kotzig [18]). Let G be a graph. Suppose that G admits a unique perfect
matching M . Then M contains a bridge of G.

As remarked by Retoré [27], Kotzig’s theorem leads to an inductive characterization of
the set of graphs equipped with a unique perfect matching.

I Theorem 2.4 (Sequentialization for unique perfect matchings [27]). The class UPM of
graphs equipped with an unique perfect matching is inductively generated as follows:

The empty graph (with the empty matching) is in UPM.
The disjoint union of two non-empty members of UPM is in UPM.
Let (G = (V,E),M ⊆ E) ∈ UPM and (G′ = (V ′, E′),M ′ ⊆ E′) ∈ UPM, with V

and V ′ disjoint. Let U ⊆ V , U ′ ⊆ V ′ such that U 6= ∅ (resp. U ′ 6= ∅) unless G
(resp. G′) is the empty graph, and let x, x′ be two fresh vertices not in V nor V ′. Then
(G′′ = (V ′′, E′′),M ′′ ⊆ E′′) ∈ UPM, where

V ′′ = V ∪ V ′ ∪ {x, x′}
E′′ = E ∪ E′ ∪ {(x, x′)} ∪ (U × {x}) ∪ (U ′ × {x′})
M ′′ = M ∪M ′ ∪ {(x, x′)}

I Remark. By relaxing the non-emptiness condition on U and U ′, the disjoint union operation
becomes unnecessary; this is actually the original statement [27, Theorem 1].

The inspiration for the above theorem comes from linear logic: it is a graph-theoretic
version of the sequentialization theorems for proof nets, with Kotzig’s theorem being analogous
to the “splitting lemmas” which appear in various proofs of sequentialization.

2.2 Proof structures, proof nets and the correctness criterion
A proof structure is some kind of graph-like object made of “nodes” (or “formulae”) and
“links”, with the precise definition varying in the literature. Since our aim is to apply results
from graph theory, it will be helpful to commit to a representation of proof structures as
graphs. (We write deg− for the indegree and deg+ for the outdegree of a vertex.)

I Definition 2.5. A proof structure is a non-empty directed acyclic multigraph (V,A) with
a labeling of the vertices l : V → {ax,⊗,O} such that, for v ∈ V :

if l(v) = ax, then deg−(v) = 0 and deg+(v) ≤ 2,
if l(v) ∈ {⊗,O}, then deg−(v) = 2 and deg+(v) ≤ 1.
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ax ax

⊗ O

O

ax
` A,A⊥

ax
` B,B⊥ ⊗

` A⊗B,A⊥, B⊥
O

` A⊗B,A⊥OB⊥
O

` (A⊗B)O(A⊥OB⊥)

Figure 2 A proof net (left) and its sequentialization (right), written as a sequent calculus proof.
Edges are usually labeled by the MLL formulae appearing in the sequentialization; since we focus on
the combinatorics of proof structures and not on their logical meaning, we omit them here.

` A,A⊥
(ax-rule) ` Γ, A ` B,∆

` Γ, A⊗B,∆ (⊗-rule) ` Γ, A,B
` Γ, AOB

(O-rule) ` Γ ` ∆
` Γ,∆ (Mix rule)

Figure 3 Rules for the MLL+Mix sequent calculus; note the correspondence with Definition 2.6.

Vertices of a proof structure will also be called links. A terminal link is a link with outdegree 0.
A sub-proof structure is a vertex-induced subgraph which is a proof structure.

I Definition 2.6. The set of MLL proof nets is the subset of proof structures inductively
generated by the following rules:

ax-rule: a proof structure with a single ax-link is a proof net.
⊗-rule: if N and N ′ are proof nets, u is a link of N and v is a link of N ′, then taking
the disjoint union of N and N ′, adding a new ⊗-link w, an edge from u to w and an edge
from v to w gives a proof net, as long as the resulting graph is a proof structure (i.e. the
degree constraints are satisfied).
O-rule: if N is a proof net and u, v are links of N , then adding a new O-link w, an edge
from u to w and an edge from v to w gives a proof net, with the same proviso as above.

The set of MLL+Mix proof nets is inductively generated by the above rules together with
the Mix rule: if N and N ′ are proof nets, their disjoint union is a proof net.

A proof structure is said to be correct if it is a MLL+Mix proof net.

I Remark. As with any inductively defined set, membership proofs for the set of MLL (resp.
MLL+Mix) proof nets may be presented as inductive derivation trees, which are isomorphic
to the usual sequent calculus proofs of MLL (resp. MLL+Mix): see Figure 2 for an example,
and Figure 3 for the inference rules of the sequent calculus.
I Remark. The proof structures and proof nets defined here are cut-free. This restriction is
without loss of generality, since cut link has exactly the same behavior as a terminal ⊗-link
with respect to correctness and sequentialization.

To tackle the problem of correctness, it is useful to have non-inductive characterizations
of proof nets, called correctness criteria, at our disposal. Many of them are formulated using
the notion of paired graphs. We will state a criterion first discovered by Danos and Regnier
for MLL [8] and extended to MLL+Mix by Fleury and Retoré [10].

I Definition 2.7. A paired graph consists of an undirected graph G = (V,E) and a set P of
unordered pairs of edges such that:

if {e, f} ∈ P, then e and f have a vertex in common;
the pairs are disjoint: if p, p′ ∈ P and p 6= p′, then p ∩ p′ = ∅.

FSCD 2018



25:6 Unique perfect matchings and proof nets

When {e, f} ∈ P, the edges e and f are said to be paired.
A switching of this paired graph is a spanning subgraph of G which intersects each pair

of P exactly once. A feasible cycle is a cycle which intersects each pair of P at most once.

I Remark. Equivalently, feasible cycles are cycles which exist in some switching.

I Definition 2.8. Let π be a proof structure. Its correctness graph C(π) is the paired graph
obtained by forgetting the directions of the edges and the labels of the vertices in π, and
pairing together two edges when their targets6 are the same O-link.

A feasible cycle in π is a sequence of edges of π whose image in C(π) is a feasible cycle.

I Theorem 2.9 (Danos–Regnier correctness criterion). π is a MLL (resp. MLL+Mix) proof
net if and only if all the switchings of C(π) are trees (resp. forests).

I Remark. Equivalently, π is a MLL+Mix proof net iff it contains no feasible cycle.
The above is usually called a sequentialization theorem: it means that a proof structure

which satisfies the correctness criterion admits a sequent calculus derivation.
The analogy with Theorem 2.4 is that proof nets are to proof structures what unique

perfect matchings are to perfect matchings. The next section is dedicated to formalizing this
analogy into an equivalence.

3 An equivalence through mutual reductions

We will now see how to turn a proof structure into a graph equipped with a perfect matching,
in such a way that feasible cycles become alternating cycles, and vice versa.

Such a translation from proof structures to perfect matchings was first proposed by
Retoré [27], under the name of R&B-graphs. However, we would like to deduce Theorem 2.9
as an immediate corollary of sequentialization for unique perfect matchings (Theorem 2.4),
which is not possible with R&B-graphs – instead, one must resort to a proof of induction using
Kotzig’s theorem (Theorem 2.3), see [26, §2.4]. Thus, we propose here our own graphification
construction. We also define the proofification construction, going from perfect matchings to
proof structures.
I Remark. The nature of the object corresponding to a matching edge in a proof structure will
vary depending on the translation considered: for graphifications, they correspond to links,
whereas in the case of proofifications, they are translated into ⊗-links (and for R&B-graphs,
they correspond to edges or terminal links).

Thus, by taking the proofification of a graphification of a proof structure, one gets a
different proof structure, with the ax-links and O-links of the former being sent to ⊗-links
of the latter (see Figure 4 for an example). It is unclear whether this transformation has
any meaning in terms of linear logic; in particular it does not preserve correctness for MLL
without Mix.

3.1 From proof structures to perfect matchings
I Definition 3.1. Let π be a proof structure and L be its set of links. The graphification of
π is the graph G = (V,E) equipped with a perfect matching M ⊆ E with

the matching edges corresponding to the links: V =
⋃
l∈L{al, bl}, M = {(al, bl) | l ∈ L},

and the remaining edges in E \M reflect the incoming edges of the ⊗-links and O-links,
as specified by Figure 5a.

6 That is, the targets of the directed edges in π they come from.
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ax ax

⊗

(a) Before graphification.
The left ⊗-link and the right
⊗-link of (b) correspond to
the ax-links here.

ax ax

⊗ O

ax ax

O ⊗

⊗

(b) After proofification.

Figure 4 Composing graphification and proofification: as we will see, the graphification of the
proof net of (a) is the graph of Figure 1b, and, in turn, the proofification of Figure 1b is (b).

⊗ O

(a) Translation rules for sets of incoming edges.

ax ax

⊗ O

O

(b) Graphification of the proof struc-
ture of Figure 2

Figure 5 The graphification construction.

Figure 5b shows an example of this construction. As another example, Figure 1b is the
graphification of Figure 4a.

I Proposition 3.2 (Graphification-based correctness criterion). A proof structure satisfies the
Danos–Regnier criterion for MLL+Mix if and only if the perfect matching of its graphification
is unique.

In the case of R&B-graphs, there is an actual bijection between the feasible cycles of a
proof structure and the alternating cycles of its R&B-graph. That said, the main technical
advantages of graphifications over R&B-graphs are summarized by the following properties.

I Lemma 3.3. Let π be a proof structure with graphification (G,M) and l be a link of π
such that (al, bl) ∈M is a bridge of G. Then l is a terminal link in π, and if l is a ⊗-link,
then removing l from π disconnects its predecessors.

I Theorem 3.4. Let π be a proof structure and (G,M) be its graphification. There is a
bijection between the sequent calculus proofs corresponding to π (if any) and the sequential-
izations (i.e. the derivation trees for the inductive definition of Theorem 2.4) of (G,M) (if
any), through which occurrences of Mix rules correspond to disjoint unions and conversely.

In particular, π is a MLL+Mix proof net if and only (G,M) admits a sequentialization,
that is, according to Theorem 2.4, if and only if M is the only perfect matching of G.
Proposition 3.2 tells us that this is equivalent to π satisfying the Danos–Regnier acyclicity
criterion. Therefore, this criterion characterizes MLL+Mix proof nets: as we wanted, we just
proved the sequentialization theorem for MLL+Mix (Theorem 2.9).

FSCD 2018
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ax
e

ax

f

ax

g

O
x

O
y

⊗
a

⊗
b

w z

w x

y z

e

f

g

a b

Figure 6 The proofification of the graph of Figure 1a.

3.2 From perfect matchings to proof structures
The translation we present below involves “k-ary O-links”. When k > 1, these are just binary
trees of k − 1 O-links (correctness is independent of the choice of binary tree: semantically,
this is associativity of O) with k leaves (incoming edges) and a single root (outgoing edge);
the k = 1 case corresponds to a single edge and no link.

I Definition 3.5. Let G = (V,E) be a graph and M be a perfect matching of G. We define
the proofification of (G,M) as the proof structure π built as follows:

For each non-matching edge e = (u, v) ∈ E \M , we create an ax-link axe whose two
outgoing edges we will call Au,v and Av,u.
For each vertex u ∈ V , if deg(u) > 1, we add a k-ary O-link with k = deg(u)− 1, whose
incoming edges are the Au,v for all neighbors v of u such that (u, v) /∈M , and we call its
outgoing edge Bu. If deg(u) = 1, we add an ax-link calling one of its outgoing edges Bu.
For each matching edge (u, v) ∈M , we add an ⊗-link whose incoming edges are Bu and
Bv. These ⊗-links are the terminal links of π.

See Figure 6 for an annotated example of proofification. The reader may also check that
the proof net in Figure 4b is the proofification of the graph in Figure 1b.

I Proposition 3.6. Let G be a graph and M be a perfect matching of G. The alternating
cycles for M in G are in bijection with the feasible cycles in the proofification of (G,M).

I Proposition 3.7. Let G be a graph with a unique perfect matching M and let π be
the proofification of (G,M). A matching edge e ∈ M is a bridge of G if and only if its
corresponding ⊗-link is introduced by the last rule of some sequentialization of π.

However, unlike the case of graphifications, this does not give us a bijection between the
sequentializations of a unique perfect matching and those of its proofification.

4 On the complexity of MLL+Mix correctness

Through the translations of the previous section, MLL+Mix proof nets become unique
perfect matchings and conversely: these translations provide reductions between the problems
MixCorr and UniquenessPM, allowing us to draw complexity-theoretic conclusions on
proof nets from known results in graph theory. We first look at the time complexity of
MixCorr, then turn to its complexity under constant-depth (AC0) reductions.

4.1 A linear-time algorithm
Since graphifications (§3.1) can be computed in linear time, and UniquenessPM can also
be decided in linear time [11, §3], we immediately get:
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I Theorem 4.1. MixCorr can be decided in linear time.

I Remark. By using the “Euler–Poincaré lemma” [1] to count the uses of the Mix rule in a
proof net, this also allows us to decide the correctness of a proof structure for MLL without
Mix in linear time. Our decision procedure has the advantage of being simpler to describe
than the previously known linear-time algorithms for MLL correctness [14, 22].

That said, this apparent simplicity is due to our use of the algorithm of Gabow et al. [11]
as a black box. Looking inside the black box reveals, for instance, that it uses the incremental
tree set union data structure of Gabow and Tarjan [12], which is also a crucial ingredient of
the above-mentioned previous algorithms.
I Remark. This algorithm for UniquenessPM relies on the technique of blossom shrink-
ing pioneered by Edmonds [9], a kind of graph contraction which may remind us of the
contractibility correctness criterion [7] for MLL without Mix. Indeed, there exists a formal
connection: a rewrite step of big-step contractibility [1] corresponds, when translated to
graphifications, to contracting a blossom. However, not all blossoms are redexes for big-step
contractibility.

4.2 Characterizing the sub-polynomial complexity
For MLL proof nets without Mix, correctness is known to be NL-complete under AC0

reductions thanks to the Mogbil–Naurois criterion [17]. What about MLL+Mix? Since the
reductions of §3 can be computed in constant depth, we have:

I Theorem 4.2. MixCorr and UniquenessPM are equivalent under AC0 reductions.

Thus, it will suffice to study the complexity of UniquenessPM. Let us start with a
positive result, using the parallel algorithms for finding a perfect matching mentioned in §2.1.

I Proposition 4.3. UniquenessPM is in randomized NC and in deterministic quasi-NC.

Proof. Let G = (V,E) be a graph and M be a perfect matching of G. M is not unique if
and only if, for some e ∈M , the graph Ge = (V,E \ {e}) has a perfect matching. To test the
uniqueness of M , run the |M | parallel instances, one for each Ge, of a randomized NC [21] or
deterministic quasi-NC [28] algorithm for deciding the existence of a perfect matching, and
compute the disjunction of their answers in AC0. J

Being in quasi-NC is a much weaker7 result than being in NL. But as we shall now see,
even showing that UniquenessPM is in NC (recall that NL ⊂ NC) would be a major result.
It would answer in the affirmative the following conjecture dating back from the 1980’s:

I Conjecture 4.4 (Lovász8). UniquePM is in NC.

Indeed, the following shows that UniquenessPM ∈ NC⇒ UniquePM ∈ NC (and the
converse follows from the definitions).

I Proposition 4.5. There is a NC2 reduction from UniquePM to UniquenessPM.

7 In fact, one can show that NL ( NSPACE(O(log3/2 n)) ⊆ quasi-NC3, and the latter is where Svensson
and Tarnawski’s analysis puts finding a perfect matching.

8 The conjecture is attributed to Lovász by a paper by Kozen et al. [19] which claims to solve it. But
Hoang et al. [15] note that “this was later retracted in a personal communication by the authors”. Still,
the proposed solution works for bipartite graphs.

FSCD 2018



25:10 Unique perfect matchings and proof nets

Proof. This is a consequence of a NC2 algorithm by Rabin and Vazirani [25, §4] which, given
a graph G, computes a set of edges M such that if G admits a unique perfect matching, then
M is this matching. Starting from any graph G, run this algorithm and test whether its
output is a perfect matching. If not, then G does not admit a unique perfect matching; if it
is, then G is a positive instance of UniquePM if and only if (G,M) is a positive instance of
UniquenessPM. J

To sum up these results about UniquenessPM, which apply to MixCorr:

I Theorem 4.6. MixCorr is in randomized NC and in deterministic quasi-NC; it is in
deterministic NC if and only if Conjecture 4.4 is true.

5 Sequentializing MLL+Mix proof nets

In §4.1, we managed to solve MLL+Mix correctness in linear time, matching the known
time complexity for MLL correctness. But the algorithms for MLL correctness still have
an advantage: they can compute a sequentialization in linear time, whereas we only have a
decision procedure for MixCorr which returns a yes/no answer9. We do not know how to
compute MLL+Mix sequentializations in linear time. Nevertheless, by applying our bridge
between proof nets and graph theory, we get the first quasi-linear time algorithm for MixSeq.
The beginning of the next section will discuss why the problem seems harder with Mix.

Our algorithm proceeds in a “top-down” way: it starts by determining the root of the
derivation tree and the link it introduces. To obtain the children of the root, it suffices to
recurse on the connected components created by removing this link.

Furthermore, through the correspondence of Theorem 3.4, finding a link which is intro-
duced by the last rule of some sequentialization amounts to finding a bridge in the matching
of the graphification of the proof net (cf. §3.1). This is in fact a bit more convenient with
graphifications than with general unique perfect matchings, thanks to the following property:

I Lemma 5.1. All bridges in the graphification of some proof structure are matching edges.

The algorithm will alternate between finding and deleting bridges; a deletion may cut
cycles and thus create new bridges, which we want to detect without traversing the entire
graph each time. To do so, we use a dynamic bridge-finding data structure designed for this
kind of use case by Holm et al. [16]. It keeps an internal state corresponding to a graph,
whose set of n vertices is immutable but whose set of edges may vary, and supports the
following operations in O((logn)2(log logn)2) amortized time:

updating the graph by inserting or deleting an edge;
computing the number of vertices of the connected component of a given vertex;
finding a bridge in the connected component of a given vertex;
determining whether two vertices are in the same connected component.

I Theorem 5.2. MixSeq can be solved in O(n(logn)2(log logn)2) time.

Proof. Let π be a MLL+Mix proof net with n links, and (G = (V,E),M) be its graphification.
Both V and E are have cardinality O(n) (in fact, |V | = 2n and |M | = n).

The algorithm starts by initializing the bridge-finding data structure D with the graph G,
computing the weakly connected components of π in linear time, and selecting a link in each

9 It can find a feasible cycle, witnessing incorrectness, but cannot produce a certificate of correctness.
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component. On each selected link l, we call the following recursive procedure; its role is to
sequentialize the sub-proof net of π containing l whose graphification is a current connected
component of G (G and D being mutable global variables):

Let u be one endpoint of the matching edge corresponding to l. Using the bridge-finding
structure, find a bridge e = (v, w) in the component of u; necessarily, e ∈ M . Remove
the edge e from G (and reflect this change on D with a deletion operation).
If both v and w are isolated vertices, e corresponds to an ax-link and the entire sub-proof
net consisted of this link. In this case, return a sequentialization with a single ax-rule.
If one of v and w is isolated, and the other is not – by symmetry, let us assume the latter
is v – then e corresponds to a O-link l′. Let p and p′ be its predecessors.

Remove all edges incident to v.
If the matching edges corresponding to p and p′ are in the same connected component
of G, recurse on p, add a final O-link and return the resulting sequentialization.
If p and p′ are in different connected components of G, recurse on p and p′, use the
results as the two premises of a Mix rule, add a final O-link and return the resulting
sequentialization.

If neither v nor w is isolated, e corresponds to a ⊗-link. This is handled similarly to the
O+Mix case above.

Let us evaluate the time complexity. At each recursive call, one bridge is eliminated from
G, so the number of recursive calls is n. The cost of each recursive call is O(1) except for
the updates and queries of the bridge-finding data structure. In total, there are |E| = O(n)
deletions, |M | = n bridge queries, and at most n connectedness tests, and each of those takes
O((logn)2(log logn)2) amortized time. Hence the O(n(logn)2(log logn)2) bound. J

I Remark. If we want to compute a sequentialization for a unique perfect matching, in
general, a complication is the existence of bridges which are not in the matching.

Interestingly, one can determine whether a bridge e is in M without looking at M : it is
the case if and only if both of the connected components created by removing e have an odd
number of vertices. This leads to an algorithm for UniquePM; it is virtually the same as
the one proposed by Gabow et al. [11, §2]10, from which we took our inspiration.
I Remark. One needs to use a sparse representation for derivation trees: the size of a fully
written-out sequent calculus proof is, in general, not linear in the size of its proof net.

6 On the kingdom ordering of links

One may wonder if we could not have just tweaked an algorithm for MLL sequentialization
into an algorithm for MixSeq. In order to argue to the contrary, let us briefly mention
a difference between Bellin and van de Wiele’s study of the sub-proof nets of MLL proof
nets [5] and its extension to the MLL+Mix case by Bellin [4]. Any MLL sub-proof net of a
MLL proof net may appear in the sequentialization of the latter; however, for MLL+Mix,
Figure 7 serves as a counterexample: the sub-proof structure containing all links but the
⊗-link is correct for MLL+Mix, but it cannot be an intermediate step in a sequentialization
of the entire proof net. A normality condition is needed to distinguish those sub-proof nets

10Not to be confused with their algorithm for UniquenessPM [11, §3] that we used in §4.1. They only
claim a bound of O(m log4 n) because the best dynamic 2-edge-connectivity data structure known at
the time has operations in O(log4 n) amortized time.
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O ⊗ O
ax
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ax

Figure 7 A MLL+Mix proof net which highlights a difficulty in solving MixSeq.

which may appear in a sequentialization, and this is why sequentialization algorithms which
are morally based on a greedy parsing strategy, such as Guerrini’s linear-time algorithm [14],
do not adapt well to the presence of the Mix rule.

Any link l in a MLL+Mix proof net π admits a minimum normal sub-proof net of
π containing l, its kingdom [4]. Bellin’s kingdom ordering is the partial order on links
corresponding to the inclusion between kingdoms. We give an algorithm to compute this
order for any MLL+Mix proof net: this is yet another application of matching theory. It
uses a characterization of the kingdom ordering in terms of a relation called dependency by
Bagnol et al. [1] (who, in turn, take this name from the closely related dependency graph of
Mogbil and Naurois [17]). We will also see how this dependency relation can be reformulated,
through our correspondence between proof structures and perfect matchings, in terms of the
blossoms mentioned in §2.1 and §4.1.

One may in fact define the kingdom ordering, written�π, without reference to the notion
of normal sub-proof net (we will not introduce the latter formally here):

I Definition 6.1. Let π be a MLL+Mix proof net. For any two links p, q of π, p �π q if
and only if, in any sequentialization of π, the rule introducing q has, among its premises, a
proof net containing p.

From this point of view, the kingdom ordering gives us information about the set of all
sequentializations. Let us give some examples. The proof net of Figure 4b admits a unique
sequentialization, so this directly gives us the kingdom ordering: for instance the middle
⊗-link is the greatest element. On the other hand, in the proof net of Figure 7, both O-links
may be introduced by a last rule, so there is no greatest element. In fact, the kingdom
ordering coincides with the predecessor relation. So it does not distinguish between the 3
terminal links even though, unlike the 2 others, the ⊗-link cannot be introduced last.

Before proceeding further, here is another property of MLL proof nets which is contradicted
by Figure 7 for MLL+Mix proof nets, providing more evidence that MixSeq is trickier than
MLL sequentialization.

I Proposition 6.2. Let π be a MLL proof net and l be a maximal link for �π. Then there
exists a sequentialization of π whose last rule introduces l.

6.1 Computing the kingdom ordering
I Definition 6.3. Let π be a proof structure. We write D(π) for the dependency relation
defined as follows: for any two links p 6= q of π, p is a dependency of q when q is a O-link
and there exists a feasible path between the predecessors of q going through p.

For instance, in the proof net of Figure 4b, the left O-link depends on the left ⊗-link, but
not on the other ⊗-links or O-links; the middle ⊗-link has no dependency. In the case of
Figure 7, the dependency relation is empty.
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I Theorem 6.4 (Bellin [4, Lemma 2]11). Let π be a MLL+Mix proof net. The transitive
closure of D(π) ∪ S(π) is �π, where (p, q) ∈ S(π) means that p is a predecessor of q.

The dependency relation can be computed by reduction to a matching problem in the
case of MLL+Mix proof nets: even though it is well-defined in arbitrary proof structures,
we need MLL+Mix correctness to compute it, because our matching algorithm relies on the
absence of alternating cycles.

I Lemma 6.5. Let G be a graph with a unique perfect matching M , and e, f, g ∈ M be
pairwise distinct edges. The existence of an alternating path starting with e, ending with f
and crossing g can be reduced to the existence of a perfect matching.

Proof. Let (u, v) = e, (u′, v′) = f and (a, b) = g. Let G′ be the graph obtained by adding
new vertices s and s′, new edges (s, u), (s, v), (s′, u′) and (s′, v′), and by removing g. This
graph admits a matching M ′ = M \ {g} leaving the 4 vertices s, s′, a and b unmatched.

Suppose G′ admits a perfect matching M ′′. Then the symmetric difference M ′4M ′′
consists of two vertex-disjoint alternating paths for M ′, whose endpoints are {s, s′, a, b} by
the same reasoning as Lemma 2.2. (In general, the symmetric difference may also contain
alternating cycles, but if it were the case here, M would not be unique.)

We claim that these paths either go from s to a and b to s′, or from s to b and a to s′.
Otherwise, there would be an alternating path from a to b for M ′, and together with the
matching edge g we removed earlier, this would give us an alternating cycle for M in G.

In both cases, let us join the two paths together by adding g, and remove the edges
incident to s and s′. We get a path starting with e, ending with f , crossing g and alternating
for M in G. Conversely, from such a path, one can get a perfect matching in G′. J

I Theorem 6.6. Let π be a MLL+Mix proof net with a link p and a O-link q. Deciding
whether (p, q) ∈ D(π) can be done in linear time, in randomized NC and in quasi-NC.

Proof. A degenerate case is when p is a predecessor of q: in this case, p depending on q is
equivalent to π becoming incorrect if q is turned into a ⊗-link, and thus the complexity is
the same as that of (the complement of) the correctness problem.

When p is not a predecessor of q, the definition of dependency translates into the problem
defined in the above lemma by taking the graphification of π. Since the existence of a perfect
matching can be decided in randomized NC or quasi-NC (cf. §2.1), so can our problem. To
get a linear time complexity, we exploit the fact that we know a matching of G′ leaving O(1)
vertices unmatched: a perfect matching can then be found with O(1) iterations of an algorithm
using augmenting paths, each iteration taking linear time, see e.g. [31, Chapter 9]. J

A transitive closure can be computed in polynomial time, and reachability in a directed
graph can be decided in NL ⊂ quasi-NC, so we get in the end:

I Corollary 6.7. There are a polynomial-time algorithm and a quasi-NC algorithm to compute
the kingdom ordering �π of any MLL+Mix proof net π.

11This theorem was rediscovered in the special case of MLL proof nets by Bagnol et al. [1, Theorem 11],
who refer to the kingdom ordering as the “order of introduction”. We borrow the notations D(π) and
S(π) from them.
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6.2 Dependencies and blossoms in unique perfect matchings

We will now see how, through the correspondence of §3, Bellin’s theorem can be rephrased
as a statement on unique perfect matchings.

I Definition 6.8. Let G be a graph and M be a perfect matching of G. A blossom for M is
a cycle whose vertices are all matched within the cycle, except for one, its root. The matching
edge incident to the root, is called the stem of the blossom.

That is, a blossom consists of an alternating path between two vertices, starting and
ending with a matching edge, together with a non-matching edge from the root to each of
these two vertices; for instance, in Figure 1b, the two triangles are blossoms with a common
stem. The stem of a blossom is not part of the cycle. Blossom are central to combinatorial
matching algorithms, e.g. [9, 11], as we have previously mentioned.

I Definition 6.9. When e ∈M is in some blossom with stem f ∈M , we write e→ f .

This is the graph-theoretical counterpart of the dependency relation, as is shown by the
following two propositions.

I Proposition 6.10. Let π be a MLL+Mix proof net and (G,M) be its graphification. Let
p, q be links in π with corresponding matching edges ep, eq ∈M . Then ep → eq if and only if
p is a dependency of q or a predecessor of q, i.e. (p, q) ∈ D(π) ∪ S(π).

I Proposition 6.11. Let G be a graph,M be a perfect matching of G and π be the proofification
of (G,M). Let e, f ∈M with corresponding ⊗-links le, lf ∈M . Then e→ f if and only if le
is a dependency of some O-link q from which lf is reachable (by a directed path).

I Remark. In Proposition 6.10, the “if” direction holds even for incorrect proof structures;
in Proposition 6.11, note that no uniqueness property is required of the perfect matching.

Thus, we see that Bellin’s theorem is equivalent to the following theorem where →+ is
the transitive closure of →. As far as we know, this is a new result in graph theory.

I Theorem 6.12. Let G be a graph with a unique perfect matching M , and e, f ∈M . The
edge e occurs before f in all sequentializations for M if and only if e→+ f .

We can also formulate the theorem without mentioning sequentializations. Fix an edge
e ∈ M , and iteratively remove the endpoints of any bridge in M , except e, until we end
up with a vertex-induced subgraph of G where no bridge remains except e. This is the
graph-theoretic analogue of the kingdom of e. Bellin’s theorem says that for any edge f in
the kingdom of e, f →+ e, that is:

I Theorem 6.13. Let G be a graph with a unique perfect matching M . Suppose that M
contains only one bridge e. Then for all f ∈M \ {e}, f →+ e.

This is the case in Figure 1b: the middle edge e is the only bridge, and it is the stem of
the two triangular blossoms which contain the other matching edges.

The graph-theoretic versions are somewhat simpler to state than the original theorem:
one takes the transitive closure of a single relation, instead of a union of two unrelated
relations. We give a direct proof of the last formulation in Appendix D, based on the blossom
shrinking operation mentioned in §4.1.
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7 Conclusion

We have presented a correspondence between proof nets and perfect matchings, and demon-
strated its usefulness through several applications of graph theory to linear logic: our results
give the best known complexity for MLL+Mix correctness and sequentialization, by taking
advantage of sophisticated graph algorithms. We also expect linear logic to eventually lead to
new results in graph theory through this correspondence – in fact, the rephrasing of Bellin’s
theorem in the last section is one such example – and in general, we hope to see fruitful
interactions arise between those two domains.

Perspectives. Now that we have shed a new light on MLL+Mix proof nets, it would
be interesting to revisit the well-studied theory of MLL proof nets. Therefore, we would
like to find the right graph-theoretical counterpart to the connectedness condition in the
Danos–Regnier criterion for MLL, but unique perfect matchings do not seem to be the right
setting to do so. Indeed, there are many objects in graph theory which admit “structure from
acyclicity” theorems equivalent to Kotzig’s theorem on unique perfect matchings (cf. [30])
– that is, to MLL+Mix sequentialization – and some of these may be better suited to go
beyond MLL+Mix proof nets and extend the correspondence, either to MLL or to larger
fragments of linear logic.

In particular, we have already taken inspiration from edge-colored graphs (see e.g. [2, §16]),
which are rather close to the usual paired graphs, to prove the coNP-hardness of Pagani’s
visible acyclicity condition [24] on MELL proof structures (cf. the workshop abstract [23]).
Let us also mention that we have found an interpretation of Retoré’s construction [27] in
terms of graphs with forbidden transitions [29], which can be seen as the generalization of
paired graphs by dropping the disjointness condition.

A closely related question is that of finding a natural graph-theoretic decision problem
equivalent to correctness for MLL without Mix through low-complexity reductions – hopefully
computable both in linear time and in AC0, like the equivalence between MixSeq and
UniquenessPM exhibited in this paper. Though both Murawski & Ong [22] and Mogbil
& Naurois [17] reduce MLL correctness to problems on directed graphs, the complexity
of these reductions is higher than we would like: the first is not computed in logarithmic
space, the second uses a subroutine for undirected connectivity, a L-complete problem whose
membership in L is highly non-trivial. An answer to this question may help clarify why all
known linear-time correctness criteria for MLL rely on the same sophisiticated data structure,
as mentioned in §4.1.
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27 Christian Retoré. Handsome proof-nets: perfect matchings and cographs. Theoretical
Computer Science, 294(3):473–488, 2003.

28 Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in quasi-
NC. In Chris Umans, editor, 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 696–707. IEEE
Computer Society, 2017.

29 Stefan Szeider. Finding paths in graphs avoiding forbidden transitions. Discrete Applied
Mathematics, 126(2-3):261–273, 2003.

30 Stefan Szeider. On theorems equivalent with Kotzig’s result on graphs with unique 1-factors.
Ars Combinatoria, 73:53–64, 2004.

31 Robert Endre Tarjan. Data Structures and Network Algorithms. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 1983.

A Proofs of §3

Proof of Proposition 3.2. By negating the two sides of the equivalence, the goal becomes
proving that a proof structure π contains a feasible cycle if and only if its graphification
(G,M) contains an alternating cycle.

Consider any alternating cycle for M in G of length 2n, and take the Z/(n)-indexed
sequence of vertices corresponding to the matching edges in the cycle. By construction of
the graphification, if two edges in M are incident to a common non-matching edge, then
the corresponding links in π are adjacent: thus, in our sequence, each vertex is adjacent to
the previous and the next one, and thus we have a cycle. If it were not feasible, it would
contain three consecutive links p, q, r with q a O-link and p, r its predecessors12; but then
the alternating cycle would have to cross two incident non-matching edges (from p to q and
from q to r), which is impossible. Thus, π contains a feasible cycle.

To show the converse we will exhibit a right inverse to the map from alternating cycles
to feasible cycles defined above. Consider a feasible cycle: it can be partitioned into directed
paths from ax-links to ⊗-links. Let l be an intermediate link in such a path, and e, p, s

be matching edges corresponding respectively to l, its predecessor, and its successor in the
directed path. s has a unique endpoint u which is incident to both endpoints of e; e has a
unique endpoint v which is not incident to both endpoints of p. To join e with s, we use the
edge (u, v). By taking all these non-matching edges for all maximal directed paths in the
cycle, as well as a choice of two edges incident to each matching edge corresponding to an
ax-link, and the matching edges (al, bl) corresponding to all the links l in the cycle, we get
an alternating cycle. J

Proof of Lemma 3.3. Suppose for contradiction that l is not a terminal link, and let l′ be a
successor of l. Then for some endpoint v of (al′ , bl′), (al, v) and (bl, v) are both edges in G,
and they make up a path between al and bl not going through (al, bl). Thus, (al, bl) cannot
be a bridge.

The fact that (al, bl) is a bridge means that by removing this edge, al and bl are in
different connected components; if l is a ⊗-link, each of these connected components contain
the matching edge corresponding to one premise of l. J

12To expand on this point: this is because we have prohibited vertex repetitions in our definition of cycles.
This is legitimate since a graph is a forest if and only if it does not contain a non-vertex-repeating cycle.
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Proof of Theorem 3.4. We convert a sequentialization S of (G,M) into a sequentialization
Σ of π inductively as follows. Since G 6= ∅, the last rule of S is either a disjoint union or the
introduction of a bridge e = (al, bl) ∈ M by joining together (Ga,Ma) and (Gb,Mb) with
respective sequentializations Sa and Sb. In the latter case, l is a terminal link of π.

If Ga = Gb = ∅, then l is an ax-link, and Σ consists of a single ax-rule.
If Ga 6= ∅ and Gb = ∅, then l is a O-link, and the removal of l from π yields a proof
structure π′ whose graphification is (Ga,Ma). Σ then consists of a O-rule introducing l
applied to the sequentialization of π′ corresponding to Sa.
If Ga 6= ∅ and Gb 6= ∅, then l is a ⊗-link. Since e is a bridge, the removal of l from π

yields two proof structures πa and πb whose respective graphifications are (Ga,Ma) and
(Gb,Mb). Σ then consists of an ⊗-rule applied to the translations of Sa and Sb.

If the last rule of S is a disjoint union rule, it is translated into a Mix rule in Σ.
The bijectivity can be proven by defining the inverse transformation and by checking

that it is indeed its inverse. J

Proof of Proposition 3.6. Let π be the proofification of (G,M). Any feasible cycle in π

changes direction only at ax-links and ⊗-links, and therefore can be partitioned into an
alternation of ⊗-links, corresponding to matching edges, and of paths starting with some Bu,
ending with some Bv and crossing some axe, corresponding to non-matching edges e = (u, v).
Therefore, it corresponds to an alternating cycle for M , and the mapping defined this way is
bijective. J

Proof of Proposition 3.7. This follows from the fact that a ⊗-link may be introduced by
the last rule of a sequentialization if and only if it is splitting, i.e. its removal disconnects its
two precedessors. J

B Omitted proof in §5

Proof of Lemma 5.1. Let e be a non-matching edge. Then there are matching edges (u, v)
and (s, t) such that the link corresponding to (u, v) is the predecessor of the one for (s, t),
and e = (u, s). The non-matching edge (v, s) is then also present in the graph, and so e
cannot be a bridge. J

C Omitted proofs in §6

Proof of Proposition 6.2. If l is a terminal O-link, no other assumption is needed for the
existence of such a sequentialization. Else, l is a terminal ⊗-link and it suffices to show that
l is splitting, i.e. that the removal of l splits π into two connected components.

Suppose that it is not the case, and consider some sequentialization of π: it must contain
a O-rule, applied to a sub-proof net π′ for which l is splitting, which turns it into a sub-proof
net for which l is not splitting anymore. Let p be the O-link introduced by that rule; its
predecessors lie in different connected components of π′ \ {l}. Since π′ is a MLL proof net,
the predecessors of p are connected by a feasible path in π′, which must cross l. This shows
that l is a dependency of p in the sense of Definition 6.3, contradicting the maximality of l.
(This only uses the fact that D(π) ⊆�π, which is the “easy” part of Bellin’s theorem.) J

Proof of Proposition 6.10. If (p, q) ∈ S(π), then by construction there exists a blossom of
length 3 containing p with stem q. If (p, q) ∈ D(π), then for the same reason as Proposition 3.2,
we can get, from the feasible path between the predecessors of q visiting p, an alternating path
for M starting and ending with the edges corresponding to those predecessors and crossing
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the edge corresponding to p. By adding two non-matching edges to the same endpoint of the
matching edge for q, we get a blossom with stem q.

Conversely, let q be a link, e the corresponding matching edge, and B be a blossom with
stem q. Let us first note that if B contains an non-matching edge joining e with the matching
edge corresponding to a successor of q, then by replacing this non-matching edge with its twin
incident to the other endpoint of q, we get an alternating cycle; this is impossible because we
have assumed π to be a MLL+Mix proof net. Therefore, the first and last matching edges in
B are both premises of q. If they are the same – that is, if B has length 3 and contains a
single matching edge – then this edge corresponds to a predecessor p of q. Otherwise, B gives
an alternating path between two distinct premises of q; necessarily q is a O-link (otherwise,
there would be an alternating cycle), and all links corresponding to matching edges in B are
dependencies of q. J

Proof of Proposition 6.11. Let B be a blossom with stem f , whose two non-matching edges
incident to f are a and b. B translates into a feasible path between axa and axb in π. Now,
axa and axb are also leaves of a binary tree of O-links whose root has the single successor lf ;
by taking q to be the lowest common ancestor of axa and axb in this tree, lf is reachable from
q, and every link in the path between axa and axb depends on q. Conversely, any feasible
path between the two premises of a O-link corresponds to a blossom for M in G. J

D Proof of the graph-theoretic Bellin theorem (Theorem 6.13)

Let G be a graph with a unique perfect matching M , containing a single bridge e. Removing
the edge e, but not its endpoints, results in two connected components which both have a
unique near-perfect matching (leaving one vertex unmatched) containing no bridge. If both
these components have a single vertex, then the theorem is vacuously true; else, we have
reduced it to the following proposition, where a← b means that b→ a, ←∗ is the reflexive
transitive closure of ←, and u� f means that f is contained in a blossom with root u.

I Proposition. Let G be a graph with a near-perfect matching M and let u be the unmatched
vertex. Suppose G has no bridge in M and no alternating cycle for M . Then for all f ∈M ,
there exists g ∈M such that u� g ←∗ f .

The proof of this proposition relies on the blossom shrinking operation: starting from
the graph G with a matching M , this consists in taking the quotient graph G′ where all the
vertices of the blossom have been identified; M induces a matching M ′ in G′.

I Lemma. Under the hypotheses of the proposition, if M 6= ∅, then:
1. There exists a blossom in G for M with root u.
2. Let G′ be the graph obtained by shrinking this blossom, with induced matching M ′ ⊂M .

There is no bridge in M ′ and no alternating cycle for M ′.
3. Let u′ be the exposed vertex in G′, corresponding to the shrunk blossom. For all f ∈M ′

with u′ � f in G′, there exists g ∈M such that u� g ←∗ f in G.

Proof of (1). The absence of alternating cycle amounts to saying thatM is the unique perfect
matching of G[V \ {u}] where V is the vertex set of G. (Note that M 6= ∅ ⇔ V \ {u} 6= ∅.)
By Kotzig’s theorem, M contains a bridge e of G[V \ {u}]; let V1 and V2 be the connected
components created by the removal of e (but keeping its endpoints) from G[V \ {u}]. We
create a new graph H by starting from G[V \ {u}], adding two new vertices u1 and u2, and
adding the edges (ui, v) for all v ∈ Vi with v adjacent to u in G (i = 1, 2), and the edge
(u1, u2).
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The perfect matching M ∪{(u1, u2)} of H contains no bridge of H: since e is not a bridge
of G, there is at least one edge between u1 and V1 and one edge between u2 and V2, so
(u1, u2) is not a bridge in H; and any edge of M would be a bridge of G if it were a bridge of
H. Let us apply Kotzig’s theorem again: this perfect matching admits an alternating cycle,
which cannot be contained in H[V \ {u}] = G[V \ {u}]. Therefore, it contains an alternating
path from u1 to u2, from which we retrieve a blossom with root u in G. J

Proof of (2). If there existed a bridge e ∈M ′ of G′, then G′ \ {e} would be disconnected
while G \ {e} would be connected; this is impossible. An alternating cycle for M ′ would not
visit u′ because it is unmatched, and therefore would be an alternating cycle for M in G. J

Proof of (3). Let B be the blossom with root u in G that has been shrunk, and B′ be the
blossom with root u′ in G′ containing f . There are two non-matching edges e′1 and e′2 in B′
incident to u′; let e1 = (u1, v1) be a preimage of e′1 and e2 = (u2, v2) be a preimage of e′2 in
G, with u1, u2 ∈ B.

The blossom B can be decomposed into P1 ∪ Q ∪ P2, where P1 is an alternating path
from u to u1 (possibly empty, if u = u1), Q is an alternating path from u1 to u2 (possibly
empty, if u1 = u2), and P2 is an alternating path from u2 to u. As for B′, it lifts to an
alternating path R between u1 and u2 starting and ending with a non-matching edge, so
that |R| is odd and f ∈ R. We proceed by case analysis on the parity of |P1| and |P2|.

If they are both even, then P1 ∪R ∪ P2 is a blossom: u� f ←∗ f .
If |P1| is even and |P2| is odd, then Q ∪R is a blossom with root u1. Either u1 = u and
then u� f , or there is an edge g ∈ B ∩M incident to u1 and then u� g ← f .
The case |P1| even and |P2| odd is symmetric to the previous one.
If they were both odd, Q ∪R would be an alternating cycle. J

Proof of the proposition. By induction on the size of G.
Let us take a blossom using lemma (1). If it contains f , then u� f and we are done. Else,

we shrink the blossom and get G′, M ′ and u′; by lemma (2), they satisfy the assumptions of
the proposition. By the induction hypothesis, there exists g such that u′ � g ←∗ f in G′.
Thanks to lemma (3), u′ � g entails u� h←∗ g in G for some h ∈M . Also, g ←∗ f in G′
entails g ←∗ f in G because the (possibly empty) sequence of blossoms which binds f to g
in G′ cannot contain the vertex u′, and therefore lifts to exactly the same edges in G. Thus,
u� h←∗ g ←∗ f and therefore u� h←∗ f in G. J
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