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This paper describes a protocol for quantification of heritage copper alloys by energy-
dispersive X-ray fluorescence spectroscopy (ED-XRF). The protocol, nicknamed CHARMed
PyMca, is designed for users who wish to maximize inter-laboratory reproducibility of
quantitative ED-XRF results for the wide range of copper alloys found in heritage materials.
By maximizing reproducibility, this protocol should facilitate collaboration and allow the
rigorous use of shared data and databases. The protocol uses free, open-source, fundamental
parameters software called PyMca. PyMca allows for a consistent and transparent
application of the fundamental parameters approach independent of the ED-XRF instrumen-
tation used. The proposed protocol calls for calibration of standardless PyMca results against
a set of certified reference materials designed specifically for use with heritage copper alloys,
the so-called copper CHARM set. Finally, this protocol calls for the calibration-to-standards
to be carried out following a consistent strategy, including error modelling and the incorpo-
ration of a validation procedure. A reproducibility study was conducted using CHARMed
PyMca and eight different ED-XRF instruments of six different types. In comparison to a
2010 study conducted according to the same method, CHARMed PyMca showed a dramatic
improvement in reproducibility and method sensitivity.

KEYWORDS: XRF, CALIBRATION, COPPER, REPRODUCIBILITY, FUNDAMENTAL
PARAMETERS

INTRODUCTION

The study of heritage copper alloys (HCAs) is in a very dynamic period and the volume of quan-
titative compositional data being produced is growing very rapidly. These data are being used to
deduce diachronic and geographical trends useful for reconstructing technological evolution,
trade in materials and provenance. In particular, the use of energy-dispersive X-ray fluorescence
spectroscopy (ED-XRF) to study copper alloys has continued to expand dramatically due to the
ever-decreasing cost and increasing portability and ease of use of ED-XRF instrumentation. With
this growth comes an increasing interest in aggregating existing quantitative XRF data on HCAs
in order to both broaden and deepen our insights through collaboration and meta-studies (Frank
and Pernicka 2012; Bray et al. 2016). Rehren and Freestone (2015), writing about a parallel
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evolution in the compositional study of glass, state that progress towards deeper understanding
(asking ‘why’ and ‘how’ rather than just ‘what’, ‘where’ and ‘when’) relies on ‘expansion and
refinement of the [shared] data base’. It seems evident that the study of copper alloys would also
benefit tremendously from the continued growth of a shared body of quantitative compositional
data (Rehren and Freestone 2015).

There is, however, an elephant in the room. If one wishes to analyse a database of research results
that combine quantitative compositional data from different collaborating laboratories, good (or at
least, known) inter-laboratory reproducibility is a fundamental prerequisite. This goal has not been sim-
ple to achieve for copper alloys in the art and archaeology domain (Heginbotham et al. 2011). Inter-
laboratory reproducibility of compositional analysis is increasingly recognized as a potential barrier to
effective collaboration in the realm of cultural heritage, not just for copper alloys, but also with regard
to other materials (Frahm 2013; Speakman and Shackley 2013; Rehren and Freestone 2015).

Unfortunately, the pursuit of better reproducibility in the quantitative study of heritage copper
alloys with ED-XRF faces some unique challenges. Even under the best of conditions (i.e., with
an uncorroded, flat surface and a homogeneous matrix that is representative of the bulk) the large
number of elemental analytes encountered, the large concentration ranges expected for each and
the significant variability in overall matrix characteristics combine to create an environment that
is extremely challenging for quantitative ED-XRF.

This paper presents a protocol, nicknamed ‘CHARMed PyMca’ for the quantification of
heritage copper alloys by ED-XRF that is designed specifically to maximize inter-laboratory
reproducibility for the wide range of alloy types found in heritage materials. The name refers
to the two essential components of the protocol, namely PyMca fundamental parameters
software, used in conjunction with the so-called copper CHARM (Cultural Heritage Alloy
Reference Material) set of certified reference standards. The protocol assumes that the metal to
be analysed is in a state appropriate for study by ED-XRF (uncorroded, flat, homogeneous and
representative). Under such circumstances, it is designed to provide accurate results with
well-characterized precision, and to do so for a broad range of elements over a large concentration
range, independent of instrument type.

The protocol calls for the use of a free, open-source, fundamental parameters software for
spectral analysis called PyMca (Solé et al. 2007). The fundamental parameters approach was se-
lected for this protocol because it is generally favoured over empirical methods for quantification
where significant matrix variability may be present and where large concentration ranges are to
be addressed (Lachance and Claisse 1995, 356–7; de Vries and Vrebos 2002; Mantler et al.
2006). The fundamental parameters approach has also recently been shown to be strongly
associated with good inter-laboratory reproducibility in practice (Heginbotham et al. 2011).
PyMca software was selected for the protocol primarily because it is available to any interested
user at no cost, and it allows for a consistent and transparent application of the fundamental
parameters approach independent of the ED-XRF instrumentation used.

The CHARMed PyMca protocol calls for the calibration of standardless PyMca results using a
specific, widely available set of high-precision certified reference materials designed specifically
for use with heritage copper alloys, the so-called copper CHARM set (Heginbotham et al. 2015).
The use of this rigorously designed and fabricated set ensures that the user’s results will be as
accurate as possible, and valid over as large a concentration range as possible. Finally, this
protocol calls for the calibration-to-standards to be carried out following a consistent strategy,
including error modelling and the incorporation of a validation procedure.

The CHARMed PyMca protocol has been evaluated according to the same methodology as the
2011 reproducibility study mentioned above (Heginbotham et al. 2011). The results of this new
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study, using eight different instruments, demonstrate that the use of the CHARMed PyMca
protocol yields a significant improvement in reproducibility, accuracy and method sensitivity.
A brief summary of these results is given below, and a thorough discussion and interpretation
will follow in part 2 of this paper.

All aspects of the protocol are intended to be fully transparent, and to provide the individual
user with results that are accurate and, perhaps more importantly, well-characterized in terms
of precision. By pursuing these goals, the protocol intends to provide collaborating users with
a means towards significantly improved inter-laboratory reproducibility.

DESCRIPTION OF THE PROTOCOL

The CHARMed PyMca protocol for quantitative analysis of heritage copper alloys has been devel-
oped and tested using several tube-based ED-XRF instruments from different manufacturers, typi-
cally operated between 40 and 50kV with moderate filtration in an air path environment
(although a vacuum or helium flush protocol could also be used). Several tube anode materials have
been used (Cr, Re and Rh) and both PIN and silicon drift detectors have been employed. The pro-
tocol is presented below in five sections: the use of PyMca software; the use of the copper CHARM
standard set; the calibration strategy; the error modelling strategy; and the validation procedure.

PyMca

A fundamental parameters (FP) approach to spectral analysis is proposed here based on its
suitability to the copper alloy environment, where matrix variability is great and concentration
ranges are large (Lachance and Claisse 1995; de Vries and Vrebos 2002; Mantler et al. 2006).
In the early period of XRF development, the use of the FP approach was restricted due to the
considerable computational power required. Partly as a result of restricted access to advanced
computational facilities, a wide array of quantitative techniques that required less computation
were developed to account for absorption and enhancement effects that confound accurate
XRF analysis (so-called matrix effects). These techniques generally involve the use of influence
coefficients, either derived empirically or generated theoretically. Today, however, the
computational power required to apply fundamental parameters to ED-XRF analysis is readily
available to any analyst at relatively low cost and the use of the robust FP approach can be readily
adopted.

In addition to the theoretical arguments for the use of fundamental parameters, a round-robin
inter-laboratory study conducted in 2009–10 (Heginbotham et al. 2011) suggests that FP meth-
odology, combined with the use of reference standards, appears to deliver superior reproducibil-
ity compared to empirical methods in the analysis of copper alloys. This enhanced reproducibility
was observed even though the six laboratories using ‘FP with standards’ methodology used six
different instrument types and six different FP software packages. Given this observation, one
might well ask why advocate for the use of PyMca software specifically when any FP software
might perform as well? There are a number of arguments to be made in favour of PyMca, which
can be condensed into three classes: accessibility, transparency and functionality.

In terms of accessibility, PyMca is a freely downloadable, open-source software that can be
used on Solaris, Linux, Windows and Mac OS X platforms. The software is institutionally sup-
ported by the European Synchrotron Radiation Facility (ESRF) and is maintained and updated
frequently. The software is able to process spectra from many instrument types; to date, spectra
have been processed from Bruker’s Artax and Tracer spectrometers, Thermo’s Niton and ARL
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spectrometers, Olympus’ Delta spectrometers and XGLab’s Elio spectrometers. Additional
spectrum formats can be quickly made readable by request to the program’s administrator.

Transparency is an extremely important factor that also weighs in favour of PyMca. Most pro-
prietary quantification software packages (FP or otherwise) do not allow the user access to, much
less full control over, the many parameters that must be configured for a successful quantification
program. This can result in situations where different software versions produce systematically
different results on the same samples and the user cannot explain or correct the differences by
making adjustments to the software configuration (Goodale et al. 2012). Even in instances where
the user is able to customize calibration routines, if the software is proprietary, sometimes ‘full
disclosure and discussion of the calibration routine is not possible’ (Rowe et al. 2012).

PyMca, in contrast, strives to be completely transparent in its methodology and allows the user
full control over virtually all parameters affecting its standardless quantification process. PyMca
offers full control over background/continuum modelling, peak shape modelling (including long,
short and step tailing), element line group modelling, energy calibration, and pile-up and escape
peak modelling. The software also gives the user control over the modelling of energy output
from polychromatic X-ray sources, which is very important for most investigators in art and
archaeology, who predominantly use X-ray tube-based XRF instruments (Solé et al. 2007).

Recent improvements in PyMca have had the effect of greatly improving its performance in
the quantitative analysis of complex high-density materials such as copper alloys. In particular,
starting with version 5.0, PyMca models both secondary and tertiary excitation phenomena for
every assigned peak in the spectrum. The modelling strategy is based on the work of D. K. G.
de Boer; for details of the implementation, see de Boer (1990) and Solé et al. (in preparation).
A second, major improvement in PyMca, beginning with version 5.0, is the implementation of
reiterative matrix modelling in which the initial matrix composition can be automatically refined.
In the case of copper alloys, the initial composition can be as simple as pure Cu, but PyMca’s
initial estimate of the composition will then be used as the matrix description for a second itera-
tion of the quantification process. The second estimate of composition can then be used for a third
iteration and so on. The number of iterations and the specific elements to be considered in the
matrix and their chemical form are user-configurable.

For all of the sophisticated capabilities that PyMca has for the analysis of XRF spectra, quan-
titative results generated by the software are still prone to some degree of systematic error. The
likely causes of such error fall into three general categories.

Theoretical Uncertainties

The theoretical database used by PyMca for calculations contains thousands of values, drawn
from the published literature, for constants such as binding energies, fluorescence and Coster–
Kronig yields, photoelectric absorption cross-sections, radiative emission probabilities and mass
attenuation coefficients. These values have some uncertainty associated with them and this is
likely to lead to some error in the spectrum modelling (Caussin 2013; Schoonjans et al. 2013).
In addition, PyMca does not account for fluorescence induced by ejected photoelectrons or Auger
electrons within the matrix, which may be significant, particularly for low atomic number
elements and with higher energy excitation (de Vries and Vrebos 2002; Fernandez et al. 2013,
2014). Perhaps the most important theoretical uncertainty, however, comes with the spectral
modelling of X-ray tube output. PyMca relies on the formulae reviewed and outlined by Ebel
(1999) to generate a spectral model of the radiation emitted by X-ray tubes. While this approach
yields a reasonable approximation of reality, there is clearly a significant degree of uncertainty in
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the models and this can result in biased estimates of concentration for certain elements depending
on their binding energies.

System Description

At least as important as the problems associated with theoretical uncertainties is the fact that
PyMca relies on an accurate description of the total instrument and sample system in order to
make accurate quantitative calculations. The list of system characteristics that must be included
in PyMca’s ‘configuration file’ for any specific XRF instrument is compendious and includes
such information as the tube anode material, the tube voltage, the current, the analysis time,
the geometry of the system (incident X-rays, sample and detector), the angle of electron
incidence on the anode, the angle of X-ray emission from the anode towards the sample, the scat-
tering angle, attenuators (including tube filters, tube and detector windows, air path and so on),
the detector thickness, the detector response function, sample homogeneity and a list of possible
elements present in the sample. In reality, perfectly accurate system modelling is difficult, if not
impossible, to achieve and so some degree of uncertainty and bias in PyMca’s standardless
results may be expected.

Deconvolution Difficulties

Despite PyMca’s sophistication and customizability, deconvolution of overlapping peaks can
still pose problems in certain circumstances, such as extracting a small peak from the tail of a
much larger peak, as is often the case with a small Ni–Kα peak on the tail of a dominant
Cu–Kα peak. In instances such as this, consistent deconvolution may be difficult to achieve given
the wide variety of matrix types encountered in HCAs, and this may affect PyMca’s ability to
produce consistent and accurate results.

CHARM

In order to compensate for potential errors in PyMca quantification, CHARMed PyMca calls for
calibrating and correcting the standardless results generated by PyMca using the copper CHARM
set of 12 certified reference materials (in practice, we have also used the two supplementary high-
arsenic standards, bringing the total number of standards used in the examples presented to 14).
The design advantages of the set have been previously published in detail (Heginbotham et al.
2015). Some of the most important advantages are that the copper CHARM set provides a
common reference set with a very broad concentration range for 20 elements, 15 of which are
regularly found in air-path XRF analysis of heritage copper alloys. The standard set includes a
wide variety of alloy types and intentionally varied element ratios designed to challenge any
quantification methodology, and the high precision of the certified values in the set (typically
±1–2% of the certified value) allows the uncertainties in these values to be disregarded during
regression analysis, greatly simplifying the calibration and error modelling equations. Finally,
the set should be available to any interested researchers for many years to come through the
manufacturer, MBH Analytical Ltd (http://mbh.co.uk/).

In this proposed protocol, the standards are to be analysed three times each, on different days,
preferably by different operators, in different locations, after a suitable warm-up of the X-ray
tube. In this way, some measure of the instrumental variability can be incorporated into the
calibration procedure. While more than three replicate measurements would clearly yield a more
accurate estimate of the instrumental, or intra-laboratory, reproducibility of results, we have
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settled on triplicate measurements in the interest of keeping the burden of the protocol reason-
able. Furthermore, the triplicate measurements will be carried out on the entire calibration set
of 12 standards for each element, which should provide adequate data to construct a useful error
model (see ‘Instrumental reproducibility’ below).

Once the standards have been analysed, the resulting spectra can be processed with PyMca
using the ‘batch process’ function to give initial standardless quantitative results that can be
saved for export in several formats. Processing the standard spectra requires the creation of an
optimized PyMca configuration file for the instrument being used. This can be a time-consuming
process; however, once done for a specific instrument type, the configuration can easily be shared
and used on similar instruments. Example configuration files that have been used by the authors
for several different instruments can be downloaded at http://www.getty.edu/museum/conserva-
tion/papers/pymca.html.

Multi-Element Calibration

Once standardless PyMca results have been generated, a multi-element calibration can be built.
To facilitate data sharing between laboratories, it is important to follow a rigorous and consistent
calibration strategy. One weakness noted in the 2008 reproducibility study (Heginbotham et al.
2011) was an inconsistency in the specific elements analysed. Based on the shared experience
of the authors of the round-robin study and the CHARM set publication, the authors recommend
that for air-path protocols, individual calibrations be built for a minimum of 15 significant ele-
ments including Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Ag, Cd, Sn, Sb, Pb and Bi. The individual
calibrations should be built following a best practices approach to both calibration procedure and
error modelling based on accepted standard methodologies (Currie 1999; Burgess 2000; Barwick
2003; Institute for Reference Materials and Measurements 2010).

Fundamentals

There are several important features of a rigorous calibration scheme. First, the certified weight
per cent (wt%) concentration of the standard set should be considered as the independent variable
(X), whereas the PyMca calculated wt% concentration should be considered as the dependent
variable (Y). Second, replicate measurements of the standards should be averaged before
performing regression analysis on the data. This approach is significant and will change the
results of the analysis because the true number of independent variables is equal to the number
of standards, not to the number of measurements made. Variability within the replicate measures
(instrumental reproducibility) is accounted for in a later step. An ordinary least squares linear
regression can then be calculated to characterize the relationship between the certified and
calculated values. The regression will yield an equation of the form Y= aX+ b and, subsequently,
a newly acquired standardless PyMca quantitative result (yi) can be used to predict the true
composition of an unknown sample (xi) by inverting the equation as xi= (yi� b)/a.

By default, it is recommended that non-normalized PyMca results be used to generate the re-
gression equations. However, if the use of normalized data offers a significant advantage, the user
may then choose to switch to this mode for the calibration of any specific element. There is no
imperative to treat all elemental calibrations in the same manner. For each element, the analyst
can evaluate the difference in goodness-of-fit between the two approaches by noting the different
R2 values associated with each.
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A complete regression analysis produces a range of descriptive statistics and these should be
carefully inspected. In particular, residuals plots are very useful for detecting evidence of non-
linearity and heteroscedasticity in the data set. These plot the calibration residuals (the difference
between the PyMca observed result and the predicted result based on the regression equation)
against the true concentration for each standard. In the event that the residuals plot points
strongly towards non-linearity for a specific element, a second-order regression may be merited
for its calibration, particularly if it results in a significant reduction in residual standard deviation
(RSD) compared to the linear model. In principle, such non-linearity should be very rare,
although in practice the authors have noted occasional instances where calibrations based on
high-energy lines (e.g., Ag, Sn and Sb) seem to benefit from a second-order model. If
heteroscedasticity is suggested by the residuals plot, this should be taken into consideration when
determining the error model to be used (see discussion below).

Matrix Correction

In the context of the analysis of complex copper alloys using the CHARM set, it is recommended
that the regression models be inspected for any inter-element (matrix) effects apparent in the data
for which PyMca has not been able to correct sufficiently well. This may be done by building a
table of correlations between the residuals and the measured concentrations of other elements in
each of the CHARM set standards in order to draw attention to elements that may be responsible
for systematic errors in the PyMca results. Where high correlations exist, a graphical representa-
tion of the relationship (matrix element measured result versus residual) may help to determine
whether or not the correlation might reasonably be interpreted to imply causation. The investiga-
tor must draw on his or her sound understanding of the fundamentals of X-ray fluorescence
spectroscopy to determine whether the effect is plausible (based on X-ray physics or potential
problems in the deconvolution of overlapping peaks). If the evidence clearly suggests that an un-
corrected matrix effect is present, it should be permissible to generate and use a matrix correction
factor (Fc) that can be used to adjust the standardless PyMca result (yi) by a fixed fraction of the
PyMca result for the selected matrix element (mi) according to the formula ym= yi� (Fcmi),
where ym equals the matrix-adjusted PyMca result. The value of Fc can be determined iteratively
such that the sum of squared residuals (SSR) of the matrix corrected regression is minimized.
This correction factor can then be used in the application of the calibration to new experimental
results. It should be stressed that PyMca should be expected to model and account for the vast
majority of matrix effects prior to calibration, and thus the use of matrix correction in the calibra-
tion process should be very unusual and undertaken with caution. The limited number of calibra-
tion standards in the CHARMed PyMca scheme creates a danger of inappropriate ‘overfitting’
based on random correlations. The investigator should take a conservative approach and only
apply a matrix correction if the correlation is very strong, the ‘residuals versus matrix element
concentration’ plot shows a clear trend and the matrix effect is reasonable in a physical sense.
The danger of overfitting can be further controlled by limiting matrix correction possibilities to
one element and including the analysis of a validation set in the procedure (see below).

Forced Intercept

The initial regression model should also be inspected to confirm that the y intercept has been de-
termined appropriately. In this context, the y intercept itself represents the most likely value that
will be returned by PyMca if a sample is analysed the true composition of which for a given
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element is zero. In some instances, calibration points in the high end of the calibration range may,
by virtue of their high leverage, force the intercept of the preliminary OLS regression away from
what would otherwise be the optimum line for the group of calibration points nearest to zero.
This condition, if it exists, should be evident from looking at the residuals plot. Since even small
absolute errors associated with small (i.e., trace) results can result in disproportionately large rel-
ative errors, the user may choose to force the intercept of the regression line in order to maximize
accuracy for the calibration values nearest to zero. In the CHARMed PyMca environment, where
the distribution of calibration values is weighted towards zero, this may conveniently be done by
iteratively applying a forced-intercept linear regression to the calibration data and finding the
value of forced intercept (and corresponding slope) that minimizes the SSR for the five or six
lowest calibration points only. Before adopting a forced intercept calibration, it is beneficial to
plot the calibration data with the forced regression line overlaying the default line so that the user
can visually assess the merits of introducing a forced intercept.

FINAL CALIBRATION

Once the issues of normalization, residual matrix effects, linearity and intercepts have been
addressed, a final calibration equation can be formulated for each of the 15 core elements. These
equations can then be used to convert raw PyMca results to calibrated results. Calibrated results
should not be normalized to 100%, as this would needlessly, and invariably, shift the results
away from the best estimate of the true composition.

Error Modelling

Another extremely important aspect of building a multi-element calibration is to construct a
useful error model. Error modelling is conceptually the most challenging aspect of the calibration
procedure. In this area, it is perhaps best to take to heart Box and Draper’s famous truism that
‘All models are wrong, but some are useful’ (Box and Draper 1987). In terms of usefulness,
the authors bear in mind that the purpose of the entire CHARMED PyMca exercise is to develop
a protocol that facilitates data sharing by maximizing inter-laboratory reproducibility. The
authors thus propose that an error model be commonly adopted based on what Lloyd Currie calls
the ‘complete error budget’ of the system. Currie argues that if a complete error budget is
successfully modelled, the apparent dichotomy between intra- and inter-laboratory approaches
‘essentially vanishes’ (Currie 1999). In terms of rigour, this is easier said than done. It is clear
from the authors’ experience calibrating several types of XRF instrumentation that the dominant
uncertainties associated with the CHARMed PyMca quantitative protocol are those associated
with the calibration itself. Error associated with instrumental reproducibility is the second most
important category of error but this is generally much smaller and often negligible. A useful
estimate of the ‘complete error budget’ for each element in the calibration can then be constructed
by taking these two error sources into account.

Error of Prediction

To estimate the uncertainty of a predicted value of an unknown sample based on a linear
regression calibration, the accepted method is to calculate the standard error of prediction using
the formula (given here as presented in Barwick 2003):
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sxo ¼
s rð Þ
m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
þ 1
n
þ y�o � y�

� �2
m2∑n

i¼1 xi � x�ð Þ2

vuut ;

where n is the number of paired calibration points (xi , y), m is the calculated best-fit slope of the
calibration curve, N is the number of repeat measurements made on the unknown sample, �yo is
the mean of N repeat measurements of y for the sample, �y is the mean of the y values for the
calibration standards, xi is a value on the x-axis, �x is the mean of the xi values, and

s rð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 yi�ŷið Þ2
n�2

q
,

in which yi is the observed value of y for a given value of xi, and byi is the value of y predicted by
the equation of the calibration line for a given value of xi.

A confidence interval is obtained by multiplying sxo by the two-tailed Student’s t value for the
appropriate level of confidence and n – 2 degrees of freedom. A full discussion of the practical
application of this formula is given in Burgess (2000) and Barwick (2003).

The error of prediction defines the range of concentrations that the true concentration of a test
sample is likely to fall within, given a specified degree of confidence (commonly 95%). This is
distinct from themore commonly cited standard error of the regression, which is always smaller than
the error of prediction, and defines the average difference between the measured values of the ref-
erence standards and the predicted measured values for the standards based on the regression model.

The error of prediction is not a constant value, but is a non-linear function that is dependent on
the measured value of a given sample. The error is at its minimum near the mean of the calibra-
tion standards’ values. The error of prediction becomes slightly larger as the measured value gets
larger or smaller than this mean (see Fig. 1).

There is, unfortunately, one major shortcoming of the accepted error of prediction model
when applied to the CHARMed PyMca environment. This shortcoming is that the model is
strictly applicable only where the calibration data set is homoscedastic. A homoscedastic cali-
bration data set is one in which the deviation of calibration points from the regression line, or
variance, is equal across the calibration range. Unfortunately, this assumption is often not valid
in the context of XRF calibration; specifically, it is often the case that the absolute variance (not
the relative variance) is significantly smaller for measurements made near the limits of detection
than for measurements of larger values. Figure 2, for example, shows an ordinary least squares
(OLS) calibration plot for lead (Fig. 2 (a)) alongside a plot of the associated absolute residuals
(Fig. 2 (b)). Here, it is very clear that the absolute variance is highly unequal (heteroscedastic)
and is lowest where the certified value is small. In cases such as this, OLS error calculations will
tend to overestimate the error in the region where the variance is relatively small, producing
confidence intervals that are too wide at low concentrations (Hayes and Cai 2007).

It is clear that some way of constraining the error of prediction at low concentrations, based on
the degree of heteroscedasticity in the calibration data set, would lead to a more reliable estima-
tion of error. Unfortunately, modelling the error of prediction in a relatively small data set that
exhibits heteroscedasticity is a very complex problem for which no accepted solution appears
to exist. A detailed proposal for addressing the conundrum is beyond the scope of this paper,
but will be put forward in a forthcoming publication on the subject of error modelling for
XRF. In the meantime, it is proposed that the accepted error of prediction calculations described
above be taken as the basis for the CHARMed PyMca calibration error model.
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Instrumental Reproducibility

Given adequate counting times, most XRF instruments in use in the cultural heritage community
are capable of producing consistent results and so errors associated with instrumental reproduc-
ibility are generally relatively small compared to the calibration uncertainties. In some instances,
however, this error can become significant, usually due to spectral noise associated with low
concentrations or short counting times, or due to difficulties associated with peak deconvolution.
In the CHARMed PyMca protocol, it is proposed that a model of instrumental error be built
independently for each element in the calibration, using the triplicate results for each of the
standards as a guide. It is for this reason that the authors recommend collecting the standard
spectra on different days and by different operators. Characterization and control of longer-term
instrumental error can be addressed by implementing a drift-monitoring program for each
instrument.

The most straightforward way to model instrumental reproducibility in this context is to first
take the standard deviation of each set of calibrated triplicate measurements for one element,
and then calculate the average standard deviation for calibrated results of that element across
the calibration range. While the use of only three measurements per sample might be considered
less than desirable, when all reference samples are considered, this results in 12 independent es-
timates of instrumental reproducibility for each element. To estimate the range of variation within
which 95% of future repeat measurements would fall, the average standard deviation should be
multiplied by 1.96 (the two-tailed z value associated with a 95% confidence interval for a normal
distribution). The resulting value can then be considered as a useful estimate of the instrumental
reproducibility error and this can, in turn, be propagated with the error of prediction to estimate
the complete error budget.

Figure 1 An example linear calibration regression, showing the calibration points, the standard error of the regression
(dotted line), the standard error of prediction at 95% confidence (dashed line) and the mean calibration value ( x̄, yo). The
error of prediction is a non-linear function of the measured value and is at a minimum about the mean value of the
calibration standard set.
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Unfortunately, as with the error of prediction, the instrumental error data sets are also fre-
quently heteroscedastic. Specifically, the standard deviation of the 12 triplicate measures for each
element often increases as the measured concentration of the element increases. Therefore, a
single estimate of instrumental error is often likely to somewhat overestimate error at the low
end of the calibration range and to underestimate error in the upper end of the range. This phe-
nomenon is well known and a good discussion is given in Lachance and Claisse (1995, 272–3).

Figure 2 A typical calibration plot for lead using CHARMed PyMca (using a Bruker Tracer S1 with an Rh tube) (a),
and a plot of the associated absolute residuals for the regression (b). The residuals increase with concentration, revealing
pronounced heteroscedasticity in the data set.
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A detailed proposal for constructing a practical model for instrumental reproducibility that accom-
modates heteroscedasticity is also beyond the scope of this paper, but will also be put forward in a
forthcoming publication. In the meantime, it is proposed that the average standard deviation, as
described above, be taken as the basis for the CHARMed PyMca instrumental error model.

Application of the Error Models

The error of prediction from the calibration and the instrumental reproducibility error can be con-
sidered independent and additive. Therefore, given that they are scaled to the same confidence
interval, the accepted method for propagating the two errors is to take the square root of the
sum of the squared errors (de Vries and Vrebos 2002). In the vast majority of cases, the instru-
mental error is significantly smaller than the error of prediction and will contribute less than
5% to the overall error associated with a calibrated result. With short acquisition times and
low count rates (e.g., 45 live seconds at 6000 cps), the contribution of instrumental error for some
minor elements can rise to as much as 30% of the total.

Formulating a method for applying the propagated error model to the results of new analyses
can be accomplished in several ways. A very convenient method that maintains good precision is
to simply calculate the propagated error, as described above, for the predicted result of each of
the CHARM calibration samples. It is the author’s experience that a second-order regression will
invariably closely fit a line to these points (with R2 values of 0.99 and above) and the resulting
regression equation can be used to estimate the overall error for any calibrated result in the
calibration range. Figure 3 illustrates the overall error model for copper based, on a CHARMed
PyMca calibration for an Olympus Delta spectrometer. In this figure, for each predicted
(calibrated) result derived from the initial XRF measurements of the copper CHARM set, the dif-
ference from the certified value (residual) is plotted as a diamond; the combined error (at 95%
confidence) for each result, calculated according to the formulas outlined above, is plotted as a

Figure 3 A plot of the overall error model for copper based on a CHARMed PyMca calibration for an Olympus Delta
spectrometer; the absolute residuals are plotted as diamonds; the calculated overall error (at 95% confidence) for each
calibration point is plotted as a cross and an excellent approximation of the error for any future result (derived from the
quadratic regression of the error points) is shown as the dashed line.
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cross. An excellent approximation of the error for any future result (dashed line) can be made
based on the simple quadratic formula derived from the regression of the calculated error points.

Validation

Once a calibration and error model are built for a particular XRF instrument and measurement
protocol, it is important to confirm that the model is functioning as designed. The use of a vali-
dation set is common for this purpose in many statistical methods. In general, a validation set is a
group of well-characterized samples that have not been used in the construction of a statistical or
probabilistic model, that are then used to assess the validity of the model. In the context of the
CHARMed PyMca procedure, it is recommended that a set of 12 reference materials (certified
if possible, but uncertified as necessary) that are not in the copper CHARM set should be selected
for this purpose. As much as possible, the validation set should contain the same 15 elements and
cover the same range of concentrations as the calibration (CHARM) set, although in practice this
is difficult to achieve.

The validation set should, of course, be measured using the same instrumental parameters as
the calibration set. The number and temporal distribution of replicates may be adjusted depend-
ing on the specific manner in which one wishes to analyse the results. The authors recommend
analysing each validation sample three times in immediate succession without moving the
sample between analyses. This follows the ASTM protocol for inter-laboratory reproducibility
studies, and the results can then be compiled with those from other users to calculate reproduc-
ibility statistics such as the method minimum standard deviation (SM) and the per cent relative
reproducibility index (Rrel) (ASTM 2003).

The results from the validation set can be plotted directly against the reference values for each
sample to confirm that the calibration model is functioning correctly (Fig. 4 (a)). A more useful
plot for evaluating the calibration model in detail is a residuals plot overlaid with the error model
for the calibration (Fig. 4 (b)). If the calibration model is functioning correctly, the validation set
residuals plot will show data points that are roughly symmetrical about the x-axis and approxi-
mately 95% of the points will lie between the lines that describe the error model. If the data points
are weighted above or below the x-axis, then an unexplained bias is likely to be present. If the
data points are clustered near the x-axis and do not approach the error boundaries, then the model
is likely to be overestimating the error; in contrast, if significantly more than 95% of the data
points fall outside the error model boundaries, then the error model is likely to be
underestimating the error.

MECS: A MULTI-ELEMENT CALIBRATION SPREADSHEET

A multi-element calibration spreadsheet (MECS) has been developed in Excel® to facilitate the
process of building a functional calibration/error model and implementing the validation proce-
dure. The MECS is written to take advantage of Excel’s logical, lookup and statistical functions
in order to streamline and largely automate the calibration procedures described above. The
MECS also automates the validation procedure so that results from the validation set are
displayed and analysed, as recommended above, to confirm that the calibration and error models
are valid. In addition, the MECS streamlines the routine quantification of new experimental XRF
spectra, automatically applying the CHARM-based calibration and tabulating quantitative results
and errors in several customizable report formats as well as generating graphical output of results,
also in several formats. On a separate tab, the MECS also presents a calibration report with an
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element-by-element summary table of all the calibration parameters and the constants used for
the calculation of all the regression models and the error models that comprise the total
calibration scheme.

The MECS described here greatly simplifies and automates calibration and quantification
according to the CHARMed PyMca protocol; a complete calibration model can be built from
PyMca results in a matter of a few hours and, subsequently, new results can be processed, plotted
and tabulated from batched PyMca results in a matter of minutes. The use of an Excel® spread-
sheet for this work has its limitations, however, and it is hoped that this MECS might, therefore,
be used as a model for the development of new open-source software that could be integrated

Figure 4 (a) The calibrated results from the validation set plotted against the certified values for copper (using an Olympus
Delta spectrometer with an Rh tube); the dashed line represents a 1:1 correspondence. (b) The validation set residuals plot
overlaid with the error model for the calibration (dashed line); if the model is functioning correctly, approximately 95% of
the points should lie between the error model lines.
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with PyMca and used more widely by the art and archaeology community. A copy of the MECS
can be downloaded from http://www.getty.edu/museum/conservation/papers/pymca.html.

RESULTS

The CHARMed PyMca protocol was tested by an eight-instrument reproducibility study in
which six different instrumental configurations were employed by five analysts. A validation
set of 12 reference standards representing a variety of alloy types was analysed using each of
the eight instruments and the spectra processed using the protocol. The results of this study were
analysed according to the same standard methodology used in the previous 17-instrument repro-
ducibility study (Heginbotham et al. 2011). In comparison to the earlier study, the CHARMed
PyMca protocol yields significantly improved reproducibility and method sensitivity. On
average, for all elements, it resulted in a reduction in the mean % relative reproducibility of 75%
(e.g., for lead, the inter-laboratory reproducibility went from ±77% to ±18%). Similarly, using
CHARMed PyMca, the method calculated lower limit (the concentration below which relative
reproducibility begins to deteriorate rapidly) improved by 51% (e.g., for arsenic, the lower limit
dropped from 0.24% to 0.13%).

The CHARMed PyMca protocol also allowed the consistent reporting of 15 elements, in
contrast to only eight that were consistently reported in the earlier study. Furthermore, the results
were accurate; the interval defined by the group mean result and the reproducibility standard
deviation (SR-95%) contained the standard reference value approximately 92% of the time. The
full results of this reproducibility study will be reported in part 2 of this paper.

CONCLUSIONS

CHARMed PyMca certainly will not eliminate all potential problems with ED-XRF analysis of
heritage copper alloys. Notably, complications related to surface roughness, gross inhomogene-
ity, corrosion/patina, surface enhancement and surface depletion will continue to offer challenges
to analysts. No doubt, many archaeological copper alloy materials, for example, will continue to
be inappropriate candidates for quantitative ED-XRF analysis due to these factors, and analysts
will have to remain vigilant about selecting sample sites that are clean, uncorroded, homoge-
neous and representative of the bulk.

At a minimum, the CHARMed PyMca protocol offers the possibility of dramatically improv-
ing reproducibility between laboratories conducting ED-XRF on clean, homogeneous copper
alloys. If the full potential of collaborative research on heritage copper alloys is to be fulfilled,
researchers must be able to trust in the reproducibility and stated precision of quantitative com-
positional data generated by collaborating laboratories. ED-XRF faces intrinsic challenges in the
analysis of these alloys due to the large number of analytes present, the wide concentration
ranges encountered and the high variability of matrix characteristics. The CHARMed PyMca
protocol presented here is designed to address these challenges in a manner that is rigorous, read-
ily accessible and fully transparent. It is hoped that by using a shared set of standards, with shared
open-access software and a common calibration strategy, this protocol will offer the possibility of
sharing and aggregating quantitative data in a manner that is consistent with regard to the
elements analysed, well-characterized in terms of precision and demonstrably reproducible.

In the future, it seems reasonable to assume that the essential aspects of this protocol might
also be usefully applied to other heritage materials, such as glasses and other metal alloys, if
common reference standard sets can be defined. Furthermore, the protocol may also be extended
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to other X-ray techniques such as particle-induced X-ray emission (PIXE), or less common
variants of ED-XRF such as polycapillary-XRF or synchrotron-μXRF techniques.
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