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Abstract

Extraction of local features constitutes a first step of many algorithms used in computer
vision. The choice of keypoints and local features is often driven by the optimization
of a performance criterion on a given computer vision task, which sometimes makes the
extracted content difficult to apprehend. In this paper we propose to examine the content
of local image descriptors from a reconstruction perspective. For that, relying on the
keypoints and descriptors provided by the scale-invariant feature transform (SIFT), we
propose two stochastic models for exploring the set of images that can be obtained from
given SIFT descriptors. The two models are both defined as solutions of generalized Poisson
problems that combine gradient information at different scales. The first model consists
in sampling an orientation field according to a maximum entropy distribution constrained
by local histograms of gradient orientations (at scale 0). The second model consists in
simple resampling of the local histogram of gradient orientations at multiple scales. We
show that both these models admit convolutive expressions which allow to compute the
model statistics (e.g. the mean, the variance). Also, in the experimental section, we
show that these models are able to recover many image structures, while not requiring any
external database. Finally, we compare several other choices of points of interest in terms of
quality of reconstruction, which confirms the optimality of the SIFT keypoints over simpler
alternatives.

1 Introduction

A fundamental problem of vision consists in extracting a minimal representation that is sufficient
for a human to apprehend the semantic content of an image. Marr and Hildreth [40, 39] proposed
a raw primal sketch image representation based on the zero-crossings of the Laplacian computed
at different scales, which extract spatial positions corresponding to edges, blobs, and termina-
tions. Since this pioneering work, many authors proposed to extract different points of interest
(keypoints), or local descriptors (features) based on several differential operators, while being
invariant to given image transformations. Extracting keypoints and local features in images is
indeed a fundamental step for many imaging tasks [21], like image recognition [63, 33, 9, 10, 26],
image matching and rectification [33, 60, 32], object detection and tracking [8, 58, 66, 53], video
stabilization [6, 65], image classification [29, 68, 28], etc. In this paper, we propose to discuss
the role of such keypoints and descriptors, from a reconstruction point of view.

In the seminal paper [5], Attneave suggests that the most important points for image percep-
tion are the ones of maximum curvature. Since then, many techniques have emerged to single
out keypoints and build local descriptors around them. Depending on the applicative context,
one should use descriptors that are invariant with respect to specific geometric transformations1

(e.g. image recognition generally needs invariance to homography and illumination change).

1The translation invariance is generally always required, and often trivial.
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Here we will only mention a few famous local descriptors, and we refer to [43, 59, 45, 32] for a
more comprehensive survey.

Harris and Stephens proposed a combined corner and edge detector based on the determinant
and trace of the structure tensor of the image [23]. A multiscale variant based on a normalized
Laplacian of Gaussian (LoG) scale-space, coined Harris-Laplace was proposed by Milokajczyk
and Schmid [42]. The same authors also proposed in [42] the Harris-affine point detector which
extends the previous one with a normalization step in order to get invariance to affine trans-
formations. Tuytelaars and Mikolajczyk proposed in [60] two region detectors both starting
from anchor points (e.g. Harris points); then the first one selects a region within detected edges
around the anchor, and the second one extracts a region by analyzing intensity profiles on rays
emanating from the anchor. Rosten and Drummond introduced in [55] the “features from ac-
celerated segment test” (FAST) which is a corner detector accelerated by a machine learning
technique. This approach has been further fastened by Mair et al. [37] using optimal decision
trees, thus obtaining an “adaptive and generic accelerated segment test” (AGAST). Musé et al.
proposed in [48] to extract shapes from the image level lines, and to process them in order to
get an affine invariant representation.

In parallel of this research on keypoints, many techniques have been proposed for invariant
local descriptions of images. An early descriptor is given by the local binary patterns (LBP)
defined by Ojala et al. [51] which extracts signs of differences of image values on pixels located
on a circular neighborhood of a keypoint. The LBP were originally designed for texture descrip-
tion but can also be used for face detection [1]. In [33], Lowe introduced the scale invariant
feature transform (SIFT) which first extracts the keypoints as local extrema of the “Difference
of Gaussian” (DoG) approximation of the LoG, and next computes around each keypoint a
local descriptor based on normalized histograms of gradient direction (HOG), see the details
in Section 2. Notice that similar HOG descriptors computed on a dense grid were actually
used in [14] for person detection; one reference implementation of the HOG descriptors is given
in [22]. A fully affine-invariant extension of SIFT, named ASIFT, was proposed by Morel and
Yu [45] and consists in applying the SIFT method with the image transformed with several
simulated affine maps. The SURF method (Speeded-up robust features) proposed by Bay et
al. [7] is closely related in construction to the SIFT method, but allows for a faster imple-
mentation. At a higher semantic level, local image behavior can be also represented as visual
words [58, 11] which are obtained as cluster points in a feature space. Later, some authors
proposed to describe a patch using local binary descriptors (LBD), which extracts the signs of
differences between Gaussian measurements taken at different locations. Using different ways
of selecting these locations leads to the methods BRISK [30] (binary robust invariant scalable
keypoints) or FREAK [2] (fast retina keypoint). All of these descriptors have quite different
invariance properties (evaluated either in a theoretical or experimental framework).

Long before the design of these image descriptors, the question of a minimal representation
of an image was thoroughly studied, mainly for compression purpose. Through the concept
of raw primal sketch, Marr [39] suggested that the human visual system processes images by
retaining essentially the lines of zero-crossing of the Laplacian at several scales. This leads to
the conjecture that an image is uniquely defined by these zero-crossing lines, a conjecture that
was later precised by Mallat [38] using wavelet modulus maxima. Both these conjectures were
proved wrong by Meyer [41] but still, algorithms for approximate reconstruction were proposed
by Hummel and Moniot [24] for zero-crossings and by Mallat and Zhong [38] for the case of
wavelet modulus maxima. Besides, unique characterization can be shown to be true under some
additional hypotheses [12, 13, 56, 4, 3].

From a more practical point of view, several authors have raised the question of inversion of a
feature-based representation. For example, Elder and Zucker [20] proposed an algorithm for im-
age reconstruction from detected contours, based on the heat diffusion. Nielsen and Lillholm [50]
consider the problem of variational reconstruction from linear measurements; in addition to the
minimum variance reconstruction (given by the pseudo-inverse of the measurements matrix),
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they propose two variational reconstructions based on either the entropy (of the image seen
as a probability distribution on its domain) or the H1 norm. Interestingly, they discuss the
problem of extracting a subset of linear measurements which leads to the best reconstruction
and empirically compare three different strategies for that purpose.

More recently, motivated by privacy issues (since the descriptors may be transmitted on
an unsecured network), Weinzaepfel et al. [64] addressed image reconstruction from the output
of a SIFT transform adapted with elliptic keypoints. One important difference with previous
works is that this method exploits a database of image patches: for each keypoint, a patch with
similar description is looked for in the database, and all the patches are stitched together with
Poisson image editing [52]. Vondrick et al. [62] address reconstruction from dense HOGs by
relying on a paired dictionary representation of HOGs and patches. Also, d’Angelo et al. [15]
address reconstruction from local binary descriptors by relying on primal-dual optimization
techniques; in contrast with [64, 62], this method does not need any external information. Kato
and Harada [27] formulate reconstruction from bag of visual words as a problem of quadratic
assignment. Finally, Juefei-Xu and Savvides [25] propose to invert the LBP representation with
an approach based on paired dictionary learning with an `0 constraint.

More recently, the success of deep convolutional neural networks in image classification [28,
67] has urged the need of inverting the corresponding representations in order to intuitively
understand the kind of information that is extracted at each layer. Even if they do not formulate
it as an inverting procedure, Zeiler and Fergus [67] proposed to build a deconvolution network
that allows to visualize in image space the stimuli that excite one response at a particular layer
of the neural network. Given an image u, Mahendran and Vedaldi [35, 36] proposed to search
for a pre-image of an image representation ϕ(u) by minimizing a functional containing a loss
term related to the representation ϕ and a regularizing term (in particular the H1 norm). Even
if the regularizer is convex, the transformation ϕ is in general highly non-linear so that the
resulting optimization problem is not convex; so the output of the inversion may depend on
the parameters and initializations of the chosen optimization procedure. On the other hand,
Dosovitskiy and Brox [19] suggest to learn an approximate left inverse of the representation (i.e.
a mapping ϕ−1

L such that ϕ−1
L (ϕ(u)) ≈ u for every u) in the form of an up-convolutional network.

These methods are generic in the sense that they can be applied to any image representation
that can be approximated by the output of a convolutional neural network; in particular, the
authors of [19] display inversion results for both HOG, SIFT and AlexNet [28] representations.
Notice that the inversion/visualization techniques of [67, 19] exploit an external database while
the one of [35, 36] does not.

Instead of building a uniquely defined inversion technique (using regularization), another
way to perform reconstruction from the image representation ϕ is to sample from a stochastic
model that explores the set of pre-images of ϕ(u). This is particularly relevant if one uses an
image representation that is not invertible: for example, the SIFT cells of an image may not
cover its whole domain and thus many images could have the same SIFT descriptors. One
way to address this problem is to consider the information contained in the descriptors as a
statistical measurement, and to sample from the maximum entropy model that complies with
these statistical constraints. Such maximal entropy models were considered by Zhu, Wu and
Mumford in [69, 47] for texture modelling based on responses to an automatically selected subset
of filters chosen in a filter bank. This approach has been recently extended by Lu, Zhu and Wu
to responses to a pre-trained neural network [34]. Maximum entropy models were also used to
question the noise models used in the a contrario framework for feature detections in images [18]:
in [16], for two types of given detections (cluster of points, or line segments), Desolneux proposes
explicit computations of maximal entropy image models that lead to the same detections (in
average).

In the present paper, we propose two stochastic models that complies with statistical features
given by a SIFT-like representation. In order to derive explicit computations, we work on a
simplified SIFT transform which extracts multiscale HOGs from regions around the (usual)
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SIFT keypoints. The first model, called MaxEnt, is indeed an instance of maximum entropy
model which complies with local statistical constraints on the gradient orientations (at scale
0, i.e. the image scale). Once the parameters of this model are estimated (using a gradient
descent), a target gradient orientation can be sampled, and we recover an image by solving a
classical Poisson problem. The second model, called MS-Poisson, consists in first independent
sampling of multiscale gradient orientations in all the SIFT cells, and next merging all the pieces
by solving a global multiscale Poisson problem. Even if this model does not solve an explicit
maximum entropy problem, it allows to coherently merge information given at several scales.
Several experiments show that both these models are able to recover large image structures and
compare well to the results of [64] while not using any external information. Finally, we discuss
the definition of the SIFT keypoints in terms of optimality of reconstruction, thus raising the
following question related to visual information theory: “Can we measure the optimality (at
fixed memory budget) of some image descriptor in terms of reconstruction?”

The paper is organized as follows. In Section 2, we briefly recall the main steps of the
SIFT method, and explain the simplified SIFT descriptors that we use for reconstruction. In
Section 3, we build and study the maximum entropy model (MaxEnt) used for reconstruction
from monoscale HOGs computed in the SIFT subcells. In Section 4, we propose the multiscale
Poisson model (MS-Poisson) that allows to comply with multiscale HOGs taken in the SIFT
subcells; the corresponding H1-regularized multiscale Poisson problem is explicitly solved. Fi-
nally, in Section 5 we display several reconstruction results obtained with both models (applied
with simplified SIFT, or also the true SIFT), study the variability of the reconstruction (in terms
of first and second order moments, but also of SIFT keypoints computed on the reconstruction).
We also compare with other existing reconstruction techniques and apply the reconstruction
models on other keypoint sets, thus confirming (from the synthesis perspective) the efficiency of
the SIFT method for global image description. Finally in Section 6 we conclude the discussion
proposed in this paper and open some perspectives for future research. A preliminary version
of this work was published as a conference paper in [17].

2 A Brief Summary of the SIFT Method

In this section we briefly recall the construction of keypoints and local descriptors used in
the SIFT method, and we explain the simplified descriptors that will be later used for the
reconstruction in the next sections.

2.1 Gaussian Scale-Space and Keypoints

Following [31], we introduce the Gaussian scale-space in a continuous domain. Let u : R2 → R
be an integrable function. For σ > 0, we introduce the function gσ : R2 → R defined by

gσ(x) =
1

2πσ2
exp

(
−|x|

2

2σ2

)
.

The Gaussian scale-space associated with u is then defined by the convolution

∀x ∈ R2, ∀σ > 0, Lu(x, σ) = gσ ∗ u(x) =

∫
R2

gσ(y)u(x− y)dy.

Another way to parameterize the scale-space is to use a time parameter t = σ2 and the
kernel kt = g√t which satisfies

∂

∂t
(kt(x)) =

1

2
∆kt(x).

In other words, (x, t) 7→ Lu(x,
√
t) is the solution of the heat equation on R2 with initial

condition u (in particular, it is a C∞ function on R2 × (0,∞)).
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Then we consider the scale-normalized Laplacian of Gaussian σ2∆gσ. The PDE satisfied by
kt gives after change of variables that

σ
∂gσ
∂σ

(x) = σ2∆gσ(x) =

(
|x|2 − 2σ2

2πσ4

)
exp

(
−|x|

2

2σ2

)
.

The detection of keypoints will be based on the local extrema of the function

Du(x, σ) := σ2∆gσ ∗ u(x) = σ2∆(gσ ∗ u)(x).

The following proposition which is recalled without proof shows that these keypoints are
covariant to several image transformations.

Proposition 2.1 ([31]). We have the following invariance properties.

1. ∀a ∈ R, Dau = aDu.

2. If v is an affine function of x, then Du+v = Du.

3. If h ∈ R2 and τhu(x) = u(x− h) is a translated version of u, then

Dτhu(x, σ) = Du(x− h, σ).

4. (Scale invariance) If u(x) = v(sx) with s > 0, for all x ∈ R2, then

Du(x, σ) = Dv(sx, sσ).

The existence of a keypoint (x, σ) indicates the presence of a blob-like structure at position
x with scale σ. For example, the Gaussian function gs (s > 0) admits a keypoint (0, s) which
corresponds to a strict local minimum of Dgs .

The authors of [46] also discussed the effect of several other image transformations on the
SIFT keypoints but left aside the factor σ2 in the definition of Du.

2.2 SIFT Summary

In the paper by Lowe [33], the scale-normalized LoG is approximated by a finite difference of
Gaussian functions: for a constant scale factor k > 1, he considers instead

(x, σ) 7→ (gkσ − gσ)(x) ≈ (kσ − σ)
∂gσ
∂σ

(x) = (k − 1)σ2∆gσ(x). (1)

Also, the practical implementation of [33] only works with discretized images, so that the ex-
tracted keypoints are actually strict local extrema computed on a discretized scale-space.

Here is a quick summary of the original SIFT method [33]. For technical details we refer the
reader to [54]. Here, and in the remaining of the paper, u0 refers to the original image on which
we compute keypoints and local descriptors.

1. Computing SIFT keypoints:

(a) Extract local extrema of a discrete version of (1).

(b) Refine the positions of the local extrema in position and scale using a quadratic
approximation.

(c) Discard extrema with low contrast (thresholding low values of (1)) and extrema
located on edges (thresholding high values of the ratio between Hessian eigenvalues).

2. Computing SIFT local descriptors associated with the keypoint (x, σ):
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(a) Compute one or several principal orientations α. For that, in a square of size 9σ×9σ
centered at x (and parallel to the image axes), compute a smoothed histogram of
orientations of ∇gσ ∗ u0, and extract its significant local maxima.

(b) For each detected orientation α, consider a grid of 4×4 square regions around (x, σ).
These square regions, which we call SIFT subcells, are of size 3σ × 3σ with one side
parallel to α. In each subcell compute the histogram of Angle(∇gσ ∗u0)−α quantized
on 8 values (`π4 , 1 ≤ ` ≤ 8).

(c) Normalization: the 16 histograms are concatenated to obtain a feature vector f ∈
R128, which is thresholded and normalized

fk ← min(fk, 0.2‖f‖2) , fk = min

(
255,

⌊
512

f

‖f‖2

⌋)
(2)

and finally quantized to 8-bit integers.

When computing orientation histograms in steps 2(a) and 2(b), each pixel votes with a
weight that depends on the value of the gradient norm at scale σ and on its distance to the
keypoint center x. Also in step 2(b), there is a linear splitting of the vote of an angle between
the two adjacent quantized angle values.

2.3 Keypoints and Descriptors used in our method

In the reconstruction models proposed in this paper, we consider the oriented keypoints extracted
by the original SIFT method. However, we will only work with simplified SIFT descriptors in
the sense that we extract hard-binned histograms of gradient orientations at several scales. In
other words, we do not include the vote weights nor the normalization step 2(c).

We thus denote by (sj)j∈J the collection of SIFT subcells, sj ⊂ Ω (if a 3σ × 3σ subcell is
not entirely contained in Ω, then we replace it with its intersection with Ω). The SIFT subcells
must not be confounded with the SIFT cells: in a SIFT cell, there are 16 SIFT subcells so that
different subcells sj can correspond to the same keypoint. We will denote by (xj , σj , αj) the
oriented keypoint associated with sj . For y ∈ Ω, we denote by J (y) = {j ∈ J | y ∈ sj} the set
of indices of SIFT subcells containing y. See Fig. 1 for an illustration.

For technical reasons, the statistics that are used in the two proposed models are slightly
different: the MaxEnt model of Section 3 works on orientations at scale 0 whereas the MS-
Poisson model of Section 4 works on orientations computed at multiple scales. For that reason,
we postpone to the next sections the definition of the extracted statistics.

3 Stochastic Models for Gradient Orientations

In this section, we propose a model for generating random images constrained to have pre-
scribed local HOGs in the SIFT subcells. When designing such a model, the main difficulty
arises from the fact that several SIFT subcells can overlap, and thus one has to combine the
information available in all corresponding local HOGs in a way that finally complies with all the
statistical constraints. In order to cope with this issue, we exploit the framework of exponential
distributions to design stochastic orientation models with prescribed statistical features. The
obtained distribution is “as uniform (random) as possible” in the sense that it is of maximal
entropy among all absolutely continuous distributions which satisfy the desired constraints. We
combine this random orientation field with a deterministic magnitude (which is computed with
the scales of locally available keypoints) in order to obtain a random objective vector field for
the gradient. Finally we solve a Poisson reconstruction problem in order to get back a random
image whose gradient is as close as possible as the randomly sampled objective vector field.
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Figure 1: Examples of SIFT keypoints and subcells. On the left, one can see an original
image (Courtesy of J. Delon) with overimposed SIFT oriented keypoints (x, σ, α) represented
as arrows originating from x, with orientation α and length 6σ. On the right, we display the 16
SIFT subcells associated with one particular keypoint. Each subcell is of size 3σ × 3σ.

3.1 Exponential Models with local HOG

We will denote by T = R/2πZ the set of angles, and TΩ the set of all possible orientation fields
θ = (θ(x))x∈Ω on Ω.

Extracted Statistics

For simplicity, in contrast with the usual SIFT method, in this section we only extract gradient
orientations at scale 0 and besides we adopt the same quantization bins for all SIFT subcells

B` =
[
(`− 1)π4 , `

π
4

)
, (1 6 ` 6 8) (3)

(i.e. we do not adapt quantization to the principal orientation of the keypoint).
For all j ∈ J and 1 6 ` 6 8, we thus consider the real-valued function defined on orientation

fields by

∀θ ∈ TΩ, fj,`(θ) =
1

|sj |
∑
x∈sj

1B`(θ(x)). (4)

Thus fj,`(θ) is the proportion of points x ∈ sj having their orientation θ(x) in B`.

Maximum Entropy Distribution

We are then interested in probability distributions P on TΩ such that

∀j ∈ J ,∀` ∈ {1, . . . , 8}, EP
(
fj,`(Θ)

)
= fj,`(θ0) , (5)

where θ0 = Angle(∇u0) is the orientation field of the original image u0, and where Θ is a random
orientation field with probability distribution P . In other words, we look for a random model
on orientation fields which preserves in average the extracted statistics in the SIFT subcells, see
Fig. 2.

There are many probability distributions P on TΩ that satisfy (5), and we will be mainly
interested in the ones that are at the same time as “random” as possible, in the sense that they
are of maximal entropy. The following theorem shows the existence of such maximal entropy
distributions.
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Figure 2: Extracting HOG in SIFT subcells. On the left, we display an original image
(Courtesy of J. Delon) with three overimposed SIFT subcells sj , and on the right, we display
the corresponding HOG (fj,`(θ0))16`68 extracted in these subcells. The MaxEnt model is a
probability distribution on orientation fields that will respect in average the local HOG extracted
in the SIFT subcells.

Theorem 3.1. There exists a family of numbers λ = (λj,`)j∈J ,16`68 such that the probability
distribution

dPλ =
1

Zλ
exp

(
−
∑
j,`

λj,`fj,`(θ)

)
dθ, (6)

where the partition function Zλ is given by Zλ =
∫
TΩ exp

(
−
∑
j,` λj,`fj,`(θ)

)
dθ, satisfies the con-

straints (5) and is of maximal entropy among all absolutely continuous probability distributions
w.r.t. the Lebesgue measure dθ on TΩ satisfying the constraints (5).

Proof. This result directly follows from the general theorem given in [47]. The only difficulty
is to handle the hypothesis of linear independence of the fj,`. In our framework, the fj,` are

not independent (in particular because
∑8
`=1 fj,` = 1, and also because there may be other

dependencies for instance when one subcell is exactly the union of two smaller subcells). But
one can still apply the theorem to an extracted linearly independent subfamily. This gives the
existence of the solution for the initial family (fj,`) (but of course not the unicity).

Remark: We do not repeat here the argument (based on Lagrange multipliers) showing that
maximizing entropy under constraints (5) leads to exponential distributions. However, once a
solution Pλ has been computed, and if P is an absolutely continuous probability distribution
satisfying (5), one can write the Kullback-Leibler divergence using the entropy H(P ):

D(P ||Pλ) =

∫
log
( P (θ)

Pλ(θ)

)
P (θ)dθ = −H(P ) + logZλ +

∑
λj,`fj,`(θ0), (7)

which shows that maximizing H(P ) under (5) is equivalent to minimize D(P ||Pλ). In particular,
this shows that the maximal entropy distribution under (5) is unique (because of the strict
concavity of the entropy) even if there may be several sets of parameters λ corresponding to
that solution.
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Independence Property of the MaxEnt Model

Proposition 3.2. Under Pλ the values Θ(x) are independent. Besides, the probability density
function of Θ(x) is given by

1

Zλ,x
e−ϕλ,x =

1

Zλ,x

8∑
`=1

exp
(
−

∑
j∈J (x)

λj,`
|sj |

)
1B` (8)

where Zλ,x =

8∑
`=1

exp
(
−

∑
j∈J (x)

λj,`
|sj |

)
|B`|. (9)

Proof. Taking the logarithm of (6), one can group the terms corresponding to the same pixel x
so that

− log
dPλ
dθ
− logZλ =

∑
j∈J ,16`68

λj,`fj,`(θ) =
∑
x∈Ω

ϕλ,x(θ(x)), (10)

where ϕλ,x =

8∑
`=1

( ∑
j∈J (x)

λj,`
|sj |

)
1B` . (11)

We thus obtain that Pλ can be written in a separable form.

On the one hand, this proposition shows that for a given λ, one can easily sample from the
model Pλ. On the other hand, it also allows to compute several statistics associated with this
model. In particular, we can compute for any bounded measurable function ψ : T→ C

EPλ [ψ(Θ(x))] =

∑8
`=1 exp

(
−
∑
j∈J (x)

λj,`
|sj |

) ∫
B`
ψ(t)dt∑8

`=1 exp
(
−
∑
j∈J (x)

λj,`
|sj |

)
|B`|

(12)

It also allows to compute the expected value of the statistics f(Θ) in the model Pλ (which will
be useful in Section 3.3)

EPλ [fj,`(Θ)] =
1

|sj |
∑
x∈sj

P(Θ(x) ∈ B`) =
1

|sj |
∑
x∈sj

exp
(
−

∑
k∈J (x)

λk,`
|sk|

)
|B`|∑

16`′68 exp
(
−

∑
k∈J (x)

λk,`′
|sk|

)
|B`′ |

. (13)

But it remains to show how to estimate λ in order to satisfy the constraints (5). These
constraints can be rewritten as

∀j, `,
∑
x∈sj

1

Zλ,x
exp

(
−

∑
k∈J (x)

λk,`
|sk|

)
|B`| = |{x ∈ sj ; θ0(x) ∈ B` }| . (14)

Notice that this system is highly non-linear and is in general difficult to solve.

A simple case: non-overlapped SIFT subcells

When a SIFT subcell sj is not overlapped, then we have for any x ∈ sj , |J (x)| = 1 and therefore

Zλ,x =

8∑
`=1

exp
(
− λj,`
|sj |

)
|B`|. (15)

Then (14) gives

∀`, 1

Zλ,x
exp

(
− λj,`
|sj |

)
=
|{x ∈ sj ; θ0(x) ∈ B` }|

|sj ||B`|
= fj,`(θ0), (16)
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which gives the marginal distribution on any x ∈ sj :

1

Zλ,x
e−ϕλ,x =

8∑
`=1

|{x ∈ sj ; θ0(x) ∈ B` }|
|sj ||B`|

1B` =

8∑
`=1

fj,`(θ0)
1

|B`|
1B` . (17)

So when the subcells do not overlap, the maximum entropy distribution only amounts to in-
dependent resampling of the local HOGs, as expected. Notice that we indeed obtain a unique
maximal entropy distribution. However, the solutions λ are only unique up to the addition of a
constant: indeed the last calculation shows that for a non-overlapped subcell sj , there exists a
constant cj > 0 such that

∀`, λj,` = −|sj |(log fj,`(θ0) + log cj). (18)

Maximum-likelihood estimation

If the SIFT subcells intersect, there is no explicit solution anymore. To cope with that, as in [69]
we use a numerical scheme to find the maximum entropy distribution Pλ. The solution can be
obtained with a traditional maximum likelihood estimation technique, as will be detailed here.
Indeed, the minus-log-likelihood function can be written as

Φ(λ) = logZλ +
∑
j,`

λj,`fj,`(θ0). (19)

The gradient of Φ can be obtained by differentiating the partition function

∂ logZλ
∂λj,`

=
1

Zλ

∂Zλ
∂λj,`

= −EPλ
[
fj,`(Θ)

]
, (20)

which gives
∂Φ

∂λj,`
= fj,`(θ0)− EPλ

[
fj,`(Θ)

]
. (21)

Notice that ∇Φ(λ) = 0 if and only if Pλ satisfies the constraints (5).
Similarly, we can also obtain the second order derivatives

∂2Φ

∂λj,`∂λj′,`′
= EPλ

[(
fj,`(Θ)− EPλ [fj,`(Θ)]

)(
fj′,`′(Θ)− EPλ [fj′,`′(Θ)]

)]
. (22)

One can observe that this Hessian matrix ∇2Φ(λ) is actually the covariance of the vector f(Θ)
when Θ has distribution Pλ. In particular it is a semi-positive definite matrix, which shows that
Φ is a convex function. The global minima of Φ are exactly the points λ where ∇Φ vanishes,
which is equivalent to have the constraints (5) on Pλ.

Therefore, we can compute the solution Pλ by a gradient descent algorithm in order to
minimize Φ. The complete algorithm is summarized in Section 3.3. Since Φ is not strictly
convex, we will not have a guarantee of convergence on the iterates, but on the function values.
Since |fj,`(θ)| 6 1, it is straightforward to see that all coefficients of the Hessian ∇2Φ(λ) have
modulus 6 1. Therefore, the `2 operator norm of ∇2Φ is bounded by 8|J |, which implies that
∇Φ is L-Lipschitz with L = 8|J |. Writing λk the iterates of the gradient descent with constant
step size h < 2

L , [49, Th 2.1.14] gives

Φ(λk)−min Φ = O
(1

k

)
. (23)

Let us also mention that since Φ is convex smooth, it would be possible to use higher-order
optimization schemes to minimize Φ. However, Newton’s method will be in general too costly
because of the dimension of the system and because the Hessian may be ill-conditioned.

10



3.2 Monoscale Poisson Reconstruction

Now that we have built a random orientation field Θ with maximum entropy distribution Pλ,
we will use it to propose a target vector field V for the image gradient. More precisely, we
set the gradient magnitude at x in a deterministic manner, as the inverse scale of the smallest
subcell that covers x. For pixels x which lie outside the SIFT subcells, we set V (x) = 0. This
choice allows to give more weight to the locations for which we have information at finer scale.
It is also motivated by the following homogeneity argument. Assume that u : R2 → R has a
keypoint (x, σ) and for a > 0 let v(y) = u(ya ). Then, thanks to Proposition 2.1, v has a keypoint
(ax, aσ). Let us compare the mean gradient magnitude at scale σ in the corresponding subcell s
to the analogous quantity for v. A simple computation shows that

1

|as|

∫
λs

|∇gaσ ∗ v(y)|dy =
1

a

1

|s|

∫
s

|∇gσ ∗ u(y)|dy,

so that the mean gradient magnitude in the subcell is multiplied by 1
a with the change of scale.

From this calculation we get the following remark: if two very similar shapes (with similar
graylevels) are seen in the image at two different scales with ratio a, then we can obtain a
pairwise matching of their SIFT keypoints, and the ratio between the mean gradient magnitude
of the two matched subcells is 1/a. Of course this remark does not extend to the comparison
of two SIFT subcells with very different geometric content, but it still provides a general rule
for fixing the gradient magnitude as the inverse of the scale. Therefore, we get the random
objective vector field

∀x ∈ Ω, V (x) =
(

max
j∈J (x)

1

σj

)
eiΘ(x)1J (x) 6=∅. (24)

The aim of the Poisson reconstruction is to compute an image whose gradient is as close as
possible to the vector field V = (V1, V2). In the case of image editing, this technique has been
proposed by Pérez et al. [52] in order to copy pieces of an image into another one in a seamless
way. More precisely, the goal is to minimize the functional

F (u) =
∑
x∈Ω

‖∇u(x)− V (x)‖22. (25)

Since F (c+ u) = F (u) for any constant c, we can impose
∑
x∈Ω u(x) = 0. Thus we set

U = Argmin{F (u) ; u : Ω→ R and such that
∑
x∈Ω

u(x) = 0}. (26)

If we use periodic boundary conditions for the gradient, we can solve this problem with
the Discrete Fourier Transform [44]. Indeed, if we use the simple derivation scheme based on
periodic convolutions

∇u(x) =

(
∂1 ∗ u(x)
∂2 ∗ u(x)

)
where

{
∂1 = δ(0,0) − δ(1,0)

∂2 = δ(0,0) − δ(0,1)
, (27)

the problem can be expressed in the Fourier domain with Parseval formula since

F (u) =
1

|Ω|
∑
ξ

|∂̂1(ξ)û(ξ)− V̂1(ξ)|22 + |∂̂2(ξ)û(ξ)− V̂2(ξ)|22. (28)

Thus, for each ξ we have a barycenter problem which is simply solved by

∀ξ 6= 0, Û(ξ) =
∂̂1(ξ)V̂1(ξ) + ∂̂2(ξ)V̂2(ξ)

|∂̂1(ξ)|2 + |∂̂2(ξ)|2
and Û(0) = 0. (29)
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Algorithm: Estimating and Sampling the MaxEnt Model

• Maximum-likelihood estimation of λ

– Compute the observed statistics f(θ0) = (fj,`(θ0))j,`.

– Initialization λ← 0. Choose a step size h < 4
|J | .

– For N(= 10000) iterations, compute f̄ = EPλ [f ] using (13) and set

λ← λ− h(f(θ0)− f̄).

• Draw a sample θ according to the distribution Pλ.

• Compute the corresponding target vector field

V (x) =
(

max
j∈J (x)

1

σj

)
eiθ(x)1J (x)6=∅ (32)

• Compute a sample u of MaxEnt via the Poisson reconstruction (29).

Let us emphasize (with the capital letter U) that the solution of this problem is random because
the target field V is random.

Using the notation ∇ = (∂1, ∂2)T , ∇̂ = (∂̂1, ∂̂2)T , z∗ = z̄T , we can write

Û(ξ) = ν̂(ξ)V̂ (ξ) where ν̂(ξ) =

{
∇̂(ξ)∗

|∇(ξ)|2 if ξ 6= 0

0 if ξ = 0
. (30)

Notice that ν̂(ξ) ∈ C1×2 and V̂ (ξ) ∈ C2×1 so that (30) is equivalent to

U = ν ∗ V = ν1 ∗ V1 + ν2 ∗ V2. (31)

In other words, ν is the (vector-valued) convolution kernel associated to the Poisson reconstruc-
tion. This expression allows to compute the moments of the random field U (see also Section 4.3
for a detailed more general calculation).

3.3 Algorithm

In Fig. 3.3 we summarize the algorithm for estimating and sampling the MaxEnt model proposed
in this section. In Fig. 3 we display an example of reconstruction with the MaxEnt model.

For images having many SIFT keypoints in overlapping positions, this algorithm may be
slow to converge as can be observed on the case of Fig. 3. This case is relatively simple because
it has only 187 keypoints but this corresponds already to 8× 16× 187 ≈ 24000 λj,` parameters
to estimate. This is why we use a stopping criterion based on a maximal number of iterations.

3.4 Discussion on MaxEnt Model

One drawback of MaxEnt is that the guarantee on the local distributions of orientations is lost
after the Poisson reconstruction step. One way to cope with that would be to consider a model
that operates directly on the image values, and not on the orientation field. Theorem 3.1 could
be extended to statistics like

f̃j,`(u) =
1

|sj |
∑
x∈sj

1B`(Angle(∇u(x))). (33)
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Figure 3: Reconstruction with the MaxEnt model. In the first row from left to right,
we display an original image with overimposed 187 oriented keypoints, a sample of the associ-
ated MaxEnt model, and the expectation of the MaxEnt model. In the second row we display
the evolution of Φ along the iterates, and also the behavior of the difference between iterates
∆λk = λk − λk−1. The value of Φ stabilizes in about 105 iterations. One can remark that both
reconstructions show several important structures of the original image. The mean reconstruc-
tion is of course smoother than a sample of the model (because pixels are sampled independently,
see Proposition 3.2).

It is even possible to consider multiscale statistics using ∇gσj ∗u instead of ∇u (as it will be the
case in Section 4). But the analog of Proposition 3.2 would not hold for these models, so that
sampling should rely on a Gibbs strategy. Its cost would be clearly prohibitive in the multiscale
case due to the large Markov neighborhood size. Even in the monoscale case the convergence
of this Gibbs sampler may be very long depending on the parameters λ; and since we would
need one sample per iteration of gradient descent to estimate λ, we chose to leave it aside and
concentrate on models with reasonably fast sampling.

Also, one can consider another orientation model in which the local HOGs are computed with
a quantization that depends on the keypoint orientation. The independence property still holds
for this model, and the marginal orientations still have a piecewise constant density, but the
number of parameters would be much larger (there would be as many `’s as bins of a subdivision
that is adapted to all keypoints orientations). Therefore this model is practically untractable,
and also only of minor interest. Indeed, in view of the results of Fig. 3, it is likely that the
used quantization has only a minor impact on the visual results (provided that we still have a
minimal number of bins).
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4 Multiscale Poisson Model

In this section, we propose a stochastic model, called MS-Poisson, for reconstruction using
multiscale local HOGs computed in SIFT subcells. This new model is based on a heuristic
algorithm for orientation resampling in all SIFT subcells. Therefore, in contrast to the MaxEnt
model, the MS-Poisson model can be straightforwardly sampled using the multiscale local HOGs,
and does not require an iterative estimation procedure. Another difference is that MS-Poisson
is designed to combine information at multiple scales, whereas MaxEnt only operates with the
gradient at scale 0.

4.1 Construction of MS-Poisson Model

Extracted Statistics

The MS-Poisson model is based on local statistics on multiscale gradient orientations. More
precisely, in sj we extract the quantized HOG at scale σj

Hj,` =
1

|sj |
∣∣{x ∈ sj ; Angle(∇gσj ∗ u0)(x)− αj ∈ [(`− 1)π4 , `

π
4 )
}∣∣. (34)

In view of resampling, this local HOG can be identified to a piecewise constant density function

hj =
4

π

8∑
`=1

Hj,`1[αj+(`−1)π4 ,αj+`
π
4 ). (35)

Notice that, in contrast to the statistics (4) used in the MaxEnt model, the quantization here
depends on the local orientation αj .

Target Vector Fields at Multiple Scales

Using the local orientation distributions hj , we define vector fields Vj : Ω → R2 that will serve
as objective gradients at scale σj in the SIFT subcell sj . We propose to set

∀x ∈ Ω, Vj(x) =
1

σj
eiγj(x)1sj (x), (36)

where the orientations γj(x) are independently sampled according to the distribution hj . Again,
as justified in Section 3.2, we set the gradient magnitude in a deterministic way using the inverse
of the scale σj . Once these vector fields Vj have been sampled, we obtain an image U by solving
a multiscale Poisson problem as explained in the next paragraph.

4.2 Multiscale Poisson Reconstruction

In order to simultaneously constrain the gradient at several scales (σj)j∈J , we propose to con-
sider the following multiscale Poisson energy

G(u) =
∑
j∈J

w(σj)
∑
x∈Ω

‖∇(gσj ∗ u)(x)− Vj(x)‖22, (37)

where gσ is the Gaussian kernel of standard deviation σ, Vj = (Vj,1, Vj,2)T is the objective
gradient at scale σj , and {w(σj), j ∈ J } is a set of weights. In our application, since there are
more keypoints in the fine scales (i.e. with small σj), and since the keypoints at fine scales are
generally more informative, a reasonable choice is to take all weights w(σj) = 1. But we keep
these weights in the formula for the sake of generality. We thus set

U = Argmin{G(u) ; u : Ω→ R and such that
∑
x∈Ω

u(x) = 0}. (38)
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Algorithm: Sampling the MS-Poisson Model

• In each subcell sj , draw independent orientations γj(x),x ∈
sj according to the p.d.f. hj .

• Set Vj = 1
σj

1sje
iγj .

• Compute U by solving the MS-Poisson problem (41) with
targets Vj , with w(σj) = 1 and µ = 50.

Again, with periodic boundary conditions, this problem can be expressed in Fourier domain
as

G(u) =
1

|Ω|
∑
j∈J

∑
ξ

w(σj)
(
|ĝσj (ξ)∂̂1(ξ)û(ξ)− V̂j,1(ξ)|22 + |ĝσj (ξ)∂̂2(ξ)û(ξ)− V̂j,2(ξ)|22

)
. (39)

As for the monoscale Poisson problem, the solution U is still a barycenter given by Û(0) = 0
and

∀ξ 6= 0, Û(ξ) =

∑
j∈J

w(σj)ĝσj (ξ)
(
∂̂1(ξ)V̂j,1(ξ) + ∂̂2(ξ)V̂j,2(ξ)

)
∑
j∈J

w(σj)|ĝσj (ξ)|2
(
|∂̂1(ξ)|2 + |∂̂2(ξ)|2

) . (40)

Let us remark that in the above formula, we have ĝσj (ξ) ∈ R since gσj is even.

Regularization

Notice that, depending on the finest scale, the denominator may numerically vanish in the high
frequencies because of the term ĝσj (ξ) (as it is the case in a deconvolution problem). Therefore,
it may be useful to add a regularization term controlled by a parameter µ > 0. Then, if we set

U = Argmin{G(u) + µ‖∇u‖22 ; u : Ω→ R and such that
∑
x∈Ω

u(x) = 0}, (41)

then we get the well-defined solution U given by Û(0) = 0 and

∀ξ 6= 0, Û(ξ) =

∑
j∈J

w(σj)ĝσj (ξ)
(
∂̂1(ξ)V̂j,1(ξ) + ∂̂2(ξ)V̂j,2(ξ)

)
µ+

∑
j∈J

w(σj)|ĝσj (ξ)|2
(|∂̂1(ξ)|2 + |∂̂2(ξ)|2

) . (42)

As we will see in Section 5.1, the parameter µ allows to attenuate the noise generated by the
randomly sampled gradient fields in the fine scale SIFT subcells. We will see (empirically) that
the value µ = 50 realizes a good compromise between recovered details and smoothness.

We end this paragraph by summarizing the MS-Poisson sampling algorithm.

4.3 First and Second Order Moments

In order to compute the statistics of the MS-Poisson model, we remark that the multiscale
Poisson reconstruction is actually a linear process. Indeed, for each j, let νj : Ω→ R1×2 be the
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vector-valued kernel defined by its discrete Fourier transform

∀ξ 6= 0, ν̂j(ξ) =
w(σj)ĝσj (ξ)∇̂(ξ)∗µ+

∑
j′∈J

w(σj′)|ĝσj′ (ξ)|2
 |∇̂(ξ)|2

and ν̂j(0) = 0. (43)

Then, as in Section 3.2 we get the convolutive expression

U =
∑
j∈J

νj ∗ Vj =
∑
j∈J

(
νj,1 ∗ Vj,1 + νj,2 ∗ Vj,2

)
. (44)

From this expression we can compute the moments of U . By linearity

E(U) =
∑
j∈J

νj ∗ E(Vj), (45)

so that computing this expectation only amounts to compute E(Vj) = 1
σj

1sjE(eiγj ).

We can also compute the variance. Since the objective fields (Vj)j∈J are independent, we
have

Var(U(x)) =
∑
j∈J

Var(νj ∗ Vj(x)). (46)

Also, the Vj(y) for different pixels y are independent so that

Var(νj ∗ Vj(x)) = Var
(∑
y∈Ω

νj(x− y)Vj(y)
)

=
∑
y∈Ω

Var(νj(x− y)Vj(y)) (47)

=
∑
y∈Ω

νj(x− y)Cov(Vj(y))νTj (x− y) (48)

=
∑
y∈Ω

ν2
j,1(x− y)Var(Vj,1(y)) + ν2

j,2(x− y)Var(Vj,2(y)) (49)

+ 2νj,1(x− y)νj,2(x− y)Cov(Vj,1(y), Vj,2(y)). (50)

Therefore the variance of this model can be obtained by summing convolutions of the kernels νj
with the covariances of Vj . Since Vj(y) = 1

σj
eiγj(y)1sj where γj(y) has p.d.f. hj given by (34),

we can explicitly compute its covariance.
More generally, we can compute the covariance between two pixel values of U in a similar

way, which gives

Cov
(
U(x), U(y)

)
=
∑
j∈J

∑
z∈Ω

νj(x− z)Cov(Vj(z))νTj (y − z). (51)
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5 Results and Discussion

In this section, we give empirical evidence that both models MS-Poisson and MaxEnt are able to
generate images that are similar to the original image in many aspects. We discuss the impact of
the regularization parameter µ of the MS-Poisson model on the quality of the sampled images.
We also compare MaxEnt and MS-Poisson in terms of local variance of the sampled images, and
also in terms of resulting SIFT keypoints computed in the sampled images. After explaining how
to adapt the MS-Poisson model to operate on true SIFT descriptors we compare with previous
approaches of [64, 19]. Finally we discuss the impact of the keypoints definition on the quality
of the reconstruction.

5.1 Results with MaxEnt and MS-Poisson model

Let us first compare the reconstruction results obtained with MaxEnt and with MS-Poisson.
On Fig. 4, using an original image with 386 keypoints, we display a sample of MaxEnt and a
sample of MS-Poisson, together with the expected images of these models. One first remark is
that both models are able to retrieve several geometric structures of the original image, so that
much semantic content of the image can still be understood. For both models, one can observe
that the samples are very close to the expected image, which will be later confirmed by the
variance analysis on Fig. 6.

One crucial difference between MaxEnt and MS-Poisson is that they do not rely on the
same gradient information. Indeed, MS-Poisson exploits gradients extracted at multiple scales
while MaxEnt only operates with gradients at scale σ = 0 (i.e. the same scale as the image).
This is why the results obtained with MS-Poisson will generally look blurrier than the ones
obtained with MaxEnt. Besides, because of the multiscale nature of the input of MS-Poisson, the
corresponding optimization problem had to be regularized; and the adopted H1-regularization
term is also a source of blur in the result. This is confirmed by Fig. 5 where we display several
MS-Poisson reconstructions with varying regularization parameter µ. In Fig. 5 and in many
other experiments, we observed that the parameter µ = 50 realizes a good compromise between
preserving geometric structures and removing spurious oscillations.

In the last row of Fig. 4, we also compare with the reconstructions obtained with the true
gradient orientations (resp. multiscale gradient orientations) computed in the SIFT subcells
and the gradient magnitude computed as in MaxEnt (resp. MS-Poisson). So the difference
with MaxEnt (or MS-Poisson) is that local (multiscale) gradient orientations are not pooled in
histograms but directly extracted pixelwise; in other words, there is no local resampling of the
orientations. Thus, in some sense, these images are the best ones we could hope using Poisson
reconstruction. Comparing these images with samples of MS-Poisson and MaxEnt precisely
shows the effect of local resampling of the (multiscale) orientations; observe in particular the
man’s face and also the folds of its t-shirt. These images thus correspond to much more precise
reconstructions, but it is interesting to notice that in certain regions where attention will be
focused (near the face e.g.), there are enough keypoints at fine scales in order to get back
satisfying pieces of images even after local resampling. Also, one must keep in mind that the
loss of the gradient magnitude information is in practice difficult to cope with and may force
us to erroneously amplify the noise in the reconstruction. As one can see in the bottom left
of Fig. 4, it is obvious if one tries to set the gradient magnitude to 1 in the global Poisson
reconstruction.

As we have seen in Section 4.3, it is possible to compute the second order statistics of the
reconstructed image in each model. In Fig. 6 we display the standard deviations of all pixels
values in each model. One first remark is that MaxEnt has in general much larger variance than
MS-Poisson which can be explained by the fact that the output of MS-Poisson is in some sense
a weighted average of many local reconstructions. Also it is interesting to see that the image
regions with larger variance are located in the SIFT subcells which contain sharp geometric
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Original MS-Poisson Sample MaxEnt Sample

Keypoints MS-Poisson Mean MaxEnt Mean

Poisson global MS-Poisson Poisson
True orientations True MS orientations True orientations

Figure 4: Reconstruction results with MaxEnt and MS-Poisson models. In the first
column we display an original image, the corresponding oriented keypoints, and the Poisson
reconstruction with true gradient orientations of the whole image and magnitude set to 1. In
the second column we display a sample of the MS-Poisson model, the expectation of this model,
and the multiscale Poisson reconstruction using the true multiscale gradient orientations in the
SIFT subcells. In the third column, we display a sample of the MaxEnt model, the expectation
of this model, and the Poisson reconstruction using the true gradient orientations in the SIFT
subcells. See the text for comments on these results. (Images are better seen on the electronic
version)
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µ = 0.01 µ = 0.1 µ = 1

µ = 50 µ = 100 µ = 1000

Figure 5: Influence of the regularization parameter µ in MS-Poisson. As expected,
increasing µ penalizes more the L2-norm of the gradient and thus makes the image blurrier. We
empirically observed that a good compromise between recovered details and smoothness is often
attained around µ = 50. (Images are better seen on the electronic version)

details. That being said, the variance of both these models is relatively small compared to
the global range of the mean image, which indicates that both these models have quite small
variations around the mean.

Let us emphasize that in our experiments, we used all the keypoints computed by the SIFT
methods and we did not discard keypoints located near the image boundaries. The positions of
the corresponding local extrema in the normalized scale-space are indeed highly dependent on
the boundary conditions used to compute the scale-space. This explains why SIFT keypoints
near the image boundaries are often discarded for particular applications, e.g. image matching.
In our reconstruction problem, there is no reason to discard such keypoints, and we use the
information available in SIFT subcells as soon as they intersect the image domain (if the SIFT
subcell is not entirely contained in the domain, we consider only the pixels in the intersection
of the subcell and the domain). But still, it is clear that for some images, the reconstruction
will be quite different when discarding those keypoints. For example in the case of Fig. 7, if
boundary keypoints are discarded, then several parts of the man’s body are not as properly
retrieved in the reconstruction, thus affecting the semantic understanding of the image.

Finally, it is interesting to compare the keypoints computed on the original image and the
ones computed on several samples of the models. As one can see on Fig. 8, we get back similar
keypoints in many regions of the image, but still with some variations in positions, scales and
orientations. In particular, we observe variations when taking different samples of the model
(sometimes, some keypoints associated with low contrast regions may even disappear). Notice
also that we get back less keypoints in the MS-Poisson model: indeed, since it is more regular
we loose some extrema in the scale-space. Besides, the regularization tends to change the scale
of the structures, thus the scales of the keypoints is often larger than in the original image.

In order to give a more quantitative evaluation of the variations of the keypoints over different
samples of the model, it is possible to use the matching algorithm available with the online
implementation [54] (we used the proposed default parameters). This algorithm follows the
matching method proposed in [33] which essentially pairs SIFT keypoints by thresholding the
ratio between the distances to the first and second nearest neighbors (computed with the `2-
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STD in MS-Poisson MS-Poisson
(max = 0.51%× c) Mean (blue), STD (red)

STD in MaxEnt MaxEnt
(max = 48%× c) Mean (blue), STD (red)

Figure 6: Standard deviations of MS-Poisson and MaxEnt models. On the top left we
display the original image. On the rest of the figure we display the images formed with the
standard deviations (STD) of the models MS-Poisson (first row) and MaxEnt (second row). On
the second column we display the raw STD values. On the third column, the red component
corresponds to the raw STD values (same as in the second column) and the blue component
corresponds to the mean image m = E(U) of the model (MaxEnt or MS-Poisson). Let us
emphasize that for better visualization the images of the second column are renormalized so
that the white color corresponds to the indicated maximum value (expressed as a percentage of
the empirical standard deviation c =

√
|Ω|−1

∑
m(x)2 − (|Ω|−1

∑
m(x))2 of the mean image

m). These results clearly indicate that the MS-Poisson model is much more concentrated around
its expectation than MaxEnt. (Images are better seen on the electronic version)

Figure 7: Discard keypoints near image boundary. In this figure, we examine the effect of
discarding keypoints whose associated SIFT cell is not entirely contained in the image domain.
The displayed reconstructions are samples of the MS-Poisson model.
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Original Samples of MS-Poisson Samples of MaxEnt

Figure 8: Keypoints after reconstruction. In the first column we display an original image
and the same image with its SIFT keypoints. In the second column we display two samples
of the MS-Poisson model. In the third column we display two samples of the MaxEnt model.
We display the keypoints associated to these images as overimposed blue arrows. Notice that
several keypoints are retrieved after reconstruction, with still some variations in positions and
orientations. Notice also that we observe some variations in the keypoints associated to different
samples of these models. See the text for additional comments. (Images are better seen on the
electronic version)

distance between SIFT descriptors). First we can comment on what happens when matching
two different samples of the same model. For the MS-Poisson model, when matching the two
samples shown in Fig. 8, among the 206 keypoints found on the first image (resp. 211 on
the second image), 150 keypoints are matched. The mean spatial distance (resp. mean scale
variation, mean angle variation) between matched keypoints is about 0.54 (resp. 0.15, 0.050).
Similar numbers can be given for the MaxEnt model, but in this case much less keypoints are
correctly matched: over the 452 keypoints found on the first image (resp. 458 on the second
image), only 184 are matched. This reflects again the larger variance of the MaxEnt model.

More interestingly, we can try to match the SIFT keypoints between the original image
and the reconstructions. Unfortunately, only a few SIFT points are properly matched this
way: among the 477 keypoints found in the original image, around 10 keypoints are properly
matched in samples of the MS-Poisson model, and no keypoints are matched when comparing
to a sample of MaxEnt. This shows that even if these models are able to recover gradient
orientations in a somehow blurry manner, this is not sufficient to precisely get back the content
of SIFT descriptors. By the way, the fact that only 75% (resp. 50%) of the keypoints are
matched between two samples of MS-Poisson (resp. MaxEnt) illustrates the sensitivity of the
SIFT descriptors to small random perturbations.
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5.2 Reconstruction from true SIFT descriptors

The two models MS-Poisson and MaxEnt are designed to propose stochastic reconstructions of
an image based on simplified SIFT descriptors, that is, multiscale HOGs extracted around the
SIFT keypoints. But it is also possible to test these reconstruction models with the true SIFT
descriptors. For that, for each keypoint, we still consider the location, scale and principal orien-
tation, but, following the discussion of Section 2.2, starting from the normalized feature vector
(fk) ∈ R128, we improperly build target histograms for the 16 corresponding SIFT subcells: for
each p ∈ {1, . . . , 16}, to the corresponding p-th subcell sj we associate the discrete histogram

H̃j,` =
f16(p−1)+`∑8
`′=1 f16(p−1)+`′

(1 6 ` 6 8). (52)

We can thus sample the MS-Poisson model using the (H̃j,`) values as a substitute for the
extracted multiscale HOG (Hj,`).

On Fig. 9, we display several reconstruction results obtained with the model MS-Poisson
based on the multiscale HOGs or the true SIFT descriptors. As could be expected, the recon-
struction results obtained with the true SIFT descriptors are not as good as the ones obtained
from multiscale HOGs, in particular many fine scale structures are lost, and the shape of small
objects is not recovered in a coherent way (see for example the wings in the butterfly image).
However, large-scale structures of the image are still retrieved quite properly which often suffices
to understand the semantic content of the image.

In order to get sharper results, we should adapt the reconstruction models to account for the
normalizations applied in the original SIFT method. It appears quite straightforward to adapt
the models to histograms computed with linear votes (instead of binary votes). However, it seems
much more difficult to cope with the final normalization and thresholding (see Equation (2)),
which dramatically reduce the quantity of information. Also, in the true SIFT descriptors, the
pixels vote for orientations values with a weight that is proportional to the gradient magnitude.
This explains why it is difficult to retrieve the local HOG from the SIFT descriptors in the
absence of any information about the local gradient magnitude.

5.3 Comparison with previous works

In this paragraph, we propose to compare our reconstruction models with the ones obtained by
the methods by Weinzaepfel et al. [64] and Dosovitskiy & Brox [19]. One important difference
between these two other approaches and ours is that our method relies only on the content
provided in the SIFT subcells while these methods exploit an external database either to copy
local information from patches with similar SIFT descriptors (as in [64]) or to build an up-
convolutional neural network for reconstruction (as in [19]). Thus our work has no intention to
outperform these methods in terms of visual quality of reconstruction (in particular, our method
has absolutely no possibility of recovering the color information). Notice that we cannot compare
to the method of [36] which is adapted to “dense SIFT” (i.e. SIFT descriptors computed on
a dense set of patches) and not “sparse SIFT” (i.e. SIFT descriptors computed around the
keypoints).

They are also minor differences in the extracted information because both these works do
not rely on the original implementation of the SIFT method. The method of [64] actually uses
“elliptic” interest regions (extracted using the Hessian-affine method by [42]) in which normalized
multiscale HOG are computed (in the same way as in the original SIFT method). In contrast,
Dosovitskiy and Brox use circular keypoints and descriptors that are computed with the VLFeat
library [61]. But in order to apply an up-convolutional neural network to these features, they
need to derive a grid-based representation of these features: the image is divided in 4× 4 cells
and each cell containing a keypoint is being associated with the corresponding oriented keypoint
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Original Keypoints MS-HOG True SIFT

Figure 9: Reconstruction results from multiscale HOG or SIFT descriptors with images
of the Live database [57]. For each row, from left to right, we display an original image, the
same image with overimposed SIFT keypoints, a sample of the MS-Poisson model obtained
from multiscale HOG, and a sample of the MS-Poisson model obtained from the true SIFT
descriptors. Notice that the reconstruction from true SIFT descriptors is less sharp but still
recovers many geometric structures of the initial image.
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Original MS-Poisson Mean

[Weinzaepfel et al., 2011] [Dosovitskiy & Brox, 2015]

Figure 10: Comparison for SIFT reconstruction. In the first row we display the original
image and the reconstruction results obtained as the expectation of the MS-Poisson model
computed on the true SIFT descriptors (see Section 5.2). In the second row we display the
results obtained with the methods of [64] and [19]. Notice that the MS-Poisson model provides
images that are blurrier but also more globally coherent than the ones obtained by the method
of [64]. However, this model does not compete with [19] in terms of restitution and visual quality
since it does not rely on any external information.

and feature vector. If there is no keypoint, then they associate the zero vector, and if there are
several keypoints they randomly choose one of them (see the details in [19, Section III]).

One advantage of the MS-Poisson model, compared to the result of [64], is that it is defined
through the minimization of the global MS-Poisson energy (37). Therefore, it produces images
that are globally coherent while respecting as much as possible the local constraints given by the
multiscale HOGs. In contrast, the result of [64] is clearly affected by stitching artifacts which
are inherent to their reconstruction method. On the other hand, their method is able to copy
pieces of clean patches so that their reconstruction looks locally sharper (but also noisier).

However, the reconstructed images obtained in [19] are both globally coherent and quite
sharp. Indeed, our method does not rely on an external database so it cannot compete with the
one of [19], and in particular it cannot get back information which are completely lost in the
SIFT descriptors (global contrast, or also color information).

5.4 Reconstruction with other keypoints

In this paragraph we question the very definition of the SIFT keypoints in terms of synthesis, in
a similar way that what was done in [50]. Indeed, one can wonder if selecting the local extrema
of (x, σ) 7→ σ2∆gσ ∗ u(x) is the best possible choice for points of interest in order to extract
relevant information for synthesis.

For that, we propose to compare with two other sets of keypoints extracted in a very different
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way. The first choice (“Min-Rec-Error”) is driven by the following intuition: using Taylor
formula around a point x, one can write when σ → 0 that∫

u(x+ z)gσ(z)dz − u(x) = σ2∆u(x) + o(σ2). (53)

Therefore, nearby the positions x where ∆u(x) is close to zero, one can approximately recover
u(x) by averaging neighboring values. In this sense, it seems relevant to extract more information
at the points where the average reconstruction fails, and in particular at the maxima of |∆u|.

But one could also directly work with the reconstruction error: we thus propose to extract
local maxima of the function

(x, σ) 7−→ |gσ ∗ u(x)− u(x)|. (54)

In our implementation, we detect these maxima on a discretized scale-space with 30 scales
s = 2r/6, 0 6 r < 30. Besides, in order to draw a comparison with a fixed number of keypoints,
we only keep the points having an “edgeness” value below a threshold. As in the original SIFT

method, the edgeness measure is obtained as the ratio Tr(H)2

detH of the principal curvatures, where
H is the Hessian of the smoothed image g2 ∗ u. The threshold is adapted in order to get the
same number nkp of keypoints than the ones provided by the SIFT method.

The second and third choices (“Random-unif” and “Random-grad”) consists in selecting
keypoints in a random manner. More precisely, for the choice “Random-unif”, we independently
sample nkp keypoints by choosing uniformly a position x in the image domain, a uniform
orientation α ∈ T, and a scale by sampling an exponential distribution whose parameter is
adjusted so that the expectation is the same as the mean scale of the usual SIFT keypoints.
Modelling by the exponential distribution is empirically justified by the fact that the distribution
of scales of SIFT keypoints is concentrated in the fine scales. For the choice “Random-grad”,
we do the same except that the positions are randomly drawn using a probability distribution
which is proportional to the gradient magnitude of the smoothed image g2 ∗ u.

For these new sets of keypoints, we computed the average image of the MS-Poisson model.
The results are displayed on Fig. 11. They clearly indicate that the usual SIFT keypoints lead
to a reconstruction that is visually better than the others. The main problem of the “Min-Rec-
Error” keypoints is that they do not extract enough small scale information: for the examples
shown in Fig. 11 the average scale of these keypoints is approximately twice larger than the
one of the SIFT keypoints. Besides, for both “Min-Rec-Error” and random keypoints, the
spatial locations are not concentrated around geometric details as can be the case with the
SIFT keypoints. The comparison with “Random-grad” is particularly interesting: indeed the
reconstruction with “Random-grad” keypoints is slightly better than the one with “Random-
unif” keypoints, but still it fails to recover fine details. The main problem of the “Random-grad”
approach is that it is not contrast invariant and thus it favors points with strong gradients in
uniform regions over points in salient regions with low contrast. Thus, the usual definition of
SIFT keypoints (and in particular the thresholding steps) is confirmed to be a relevant choice
for extracting visual information near salient structures, both from the analysis or the synthesis
perspective.
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Min-Rec-Error Random-unif Random-grad SIFT

Figure 11: Reconstruction with other keypoints. The first column (“Minimum recon-
struction error”) corresponds to the keypoints obtained as local minima of (54). The second
(“Random-unif”) and third column (“Random-grad”) corresponds to the randomly selected key-
points. The last column corresponds to the standard SIFT keypoints. The original images are
displayed on Fig. 3 and Fig. 4. See the text in Section 5.4 for the precise definition of these sets
of keypoints, and additional comments.
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6 Conclusion

In this paper we proposed two stochastic models (MaxEnt, respectively MS-Poisson) for re-
constructing an image based only on the information contained in the (monoscale, respectively
multiscale) local HOGs computed in the SIFT subcells. With both models we get back images
which are close to the original in terms of semantic content. This is still true if we compute the
reconstructions based on the true SIFT descriptors. One benefit of these models over competing
approaches is that they do not rely on any external image database, and besides the convolutive
expressions found in this paper allow to compute statistics of the corresponding output random
fields (e.g. local variance).

However, several questions raised by this work remain open. First it would be interesting to
consider generalizations of the MS-Poisson model with different image priors, i.e. adopt other
regularization terms in the functional. It is likely that solving the corresponding optimization
problem may require an iterative procedure, but on the other hand the solutions may exhibit
cleaner geometric structures which are better extrapolated outside the SIFT subcells. Also, there
is more to discuss about the optimality of keypoints with respect to the quality of reconstructed
images. In particular, here we adopted one unique reconstruction strategy in order to compare
different sets of keypoints. But it seems possible to optimize both the sets of keypoints and
the reconstruction strategy in order to maximize a criterion linked to the proximity of the
reconstruction to the input original image. This could be thought of as a kind of auto-encoding
procedure in which the encoder is constrained to have a very particular form (that is, keypoint
extractor).
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