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Abstract—In this paper, an embedded double reference 

transmission line theory (EDRTLT) is presented. This approach 

is based upon taking an arbitrary wire among the 𝒏 wires 

constituting the harness and considering it as an internal 

reference conductor. Then the initial transmission line of 𝒏 wires 

above a ground reference is split into two coupled subsets of 

wires. The internal subset is composed of 𝒏 − 𝟏 wires with the 

internal reference wire as the return wire. The per unit length 

(p.u.l.) parameters of this internal transmission line are  

calculated with respect to this internal reference wire. They do 

not depend on the ground reference. The external subset is 

composed of only the internal reference wire with the ground 

plane as a reference. As a result, any change of relative position 

of the bundle and the ground reference involves the p.u.l. 

calculation of a mono-conductor transmission line. This double 

reference transmission line theory is shown to be equivalent to 

the classical single reference approach and the corresponding 

p.u.l. parameters are approximately retrieved from those of the 

single reference transmission lines to form the EDRTLT. The 

results obtained by this theory are in good agreement with those 

obtained from the single reference case where all p.u.l. 

parameters are directly calculated using the ground plane as a 

single reference. The main advantage provided by the EDRTLT 

is to reduce the complexity of analysis of the bundle-to-ground 

interaction. 

 
Index Terms—automotive, electromagnetic compatibility 

(EMC), cable harnesses, crosstalk, high frequencies, 

electromagnetic interference, multi-conductor transmission lines, 

radiation, transmission line theory (TLT). 

 

I. INTRODUCTION 

arnesses are key sub-systems from an EMC 

perspective in various domains such as automotive, 

aeronautic or telecommunication industries. Indeed, they can 

receive, conduct and radiate electromagnetic energy. Ideally, 

their effect should be assessed with a rigorous resolution of 
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Maxwell's equations, but this approach is simply impossible 

due to time and memory requirements to handle so many of 

them. Thus, a well-known and often used alternative consists 

in applying the transmission line theory (TLT) accounting for 

the presence of a nearby grounding structure[1].Nevertheless, 

this theory, being just an approximate solution derived from 

Maxwell's equations, is limited by its assumptions [2] based 

mainly on the condition that the distance between the 

transmission line and its return path should be much smaller 

than the minimum significant wavelength of the incident 

electromagnetic field. This condition is not fulfilled in areas 

where cable paths are at a greater distance from the chassis. A 

typical situation is that of the Fig. 1. This will be the 

investigation case study throughout this paper. Moreover, the 

classical TLT is not valid at resonant frequencies even when 

its applicability conditions are satisfied. In the recent years, 

some techniques modifying the transmission line (TL) 

equations have been developed in several fields of application 

[3]–[7]. The main goal of these models is to be applicable 

beyond the validity limits of the classical TLT. However, most 

of these solutions require an entire new software development 

or are based on time consuming iterative methods. 

 
Fig. 1. A typical piece of wiring system in a vehicle 

Recently, the authors have also developed a new TL model 

that keeps the simplicity of the classical TLT equations and 

leads to very satisfactory results in high frequency regions and 

even at resonances. This model (called the modified enhanced 

transmission line theory, METLT) is valid in the case of a 

single wire as well as for a multi-conductor transmission line 

[8]–[10]. Its main particularity is that its p.u.l. parameters are 

frequency dependent, account for radiation, and its equations 

may be resolved using classical TLT equations. This makes it 

a low cost and non-intrusive solution, since it only requires an 

implementation of a new plug-in that calculates the 

corrections applied to the classical p.u.l. parameters. 

However, for any height variation of the bundle over a 

ground plane, all p.u.l. parameters have to be recalculated. 

Moreover, if the ground reference possesses a complex 

geometry, the determination of the Green's functions yielding 

to the determination of p.u.l. parameters require the use of 
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full-wave resolution. Any change of geometry of the 

surrounding ground reference requires estimating each 

element of the p.u.l. matrices involving each wire and each 

pair of wires of the bundle. In the frame of the classical TLT 

or of the METLT, calculating the p.u.l. parameters from an 

intrinsic description of the p.u.l. parameters of the bundle 

would provide a huge simplification.  

This paper is dedicated to the presentation of such an 

approach based on the embedded double reference 

transmission line theory (EDRTLT). This theory applies for a 

harness which height or distance over the reference ground 

plane is much greater than its overall cross-section and even if 

it is not much smaller than the wavelength, applying the 

METLT. Our method consists in decomposing the initial 

𝑛conductor transmission line into two coupled subsets, a𝑛 − 1 

conductor and a single conductor transmission line. The 𝑛 −
1 conductor transmission line uses the remaining conductor of 

the bundle as a local reference. The single conductor 

transmission line is composed of this remaining conductor and 

the surrounding ground reference. We show that the resulting 

single-reference transmission line p.u.l. parameters may be 

calculated from the knowledge of p.u.l. parameters of the 

double-reference system of transmission lines (and vice 

versa). Furthermore, the p.u.l. parameters of the 𝑛 −
1conductor transmission line have their own classical (quasi-

static) expressions. The p.u.l. parameters of the single 

conductor transmission line may be calculated from quasi-

static or modified enhanced p.u.l. parameters expressions 

according to the height of the bundle over the ground plane. In 

case of a complex shaped ground plane, the calculation of the 

p.u.l. parameters is reduced to that of a single wire only.Note 

that this paper does not discuss the validity of the transmission 

line approximation using classical TLT equations or METLT. 

It aims at introducing and validating the EDRTLT in 

comparison with direct evaluations of TLT  / METLT using a 

single reference.  

The rest of the paper is organized as follows. Section II 

introduces the single and double reference transmission line 

systems and their relationships in terms of p.u.l. parameters. 

We specifically illustrate that the single-reference p.u.l. 

parameters may be retrieved from the double-reference ones. 

Section III is dedicated to the p.u.l. parameters evaluation. In 

the frame of the METLT, the double-reference transmission 

line parameters are established for an𝑛-conductor bundle at a 

constant distance over a ground plane. These expressions are 

derived for a bundle whose height over the ground plane is 

much larger than its diameter. Section IV validates this 

evaluation based upon the comparison of the single-reference 

p.u.l. parameters evaluated in two different ways: i) a direct 

evaluation from a single reference transmission line ii) an 

indirect evaluation from the parameters of the double-

reference transmission line. A validation is proposed in 

Section V for a crosstalk scenario between two wires, and 

Section VI provides a final discussion.  

II. FROM A SINGLE TO A DOUBLE VOLTAGE REFERENCE 

A. Single reference 

Consider a system of 𝑛 lossless uniform wires above an 

infinite PEC ground plane illuminated by an external 

electromagnetic field (Fig. 2). Every wire 𝑖 with 𝑖 ∈ [1, 𝑛]has 

a radius 𝑎𝑖, is at a height ℎ𝑖 above the ground plane and 

separated from another wire𝑗 by a distance 𝑑𝑖𝑗  (Fig. 3). Wires 

are parallel to the Oz axis. According to the thin wire 

hypothesis, voltages and currents only depend on the z spatial 

variable. This dependence in z will be implicit in all formulas 

throughout the paper 

 
Fig. 2.Geometry of a system of (n+1) conductors 

 
Fig. 3.Geometry of study 

When the ground plane is considered as the unique return 

conductor, the constitutive equations of this system 

correspond to the geometry depicted in Fig. 4. Superscript 

‘SR’ is used in the following equations to indicate that all 

quantities such as voltages, currents, impedances, admittances 

are calculated with the ground plane as a single reference. 

Transmission line theory coupled equations are given by [10]: 
𝑑

𝑑𝑧
[𝑉𝑠(𝑆𝑅)] + [𝑍(𝑆𝑅)][𝐼(𝑆𝑅)] = [𝐸𝑧

𝑒(𝑆𝑅)
]                              (1) 

and 
𝑑

𝑑𝑧
[𝐼(𝑆𝑅)] + [𝑌(𝑆𝑅)][𝑉𝑠(𝑆𝑅)] = 0,                                        (2) 

where 

[𝑉𝑠(𝑆𝑅)(𝑧)]is a column vector of individual voltages 

differences 𝑉𝑖
𝑠(𝑆𝑅)(𝑧)between wire i and the ground plane. 

[𝐼(𝑆𝑅)(𝑧)]is a column vector of individual currents 

𝐼𝑖
𝑠(𝑆𝑅)(𝑧)on wire i 

[𝐸𝑧
𝑒(𝑆𝑅)

]is a column vector of individual incident electric 

fields 𝐸𝑧
𝑒(𝑆𝑅)(ℎ𝑖 , 𝑧) on wire i. 

[𝑍(𝑆𝑅)]is the p.u.l. impedance 𝑛 × 𝑛 matrix where the scalar 
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𝑍𝑖𝑗
(𝑆𝑅)

 represents the mutual p.u.l. impedance between wire i 

and j, and [𝑌(𝑆𝑅)]is the p.u.l. admittance𝑛 × 𝑛matrix where the 

scalar 𝑌𝑖𝑗
(𝑆𝑅)

 represents the mutual p.u.l. admittance between 

wire i and j. 

Here, the expressions of 𝑍𝑖𝑗
(𝑆𝑅)

 and 𝑌𝑖𝑗
(𝑆𝑅)

represent the 

impedances and admittances calculated in the single reference 

system and are obtained through their modified enhanced 

formulations given in[10]. They are calculated with respect to 

the ground plane, voltages being taken with respect to the 

ground plane where the sum of currents flows in the opposite 

direction. 

 
Fig. 4.A single reference configuration 

B. Double reference 

Now, consider among all these wires an arbitrary wire 𝑖 as a 

return conductor and note it 1 (Fig. 5). For the internal system 

and adapting the notations from the multi-conductor TLT, for 

any wire 𝑗 ≠1we can write 

−
𝑑

𝑑𝑧
𝑉𝑗

𝑠(𝐷𝑅)
= ∑ 𝑍𝑖𝑗

(𝐷𝑅)
𝐼𝑖

(𝐷𝑅)𝑛
𝑖=2 − 𝑍1𝑗

(𝐷𝑅)
𝐼1

(𝐷𝑅)
− 𝐸𝑧

𝑒(𝐷𝑅)
(ℎ𝑗 , 𝑧),  (3) 

−
𝑑

𝑑𝑧
𝐼𝑗

(𝐷𝑅)
= ∑ 𝑌𝑖𝑗

(𝐷𝑅)
𝑉𝑖

𝑠(𝐷𝑅)𝑛
𝑖=2 + 𝑌1𝑗

(𝐷𝑅)
𝑉1

𝑠(𝐷𝑅)
.                 (4) 

For the external system, we find 

−
𝑑

𝑑𝑧
𝑉1

𝑠(𝐷𝑅)
= 𝑍11

(𝐷𝑅)
𝐼1

(𝐷𝑅)
− ∑ 𝑍1𝑖

(𝐷𝑅)
𝐼𝑖

(𝐷𝑅)𝑛
𝑖=2 − 𝐸𝑧

𝑒(𝐷𝑅)
,            (5) 

−
𝑑

𝑑𝑧
𝐼1

(𝐷𝑅)
= 𝑌11

(𝐷𝑅)
𝑉1

(𝐷𝑅)
+ ∑ 𝑌1𝑖

(𝐷𝑅)
𝑉𝑖

(𝐷𝑅)𝑛
𝑖=2 .                    (6) 

In these equations the superscript ‘DR’ stands for double 

reference. Equations (3)-(6) can be put under their matrix 

notation as: 
𝑑

𝑑𝑧
[𝑉𝑠(𝐷𝑅)(𝑧)] + [𝑍(𝐷𝑅)][𝐼(𝐷𝑅𝑓)(𝑧)] = [𝐸𝑧

𝑒(𝐷𝑅)
],               (7) 

and 
𝑑

𝑑𝑧
[𝐼(𝐷𝑅)(𝑧)] + [𝑌(𝐷𝑅)][𝑉𝑠(𝐷𝑅)(𝑧)] = 0.                            (8) 

Where 

[𝑉𝑠(𝐷𝑅)], [𝐼𝑠(𝐷𝑅)], [𝑍(𝐷𝑅)] and [𝑌(𝐷𝑅)] are defined in exactly 

the same way as “SR” vectors and matrices in (1) and (2). 

Comparing the two systems in Figs. 4 and 5, we can easily 

find the following transformation relations between them: 

𝑉1
𝑠(𝐷𝑅)

= 𝑉1
𝑠(𝑆𝑅)

,                                                                 (9) 

𝑉𝑗
𝑠(𝐷𝑅)

= 𝑉𝑗
𝑠(𝑆𝑅)

− 𝑉1
𝑠(𝑆𝑅)

,         ∀ 𝑗 ≥ 2,                           (10) 

𝐼1
(𝐷𝑅)

= 𝐼1
(𝑆𝑅)

+ ∑ 𝐼𝑗
(𝑆𝑅)𝑛

𝑗=2 ,                                               (11) 

𝐼𝑗
(𝐷𝑅)

= 𝐼𝑗
(𝑆𝑅)

,               ∀ 𝑗 ≥ 2.                                         (12) 

Besides, the exciting electric fields expressed in the two 

systems are related in the following way: 

𝐸𝑧
𝑒(𝐷𝑅)(ℎ1, 𝑧) = 𝐸𝑧

𝑒(𝑆𝑅)(ℎ1, 𝑧),                                         (13) 

𝐸𝑧
𝑒(𝐷𝑅)

(ℎ𝑗 , 𝑧) = 𝐸𝑧
𝑒(𝑆𝑅)

(ℎ𝑗 , 𝑧) − 𝐸𝑧
𝑒(𝑆𝑅)(ℎ1, 𝑧), ∀ 𝑗 ≥ 2. (14) 

 
Fig. 5.A double reference configuration 

C. From double-reference to single-reference transformation rules 

 

Inserting (9), (11)-(13) into (5) and after rearrangement 

leads to 
𝑑

𝑑𝑧
𝑉1

𝑠(𝑆𝑅)(𝑧) + 𝑍11
(𝐷𝑅)

𝐼1
(𝑆𝑅)(𝑧) + ∑ (𝑍11

(𝐷𝑅)
− 𝑍1𝑗

(𝐷𝑅)
) 𝐼𝑗

(𝑆𝑅)(𝑧)𝑛
𝑗=2 =

𝐸𝑧
𝑒(𝑆𝑅)(ℎ1, 𝑧).                                                                          (15) 

Inserting (10)-(14) into (3) yields 
𝑑

𝑑𝑧
𝑉𝑗

𝑠(𝑆𝑅)(𝑧) + (𝑍11
(𝐷𝑅)

− 𝑍1𝑗
(𝐷𝑅)

) 𝐼1
(𝑆𝑅)(𝑧) + ∑ (𝑍11

(𝐷𝑅)
− 𝑍1𝑗

(𝐷𝑅)
−𝑛

𝑖=2

𝑍1𝑖
(𝐷𝑅)

+ 𝑍𝑖𝑗
(𝐷𝑅)

) 𝐼𝑖
(𝐷𝑅)(𝑧) = 𝐸𝑧

𝑒(𝑆𝑅)
(ℎ𝑗 , 𝑧).                                  (16) 

Now, inserting (9)-(11) into (4) and after some 

mathematical developments and rearrangement, we get 
𝑑

𝑑𝑧
𝐼𝑗

(𝑆𝑅)(𝑧) + (𝑌1𝑗
(𝐷𝑅)

− ∑ 𝑌𝑖𝑗
(𝐷𝑅)𝑛

𝑖=2 ) 𝑉1
𝑠(𝑆𝑅)(𝑧) +

∑ 𝑌𝑖𝑗
(𝐷𝑅)𝑛

𝑖=2 𝑉𝑖
𝑠(𝑆𝑅)(𝑧) = 0.                                                    (17) 

Finally, inserting (9), (10) and (11) into (6) and after 

rearrangement yields 
𝑑

𝑑𝑧
𝐼1

(𝑆𝑅)(𝑧) + [∑ (∑ 𝑌𝑘𝑖
(𝐷𝑅)𝑛

𝑖=2 − 𝑌1𝑘
(𝐷𝑅)

)𝑛
𝑘=1 ] 𝑉1

𝑠(𝑆𝑅)(𝑧) +

[∑ (𝑌1𝑘
(𝐷𝑅)

− ∑ 𝑌𝑘𝑖
(𝐷𝑅)𝑛

𝑖=2 )𝑛
𝑘=2 ] 𝑉𝑘

𝑠(𝑆𝑅)(𝑧) = 0.                       (18) 

From the matrix equation (1), we can write 
𝑑

𝑑𝑧
𝑉1

𝑠(𝑆𝑅)(𝑧) + 𝑍11
(𝑆𝑅)

𝐼1
(𝑆𝑅)(𝑧) + ∑ 𝑍1𝑗

(𝑆𝑅)
𝐼𝑗

(𝑆𝑅)(𝑧)𝑛
𝑗=2 =

𝐸𝑧
𝑒(𝑆𝑅)(ℎ1, 𝑧),                                                                        (19) 

and 
𝑑

𝑑𝑧
𝑉𝑗

𝑠(𝑆𝑅)(𝑧) + 𝑍1𝑗
(𝑆𝑅)

𝐼1
(𝑆𝑅)(𝑧) + ∑ 𝑍𝑖𝑗

(𝑆𝑅)
𝐼𝑖

(𝑆𝑅)(𝑧)𝑛
𝑖=2 =

𝐸𝑧
𝑒(𝑆𝑅)

(ℎ𝑗 , 𝑧).                                                                        (20) 

Whereas, from (2) we get 
𝑑

𝑑𝑧
𝐼1

(𝑆𝑅)(𝑧) + 𝑌11
(𝑆𝑅)

𝑉1
𝑠(𝑆𝑅)(𝑧) + ∑ 𝑌1𝑗

(𝑆𝑅)
𝑉𝑗

𝑠(𝑆𝑅)(𝑧)𝑛
𝑗=2 = 0      (21) 

and 
𝑑

𝑑𝑧
𝐼𝑗

(𝑆𝑅)(𝑧) + 𝑌1𝑗
(𝑆𝑅)

𝑉1
𝑠(𝑆𝑅)(𝑧) + ∑ 𝑌𝑖𝑗

(𝑆𝑅)
𝑉𝑖

𝑠(𝑆𝑅)(𝑧)𝑛
𝑖=2 = 0.      (22) 

Comparing (15) and (16) to (19) and (20) respectively, 

leads to 

𝑍11
(𝑆𝑅)

= 𝑍11
(𝐷𝑅)

,                                                                  (23) 

𝑍1𝑗
(𝑆𝑅)

= 𝑍11
(𝐷𝑅)

− 𝑍1𝑗
(𝐷𝑅)

,         ∀ 𝑗 ≥ 2,                               (24) 
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𝑍𝑖𝑗
(𝑆𝑅)

= 𝑍11
(𝐷𝑅)

− 𝑍1𝑗
(𝐷𝑅)

− 𝑍1𝑖
(𝐷𝑅)

+ 𝑍𝑖𝑗
(𝐷𝑅)

, ∀ (𝑖, 𝑗) ≥ 2.     (25) 

Besides, comparing (17) and (18) to (21) and (22) 

respectively, yields 

𝑌11
(𝑆𝑅)

= ∑ (∑ 𝑌𝑘𝑖
(𝐷𝑅)𝑛

𝑖=2 − 𝑌1𝑘
(𝐷𝑅)

)𝑛
𝑘=1 ,                                (26) 

𝑌1𝑗
(𝑆𝑅)

= 𝑌1𝑗
(𝐷𝑅)

− ∑ 𝑌𝑖𝑗
(𝐷𝑅)𝑛

𝑖=2 ,         ∀ 𝑗 ≥ 2,                      (27) 

𝑌𝑖𝑗
(𝑆𝑅)

= 𝑌𝑖𝑗
(𝐷𝑅)

,      ∀ (𝑖, 𝑗) ≥ 2.                                         (28) 

Thus, (23)-(28) relate the p.u.l. parameters calculated in the 

double reference system to their equivalent form in the single 

reference system. Hence, the p.u.l. parameters in the single 

reference system can be deduced from those calculated in the 

double reference system through the transformation relations. 

These latter parameters are calculated in the following 

section. 

III. CALCULATION OF THE P.U.L. PARAMETERS OF THE DOUBLE 

REFERENCE SYSTEM 

We recall the following relations between the Green's function 

and both the p.u.l. impedance and admittance respectively 

[08]-[10]: 

[𝑍𝐷𝑅/𝑆𝑅] =   𝑗𝜔
µ0

4𝜋
[𝐺𝐷𝑅/𝑆𝑅],                                            (29) 

[𝑌𝐷𝑅/𝑆𝑅] =  𝑗𝜔4𝜋𝜀0[𝐺𝐷𝑅/𝑆𝑅]
−1

.                                      (30) 

 

Now, using the relation between the Green's function and 

the impedance [8]-[10], the general transformation relations of 

the Green's functions can be written using (23)-(25) as 

𝐺11
(𝐷𝑅)

= 𝐺11
(𝑆𝑅)

,                                                                 (31) 

𝐺1𝑗
(𝐷𝑅)

= 𝐺11
(𝑆𝑅)

− 𝐺1𝑗
(𝑆𝑅)

, ∀ j ≥ 2,                                      (32) 

𝐺𝑖𝑗
(𝐷𝑅)

= 𝐺11
(𝑆𝑅)

− 𝐺1𝑗
(𝑆𝑅)

− 𝐺1𝑖
(𝑆𝑅)

+ 𝐺𝑖𝑗
(𝑆𝑅)

, ∀(𝑖, 𝑗) ≥ 2.     (33) 

These three parameters are determined below. 

A. Calculation of 𝐺11
(𝐷𝑅)

 

From (31), the Green's function of the external subset 

composed of the wire 1 and the ground plane is given by 

𝐺11
(𝐷𝑅)

= 2 ln (
2ℎ1

𝑎1
) + ℜ(𝐶11

𝐹 ) + 𝑗 ℑ(𝐶11
𝐹 )                         (34) 

where 

ℜ(𝐶11
𝐹 ) = 2 {[𝑙𝑛(ℎ1𝑘) + 𝛾] [(∑ (−1)𝑛 (ℎ1𝑘)2𝑛

(𝑛!)2
∞
𝑛=0 ) − 1] −

[𝑙𝑛 (
𝑎1𝑘

2
) + 𝛾] [(∑ (−1)𝑛

(
𝑎1𝑘

2
)

2𝑛

(𝑛!)2
∞
𝑛=0 ) − 1]} −

2 {[∑ (−1)𝑛 (ℎ1𝑘)2𝑛

(𝑛!)2 (∑
1

𝑚

𝑛
𝑚=1 )∞

𝑛=1 − ∑ (−1)𝑛
(

𝑎1𝑘

2
)

2𝑛

(𝑛!)2 (∑
1

𝑚

𝑛
𝑚=1 )∞

𝑛=1 ]}  (35) 

and 

ℑ(𝐶11
𝐹 ) = 𝜋 [∑ (−1)𝑛 (ℎ1𝑘)2𝑛

(𝑛!)2
∞
𝑛=0 − ∑ (−1)𝑛

(
𝑎1𝑘

2
)

2𝑛

(𝑛!)2
∞
𝑛=0 ].           (36) 

B. Calculation of 𝐺1𝑗
(𝐷𝑅)

 and 𝐺𝑖𝑗
(𝐷𝑅)

 

We recall the following expression for mutual Green's 

function terms: 

𝐺𝑖𝑗
(𝑆𝑅)

= 2 ln (
𝐷𝑖𝑗

𝐷𝑖𝑗
′ ) + ℜ(𝐶𝑖𝑗

𝐹) + 𝑗 ℑ(𝐶𝑖𝑗
𝐹)                           (37) 

where 

ℜ(𝐶𝑖𝑗
𝐹 ) = 2 {[𝑙𝑛 (

𝑘

2
𝐷𝑖𝑗) + 𝛾] [(∑ (−1)𝑛

(
𝑘

2
𝐷𝑖𝑗)

2𝑛

(𝑛!)2
∞
𝑛=0 ) − 1] −

[𝑙𝑛 (
𝑘

2
𝐷𝑖𝑗

′ ) + 𝛾] [(∑ (−1)𝑛
(

𝑘

2
𝐷𝑖𝑗

′ )
2𝑛

(𝑛!)2
∞
𝑛=0 ) − 1]} −

2 {[∑ (−1)𝑛
(

𝑘

2
𝐷𝑖𝑗)

2𝑛

(𝑛!)2
(∑

1

𝑚
𝑛
𝑚=1 )∞

𝑛=1 −

∑ (−1)𝑛
(

𝑘

2
𝐷𝑖𝑗

′ )
2𝑛

(𝑛!)2
(∑

1

𝑚
𝑛
𝑚=1 )∞

𝑛=1 ]},                                             (38) 

ℑ(𝐶𝑖𝑗
𝐹 ) = 𝜋 [∑ (−1)𝑛

(
𝑘

2
𝐷𝑖𝑗)

2𝑛

(𝑛!)2
∞
𝑛=0 − ∑ (−1)𝑛

(
𝑘

2
𝐷𝑖𝑗

′ )
2𝑛

(𝑛!)2
∞
𝑛=0 ],         (39) 

𝐷𝑖𝑗 = √(ℎ𝑖 + ℎ𝑗)
2

+ 𝑑𝑖𝑗
2 ,                                                 (40) 

𝐷𝑖𝑗
′ = √(ℎ𝑖 − ℎ𝑗)

2
+ 𝑑𝑖𝑗

2 .                                                 (41) 

Generally, the harness cross-section is very small with 

regards to its height over the ground plane. Therefore, the 

heights of the individual wires are supposed to be practically 

identical. 

In addition, the wires are generally at a height that is much 

more important than their mutual separation. Hence, the 

following approximations can be considered  

ℎ𝑖 ≈ ℎ𝑗,                                                                             (42) 

𝑑𝑖𝑗 ≪ 2ℎ𝑖.                                                                        (43) 

Given these two approximations equation (37) becomes 

𝐺𝑖𝑗
(𝑆𝑅)

= 2 ln (
2ℎ𝑖

𝑑𝑖𝑗
) + 2 {[ln(𝑘ℎ𝑖) + 𝛾][𝐽0(2𝑘ℎ𝑖) − 1] −

[ln (
𝑘𝑑𝑖𝑗

2
) + 𝛾] [𝐽0(𝑘𝑑𝑖𝑗) − 1]} −

2 {[∑ (−1)𝑛 (𝑘ℎ𝑖)2𝑛

(𝑛!)2
(∑

1

𝑚
𝑛
𝑚=1 )∞

𝑛=1 −

∑ (−1)𝑛
(

𝑘𝑑𝑖𝑗

2
)

2𝑛

(𝑛!)2
(∑

1

𝑚
𝑛
𝑚=1 )∞

𝑛=1 ]} + 𝑗𝜋{𝐽0(2𝑘ℎ𝑖) − 𝐽0(𝑘𝑑𝑖𝑗)}.      (44) 

Furthermore, generally the wires radii and mutual 

separations respect the following approximations 

𝑎𝑖 ≪ 𝜆,                                                                             (45) 

𝑑𝑖𝑗 ≪ 𝜆.                                                                            (46) 

where𝜆 stands for the wavelength. 

Using these hypotheses and (34) and (44), (32) and (33) 

become after some mathematical developments 

𝐺1𝑗
(𝐷𝑅)

= 2 ln (
𝑑1𝑗

𝑎1
) , ∀ 𝑗 ≥ 2,                                            (47) 

𝐺𝑖𝑗
(𝐷𝑅)

= 2 ln (
𝑑1𝑗𝑑1𝑖

𝑑𝑖𝑗𝑎1
) , ∀ (𝑖, 𝑗) ≥ 2 .                                 (48) 

C. Case of a two-wire transmission line 

Note that expressions (47) and (48) correspond respectively 

to the classical Green's functions in the case of a coaxial line 

and in the case of two wires in free space[11]. 

In the case of two wires, (47) and (48) become 

𝐺12
(𝐷𝑅)

= 2 ln (
𝑑12

𝑎1
),                                                           (49) 
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𝐺22
(𝐷𝑅)

= 2 ln (
(𝑑12)2

𝑎2𝑎1
).                                                       (50) 

D. An equivalent circuit model 

Therefore, we have proven that a set of two wires above an 

infinite PEC ground plane can be split into two coupled 

subsets: an internal and an external subset. These may be 

synthesized in the form of equivalent circuit model of Fig. 6, 

for a two-wire transmission line.  

 
Fig. 6.Equivalent circuit model 

The internal subset is composed of one wire considered as 

the internal reference of the other wires, whereas the external 

subset consists of the wire that is previously considered as the 

internal reference and the global reference (the infinite PEC 

ground plane). Besides, the internal subset can be assessed by 

the classical TLT considering the internal reference wire, and 

the external one through a full-wave solver or by the METLT. 

Thus, this innovative approach is referred to as the 

embedded double reference transmission line theory 

(EDRTLT), and in the following its resolution algorithm is 

described. 

IV. ALGORITHM OF CALCULATION OF THE P.U.L. PARAMETERS 

In order to resolve the EDRTLT equations, the following 

steps should be followed 

1. Step 1: 

 Calculate the Green's function of the wire taken as 

the reference in the presence of the infinite ground 

plane, using (34) or a full-wave solver 

 Calculate the Green's functions of all the other 

wires considering only the wire taken as the 

reference, using (47) and (48), or (49) and (50) in 

the case of two wires only. 

 Assemble all scalar Green's function in the 

[GDR]matrix. 

2. Step 2: calculate the inverse matrix of [GDR] 
3. Step 3: calculate the double reference impedance 

and admittance matrices using(29) and (30) 

4. Step 4: calculate the single reference impedance 

and admittance matrices using the transformation 

relations (23)-(28) 

5. Step 5: resolve (1) and (2) using a classical TLT 

solver 

In the following, we show a comparison of the p.u.l. 

parameters calculated directly in the single reference system 

with those calculated using the above algorithm, in the case of 

two lossless wires of the same radius a=0.75 mm, separated by 

a horizontal distance d12=10mm and at two closer heights 

h1=100mm and h2=101.5mm above an infinite PEC ground 

plane, between 10 MHz and 3 GHz. 

 
Fig. 7. Comparison between the single reference p.u.l. resistances 

obtained directly from the single reference expressions and from the 

double reference p.u.l. resistances, through the transformation 

relations. 

 
Fig. 8. Comparison between the single reference p.u.l. inductances 

obtained directly from the single reference expressions and from the 

double reference p.u.l. inductances, through the transformation 

relations. 

These p.u.l. parameters are obtained using the 

transformation relations (23)-(28) that can be considered as 

another way round to retrieve the single reference parameters 

from the double reference ones. It is shown in Figs. 7 to 10 

that the single reference parameters may be calculated from 

the double reference ones with a satisfactory accuracy over the 

entire frequency band for which the ratio h/ ranges from 0 to 

1. The remaining differences are due to the approximations 

(42), (43), (45) and (46) which enable to consider the p.u.l. 
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parameters of the internal subset as classical ones.  

Therefore the main limitation of EDRTLT is related to the 

approximation of classical p.u.l. parameters for the inner 

transmission line. In particular, the higher the frequency, the 

less valid is the approximation of (46).  In relation to this, the 

smaller the distance between wires, the better is the quality of 

the approximation (46). Fig. 11 provides relative errors of 

EDRTLT p.u.l. parameters with respect to that of METLT as a 

function of h/.  These relative errors do not increase 

monotonously but tend to be higher for  h/ approaching 1. 

 
Fig. 9. Comparison between the single reference p.u.l. capacitances 

obtained directly from the single reference expressions and from the 

double reference p.u.l. capacitances, through the transformation 

relations. 

 
Fig. 10. Comparison between the single reference p.u.l. conductances 

obtained directly from the single reference expressions and from the 

double reference p.u.l. conductances, through the transformation 

relations. 

 
Fig. 11. Relative errors (%) of EDRTLT p.u.l. parameters with 

respect to the single reference p.u.l. parameters of METLT (h1=100 

mm). 

V. VALIDATION 

In order to validate the embedded double reference 

transmission line theory (EDRTLT), some simulations with 

the METLT (single reference) are carried out. 

A circuit composed of two wires of the same geometrical 

and electrical characteristics is studied (Fig. 12). Each wire is 

considered as a perfect electrical conductor, of radius a=0.75 

mm and length L=1 m. They are located at two different but 

almost identical heights h1=100mm and h2=101.5mm above an 

infinite PEC ground plane. The separation distance between 

the two wires is taken d12=10mm. The time-harmonic voltage 

source of 0.632 V is located at z=L of the wire 1, all the loads 

are of 50 Ω and the analysis is carried out in the 10 MHz to 1 

GHz frequency range. 

 
Fig. 12.A two-wire transmission line with excitation source and load 

impedances definition  

The results obtained by the EDRTLT are compared to those 

obtained through the modified enhanced transmission line 

theory (METLT). Note that in the METLT as well as in the 

EDRTLT, the lines are lengthened by their heights. 

Figs.13-15 show a good agreement between the single 

reference results obtained by the METLT and the double 

reference ones obtained by EDRTLT. However, there are 

some differences that can be explained by the simplifications 

made in the calculation of the p.u.l. parameters when extracted 

from a double reference formulation in the case of the 

EDRTLT. Therefore, the EDRTLT can be used instead of the 

METLT in the case of multi-conductor transmission lines. 
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Fig. 13.Current magnitude as a function of the frequency at load Z1 

 
Fig. 14.Current magnitude as a function of the frequency at load Z2 

 
Fig. 15.Current magnitude as a function of the frequency at load Z3 

The above example was that of a two wire-transmission line, 

each of the inner and outer transmission lines being reduced to 

two transmission lines with a unique wire. This simple 

example does not justify by itself the recourse to a double-

reference description but provides an idea of the quality of the 

classical p.u.l. parameters for the inner transmission line.  

Then, we apply the EDRTLT for a configuration of a 

transmission line with five wires over the ground as sketched 

on Fig. 16. The five lossless wires of the same radius a=0.75 

mm, are separated by distancesd12= d25= d23= d45= 1.52 mm, 

and their heights over the infinite PEC ground plane are h1=h2 

- 1.5=h3 -3=h4 -1.5 =h5 - 1.5=100mm. The length of this 

transmission line is still one meter. Excitation and load 

configurations are similar to that of Fig.12. In other words, all 

additional wires are loaded with 50 Ω resistances. 

 
Fig. 16.Configuration of a five wires transmission line over a PEC 

ground plane. 

The p.u.l. parameters of the EDRTLT are calculated from the 

algorithm given in section IV as for the previous example. For 

sake of brevity, we do not show the numerous comparisons of 

individual p.u.l. parameters but rather give the results of 

current magnitudes at different wireends (z=L). 

 
Fig. 17.Current magnitude as a function of the frequency at load Z2 

 
Fig. 18.Current magnitude as a function of the frequency on wire 2 at 

load Z4(far-end crosstalk) 

 
Fig. 19.Current magnitude as a function of the frequency on wire 3 at 

load Z6(far-end crosstalk) 
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Curves in Figs. 17-19 enable to conclude that EDRTLT 

provides a good estimate of currents flowing on the 

transmission line in comparison to METLT taken as reference. 

Approximation of classical p.u.l. parameters is therefore 

acceptable for the inner transmission line. The higher 

frequency band (above 500 MHz) exhibits a slightly less good 

comparison at resonance frequencies.  

We provide in Fig. 20, a relative error for curves of Figs.13-

15. We notice that the relative error increases with the 

frequency as expected. Besides, at resonance frequencies, it 

becomes larger because the EDRTLT combines the use of the 

METLT and classical TLT which is known to have issues at 

resonance frequencies. 

In addition, Fig. 21 gives a summary of relative errors for 

Figs. 17-19. We notice that the error is smaller in the case of 5 

conductors than in the case of 2 conductors. This is due to the 

fact that, in the former case, the conductors are closer each to 

another.  

 
Fig. 20.Relative errors (%) between curves of Figs. 13-15. 

 
Fig. 21.Relative errors (%) between curves of Figs. 17-19. 

As stated in the introduction and confirmed by the results in 

Figs 20-21, this approach is rather intended for harnesses that 

are at a mean height at which the classical TLT is no longer 

available but still not large enough to use the METLT or MoM 

approaches. This is confirmed by Fig. 21 that shows that the 

results have a relative error of less than 1% except at the 

resonance frequencies at which the EDRTLT inherits the 

weaknesses of the classical TLT.  

VI. CONCLUSIONS 

In this paper, a new approach dealing with multi-conductor 

transmission lines is presented and called embedded double-

reference transmission line theory (EDRTLT). 

This approach is based upon choosing an arbitrary wire 

among the wires constituting the harness considering it as a 

local return conductor. Thus, the p.u.l. parameters of the N-

1remaining wires are calculated with respect to this local 

reference. Those p.u.l. parameters are therefore intrinsic to the 

bundle without any reference to the surrounding ground plane 

or structure. This internal subset of transmission line system is 

coupled to an external transmission line with the former local 

reference taken a single conductor transmission line and the 

ground plane or structure as a return path for the current.  

The transformation from a double to a single reference 

system is possible and the p.u.l. parameters expressed in the 

former one can be recast to calculate the parameters of the 

embedded single reference system. In the case of a bundle of 

small diameter with respect to its distance over a ground 

plane, the double-reference p.u.l. parameters may be 

calculated in a straightforward manner. The p.u.l. parameters 

of the internal subset may be calculated from the classical 

quasi-static approximation of the Green’s functions.  Thep.u.l. 

parameters associated to the local reference wire over the 

ground plane can be calculated using either the METLT p.u.l. 

parameters if the surrounding structure is simple, or through 

an exact resolution of Maxwell’s equations in more general 

situations. Any change of geometry of the transmission line, 

given the bundle’s diameter remains much smaller than its 

distance to the grounding structure, requires the only 

calculation of the p.u.l. parameters of a single wire: This is 

one of the major advantages of the proposed EDRTLT.  

A two-wire transmission line was evaluated for purpose of 

validation in a direct manner (METLT with a single reference) 

and through the EDRTLT. Results obtained by this new theory 

are comparable to those obtained through the METLT. 

Retrieval of single reference parameter from the double-

reference system is indeed effective and may be very useful to 

simplify the numerical analysis of the bundle to ground 

interaction. 

Many of the figures in this article provide a comparison 

between single reference and double reference data (Fig. 7-9, 

13-15and 17-19). The readers who would like to perform their 

own analysis of the quality of the comparisons (e.g. using the 

feature selective validation method in [12]) may find all 

corresponding data in supplementary files associated with this 

paper.  
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